实变函数论的产生
实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。也正是在那个时候,数学家逐渐发现分析基础本身还存在着很多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都不可导。这个发现使许多数学家大为吃惊。由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,人们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?……上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。
数学分析和实变函数的区别与联系
数学分析和实变函数之间有3点不同,相关介绍具体如下:一、两者的研究内容不同:1、数学分析的研究内容:研究函数、极限、微积分、级数。2、实变函数的研究内容:研究内容包括实值函数的连续性质、微分理论、积分理论和测度论等。二、两者的意义不同:1、数学分析的意义:数学分析的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。2、实变函数的意义:为微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。三、两者的实质不同:1、数学分析的实质:分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。2、实变函数的实质:以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。参考资料来源:百度百科-实变函数(数学学科术语)参考资料来源:百度百科-数学分析(数学基础分支)
实变函数
7.必要性:由fn(x)=>f(x),对于u2200σ>0,g(x)=f(x)a.e.于E:u2203E0u2282E,在E0上g(x)=f(x),且设E‘=(E-E0),mE"=0,于是对于u2200σ,故fn(x)=>g(x)8.逆命题成立,|f(x)|=f+(x)+f-(x),f(x)=f+(x)-f-(x)f+和f-分别为f(x)的正部和负部|f(x)|可积,则∫[f+(x)+f-(x)]dx<+∞,故∫f+(x)dx<+∞且∫f-(x)dx<+∞由于正部负部积分均有限,根据可积定义知f(x)可积9.使f(x)无限的x构成的集合为:设En=由于f(x)可积,有|f(x)|可积,故有对于u2200n:因此对u2200n:所以运用定理得:所以f(x)有限a.e.于E
实变函数l(e)
R可以看成可数个开区间(n-1,n)(n属于Z)和整数集Z的并集,根据题目给的条件任何的测度为1的开集G有∫G F(x)dx=0,所有则f(x)=0,a.e于G,可知在每个(n-1,n)f(x)=0,a.e.由此可以知道在每个(n-1,n)上f不为零的集合(设为En)其测度一定为零,使得所有f不为零的点应该是所有En和Z的并集的子集,而En和Z(Z为可数集合,可数集合的测度都是零)都是零测度集,可数个零测度集的并集还是零测度集,零测度集的任一一个子集还是零测度集.所有使得不为零的集合一定是一个零测度集.
什么是实变函数论
19世纪末20世纪初形成的一个数学分支,它的最基本内容已成为分析数学各分支的普遍基础。实变 实变函数论函数主要指自变量(也包括多变量)取实数值的函数,而实变函数论就是研究一般实变函数的理论。在微积分学中,主要是从连续性、可微性、黎曼可积性三个方面来讨论函数(包括函数序列的极限函数)。如果说微积分学所讨论的函数都是性质“良好”的函数(例如往往假设函数连续或只有有限个间断点),那么,实变函数论是从连续性、可微性、可积性三个方面讨论最一般的函数,包括从微积分学来看性质“不好”的函数。它所得到的有关的结论自然也适用于性质“良好”的函数。实变函数论是微积分学的发展和深入。函数可积性的讨论是实变函数论中最主要的内容。它包括H.L.勒贝格的测度、可测集、可测函数和积分以及少许更一般的勒贝格-斯蒂尔杰斯测度和积分的理论(见勒贝格积分)。这种积分比黎曼积分是更为普遍适用和更为有效的工具,例如微积分基本定理以及积分与极限变换次序。精美的调和分析理论(见傅里叶分析)就是建立在勒贝格积分的基础上的。此外,还适应特殊的需要而讨论一些特殊的积分。例如为讨论牛顿-莱布尼茨公式而有佩隆积分。由于有了具有可列可加性的测度和建立在这种测度基础上的积分,导致了与微积分中函数序列的点点收敛和一致收敛不同的一些新的重要收敛概念的产生,它们是几乎处处收敛、度量收敛(亦称依测度收敛)、积分平均收敛等。度量收敛在概率论中就是依概率收敛,且具有特别重要的地位。积分平均收敛在一般分析学科中也是常用的重要收敛。傅里叶级数理论以及一般的正交级数理论就是以积分的平方平均收敛为基本的收敛概念。一般正交级数的无条件收敛问题在实变函数论中也有所讨论。在函数连续性方面,实变函数论考察了例如定义在直线的子集М(不必是区间)上的函数的不连续点的特征:第一类不连续点最多只有可列个,第二类不连续点必是可列个(相对于М的)闭集的并集(也称和集)的结论;还讨论怎样的函数可以表示成连续函数序列处处收敛的极限,引入半连续函数,更一般地是引入贝尔函数,并讨论它们的结构。与研究函数连续性密切相关的就是讨论各类重要的点集如□,更一般的是波莱尔集及其结构。解析集合论就是在深入讨论波莱尔集和勒贝格可测集相互关系基础上形成的一个数学分支。实变函数论在函数可微性方面所获得的结果是非常深刻的。设□(□)是定义在(□,□)上的、在每点取有限值的实函数。对于每个□□□□(□,□),引入四个数:□,□,□,□,分别称□为□(□)在□ 处的右方上(下)导数,左方上(下)导数。这四个数(可以是无限大)都相等且有限时,就称□(□)在□处是可导的。历史上人们曾以为[□,□]上任何连续函数□(□)都至少有一点是可导的,后来K.(T·W)外尔斯特拉斯举出了一个反例:□,式中0□。它是连续的,而在任何一点处都是不可导的。但А·当儒瓦、W·Н·杨和S·萨克斯证明了:对(□,□)上每点取有 实变函数论限值的实函数,必有勒贝格测度是零的集□,使得对任何□□□,下面三种情况必有一种出现。①□在□处有有限导数。②在□处的异侧的某两个导数是同一个有限数;另两个异侧导数必定一个是+∞,另一个是-∞。③两个上导数都是+∞,两个下导数都是-∞。由这个定理又可推出如下重要结果:设□(□)是[□,□]上单调函数,那么除去一个勒贝格测度是零的集□外,□必定存在且有限。在实变函数论中还考虑可导点集的特征,多元函数的微分问题以及其他的一些导数概念和不同导数之间的关系。实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。
数学分析与实分析(实变函数)有什么关系?
从教学实践上来说,一般是学完数分以后再同时学实分析(国内等价于实变)和复变(两者独立教学),学完复变之后再学复分析。但从逻辑关系上来说,不学数分直接学实变也是可以的,因为勒贝格测度和积分的定义实际上是独立于黎曼积分的,只是它整套机器更为庞大而已。数学分析的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。为微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。相关联系微积分理论的产生离不开物理学,天文学,经济学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。以上内容参考:百度百科-数学分析
实变函数闭集充要条件
实变函数闭集充要条件包含所有聚点的集合是闭集。由于收敛点列{xn}收敛域x0,那么x0是闭集F的聚点,当然属于F。这个是点集拓扑的内容,用到泛函这而已。连续映射的定义是,开集的原像是开集,取个补稍微推一下即可。单点集是闭集,证明如下:设集合S={a},它没有聚点,所以导集为空集,从而导集包含于S,按定义,它是闭集。有限个闭集的并集还是闭集,从而命题得证。性质A是闭集当且仅当它的补集是开集。设A是闭集,用Ac表示其在度量空间内的补集,根据开集的定义,只需要证明Ac中的点都是内点即可。任取一点x∈Ac,若假设x不是Ac的内点,则根据内点的定义,在x的任意一个邻域内,都至少有一点不属于Ac,即在x的任意一个邻域内,都至少有一点属于A。并且很明显,这一点不可能是x自身(因为x∈Ac)。
实变函数的内容
以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集一个数量上的概念,这个概念叫做测度。什么是测度呢?简单地说,一条线段的长度就是它的测度。测度概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来又推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究一类函数用另一类函数来逼近、逼近的方法、逼近的程度、在逼近中出现的各种情况。和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支中的应用是现代数学的特征。实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。
对实变函数的看法和感悟
对实变函数的看法和感悟如下:一、实变函数课程内容简介第一章主要简述了集合论,里面包含了集合的运算、基数、可数集等内容,以便更好地了解集合的性质。第二章则主要介绍了开集、闭集以及特殊的集合:Cantor集和Borel集。以此为基础第三章主要讲述了测度与外测度,有了可测集之后还有可测函数,第四章便主要讲述了可测函数。最后,便是最重要的还是Lebesgue积分。至于学习本课程所需预备知识,笔者认为需要数学分析的相关知识较多。主要是关于极限的一些内容,上极限、下极限、确界原理。以及黎曼积分和勒贝格积分之间的区别。笔者认为本门课程和代数之间关联较少。而在学习的过程中发现概率论的基础是实变函数,而实变函数也因概率论的发展而被世人所重视。二、本课程最艰难的部分,应该如何克服?实变函数的难点在于有些定义较为抽象,比如勒贝格积分,博雷尔集类,不可测集、选择公理,这些定义、公理在理解上相对较为困难,难以想象,难以用某些东西去类比,因此相对其他学科会较为困难。而针对概念、定义上的困难,还是需要自己反复推敲才能较好地领悟其中奥妙。因此,对于普通大学生来讲克服这些难点地关键在于自身,静下心思考,一遍、两遍、三遍,经过仔细琢磨,对这些知识点地理解也能更深入,难题也会迎刃而解。而与其他学科相关地一些定义,如连续、上下极限、上下确界等内容相对较为容易理解,在学习实变函数时只需融会贯通,多加运用即可。三、本课程最感兴趣的部份比较吸引我的一点是实变函数与各学科的交集。实变与概率论、复变函数以及数学分析之间都有联系。从黎曼积分到勒贝格积分,我更希望看到勒贝格积分的具体内容,以及黎曼积分与勒贝格积分的具体差距。
什么是泛函、复变函数、实变函数?
分类: 教育/科学 >> 科学技术 问题描述: 什么是泛函、复变函数、实变函数? 这三种函数有什么特征啊?能不能各举个例子?万分感谢了! 解析: 简单的说,自变量是实数的,就是实变函数;是复数的,就是复变函数;是函数的,就是泛函。 例子实变:y=x+1,x属于R 复变:w=2*z,z属于C 泛函:L(y)=y"+y, y=y(x) [y"代表y的导数]
求复变函数在实际中的应用或者与实变函数的区别
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
这是有关实变函数的问题:为什么在[0,1]上的狄利克雷函数是简单函数?
在[0,1]上勒贝格可积在很多时候,只是为了来说明某些问题的。这个函数挺特殊,作为很多事情的反例,这个函数在任意一点都不存在极限且是以任意有理数为周期的周期函数(有理数相加得有理数,无理数加有理数还是无理数),同时这个函数在积分上也有应用,该函数黎曼不可积,而在其它一些积分中是可积的。
这是有关实变函数的问题:为什么在[0,1]上的狄利克雷函数是简单函数?
在[0,1]上勒贝格可积 在很多时候,只是为了来说明某些问题的. 这个函数挺特殊,作为很多事情的反例,这个函数在任意一点都不存在极限且是以任意有理数为周期的周期函数(有理数相加得有理数,无理数加有理数还是无理数),同时这个函数在积分上也有应用,该函数黎曼不可积,而在其它一些积分中是可积的.