求导法则

DNA图谱 / 问答 / 标签

什么是对数求导法则

1、对数求导的公式:(loga x)"=1/(xlna),(lnx)"=1/x.2、一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logu2090N=b,其中a叫做对数的底数,N叫做真数。3、底数要满足a>0且a≠1 真数N>0,并且,在比较两个函数值时:当a>1时,如果底数一样,真数越大,函数值越大。当a<1时,如果底数一样,真数越小,函数值越大。

logax对数求导法则公式

logax对数求导法则公式:(logax)"=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0

对数的求导法则?

具体回答如下:xy=e^(xy)yxy'=[e^(xy)](1y')y'=[e^(xy)-y]/[x-e^(xy)]常数求导均变为零,对于e^y+xy-e=0e^y 求导得 e^y * y " (复合函数求导法则)求导的意义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。在经济活动中会大量涉及此类函数,注意到它很特别。既不是指数函数又不是幂函数,它的幂底和指数上都有自变量x,所以不能用初等函数的微分法处理了。这里介绍一个专门解决此类函数的方法,对数求导法。

用对数求导法则求下列函数的导数 y=(sinx)^lnx

两边同时取对数:lny=lnx*ln(sinx)两边同时求导数:1/y*y′=1/x*ln(sinx) + lnx*1/sinx*cosxy′=y{1/x*ln(sinx) + lnx*1/sinx*cosx }=(sinx)∧lnx*{1/x*ln(sinx) + lnx*1/sinx*cosx}=

指数求导法则公式

指数求导法则公式为:(a^x)"=(lna)(a^x)。求导法则是:给出自变量Δx,得出增量Δy=f(x+Δx)-f(x),作商Δy/Δx,球的极限lim(Δx→0)Δy/Δx=f"(x)。指数函数求导证明:y=a^x两边同时取对数,得lny=xlna。两边同时对x求导数,得:y"/y=lna。y"=ylna=a^xlna,即(a^x)"=(lna)(a^x)。