衰变常数

DNA图谱 / 问答 / 标签

某放射性同位素的衰变常数为0.005371天-1,则其半衰期为多少?

半衰期和衰变常数的乘积为一常数,即为ln2。知道某一值,则可求出另一个值。

某放射性核素在5min内衰变了原有的90%,求它的衰变常数,半衰期和平均寿命

0.1=e的rt次方。t=5min,就剩r衰变常数了。有衰变常数半衰期,平均寿命都有了~~

取10毫克238U,测得它的放射性活度A=740(1/min),求1克238U的活度及它的衰变常数λ和半衰期T。

10mgu-238的活度A=740/min,求得A=740/60s=12.3/s=12.33Bq。推出1gU-238的活度为1233bq放射性活度A=λ*N,λ为衰变常数,N为1gU-238的原子数。代入求得λ为4.87E-19,λ=ln2/T1/2。推出T1/2=1.422E+18S即4.51E+09年

镭226,88Ra的半衰期1600年,求它的衰变常数,平均寿命,1克镭的放射性活度

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.

公式λ*T=In2是怎么推出来的 (λ为衰变常数 T为半衰期)

根据半衰期定义有e^(-λT)=1/2两边取对数得-λT=ln(1/2)=-ln2λT=ln2

32P的半衰期为14.3天,求它的衰变常数和平均寿命?

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.

U238的衰变常数是多少

铀-238自发裂变半衰期T=1.01E+16年,λ=ln2/T≈6.863E-17每年≈2.175E-24每秒.

衰变常数、平均寿命、半衰期之间的关系

半衰期:T1/2 衰败常数:λ平均寿命:τT1/2 =0.693/λτ=1/λT1/2:是放射性核素的物理特性,可以直接查找相关资料获得

衰变常数的计算方法

计算公式如图中1式,其中N(t)代表t时刻的原子核数目,λ代表衰变常数。与半衰期的换算关系如图中2式,其中T代表半衰期。

衰变常数的介绍

衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。

衰变常数指的是

单位时间(如Is或la)内原子核发生衰变的几率衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。定义:衰变常数是各种放射性核素的特征参数。与半衰期一样是表示放射性元素衰变速度的一项指标。衰变常数(λ)与半衰期(T1/2)有下列关系:λ=0.693/T1/2;T1/2=0.693/λ。λ值愈大,放射性元素衰变愈快,半衰期愈短。对放射性核素的衰变现象进行观察统计,实验发现,用加压、加热、加电磁场、机械运动等物理或化学手段不能改变指数衰减规律,亦不能改变其衰变常数。这表明,放射性衰变是由原子核内部运动规律所决定的。意义:它的物理意义就是在单位时间内每一个核的衰变几率。每一种放射性核素都有它特定的衰变常数,λ数值大的放射性核素衰变得快,小的则慢。衰变常数的单位是s-1,例如,Co的衰变常数为4.439×10 s-1,而Ag的衰变常数则为4.73×10 s-1。由此可知,衰变常数也是用来表示放射性核素的特征。

半衰期与衰变常数关系

半衰期和衰变常数(λ)的关系是:λ·T1/2=0.693半哀期:从统计意义上讲,半衰期是指一个时间段T,在T这段时间内,一种元素的一种不稳定同位素原子发生衰变的概率为50%。衰变常数:衰变常数(decay constant),表征放射性衰变统计规律的特征量之一,表示某种放射性核素的一个原子核在单位时间内发生衰变的几率。

某种放射性核素在24h 内衰变为原来的1/8,求它的半衰期,衰变常数和平均寿命。

24h到1/8,12h到1/4,6小时到1/2。所以半衰期应该是6h。衰变常数有计算公式,如下:算得你的衰变常数应该是3.21e-5

137Cs的衰变常数

0.0231/年

已知co60放射性同位素的半衰期为5.3年,其衰变常数是多少

=0.693/5.3=0.131/年

铀的普通同位素u-233进行α衰变,半衰期为4.47年,问衰变常数是多少

放射性同位素的原子核,在自发地放射出某种粒子或r射线后变成另一种不同的核,这种现象就叫衰变.放射性物质的能量就会因这种自发射而逐渐减少.放射a衰变;放射β粒子的衰变为β衰变.衰变前的核为母体,衰变后的核为子体. (1)衰变定律—指数衰减规律 放射性物质的衰变速度有的很快,有的则很慢,它是放射性同位素的特征.对于一定的放射性物质,其衰变速度是恒定的.所有放射性同位素的衰变速度完全不能因外素加以改变.各种放射性同位素都有有自己特定的相对衰变速度,相对衰变速度即为衰变常数. 通过对大量原子核进行研究,发现所有的放射性物质其原子核数目随时间t的变化都遵守一种普遍的衰变规律.它表示单位时间内衰变核的数目与尚未衰变核的灵数目之比.一般关系式为: ue781λ= 式中 —dN/dt—在时间间隔dt内一个给定原子核由该核能态发生核跃迁的概率; N—物质在t时的尚未衰变原子数. 由此经验证明,代入数学推导的指数衰减定律,可得放射性衰变规律: N=Noe 式中 N—物质在t时尚未衰变的原子数: e—自然对数的底; N —原有的(当t=0时)物质原子数; —该物质的衰变常数. 式(1-5)表明了放射性物质的原子数随时间成指数规律减少.指数衰减规律在核辐射防护、放射性同位素的应用和生产等许多方面有着重要用途. (2)半衰期 表征放射性核素自发跃迁的另一个参数是半衰期T .放射性的半衰期是指放射性物质的原子数因衰变而减少到原来一半所需的时间.根据半衰期是指放射性物质的原子数因衰变而减少到原来一半所需的时间,.根据半衰期定义和指数衰减规律式(1-5)可求出半衰期T 与衰变常数λ的关系. 当t= T 时,NT ,代入式(1-5)得;N /2=N . 所以 =e 即 T = 可见T 与λ成反比关系,即放射性核素的半核素的半衰期越大,衰变常数就越小(放射性核素变越慢);反之半衰期越短,衰变常数就越大.例如:铀238: =45×10 年, =4.383×10 S ;氡222: T =3.825日, =2.096×10 S . (3)平均寿命 表征放射性素自发核跃迁的参数除T 、 外,还常用到平均寿命 。所谓平均寿命是指某种放射性核素平均生存时间。 与T 、 的关系表示为:(推导略) =1/ (1-1) = T /0.693 1.44 T (1-2) T =0.693 (1-3) 铯137和钴60都是射线探伤常用的 射线元。 Cs原子核质量数A=137(质子数Z=55,N=82)。 Co原子核质量数A=60(质子数Z=27,N=33)。过程是有92%的原子核放出具有0.51MeV的 粒子,跃迁至 Ba(钡)的激发能级,然后又放出具有0.66MeV的 射线粒子,跃迁至其基级,变成稳定的 Ba。在 Cs的 衰变过程中,伴随着 射线的产生,还有8%的原子核直接放出具有1.77MeV的 粒子,不放出 射线,而同样变成 Ba。 Co的半衰期T=5.3年。 Co在0.31MeV的 粒子衰变过程中放出具有1.77MeV能量和1.33MeV能量的 射线粒子,变成稳定的 Ni(Z=28,N=32) 射线X射线虽然产生机理不同,但同属电磁波,性质十分相似,不过 射线波长比一般X射线更短。 射线能量与波长关系仍然为式(1-3)指出那样: =hc/ . 射线能量以兆电子伏特(MeV)来衡量。许多核衰变表明, 射线往往与 射线、 射线其他射线一起产生。

公式λ*T=In2是怎么推出来的 (λ为衰变常数 T为半衰期)

根据半衰期定义有 e^(-λT)=1/2 两边取对数得 -λT=ln(1/2)=-ln2 λT=ln2

粒子平均寿命是衰变常数的倒数怎么理解?

粒子寿命(particle lifetime)是指粒子产生后到衰变时为止平均存在的时间。简称为寿命,又称平均寿命。粒子运动速度很快甚至接近光速 时,由于相对论性的效应,其平均寿命将比粒子静止时的长,表现为同一种粒子的平均寿命随速度的增加而增加。粒子物理学中提到粒子的平均寿命都是指在该种粒子静止时所观测到的平均寿命。至于粒子运动时的平均寿命,则根据相对论的公式进行推算。现在已知的可衰变的基本粒子,其平均寿命分布在很大的范围内。中子的平均寿命最长,为885.7±0.8秒,其他粒子的平均寿命都短于10-5秒,最短的约为10-25秒。粒子物理学中称为稳定粒子(见衰变)的基本粒子,现已测定的平均寿命除W粒子和Z粒子外都大于10-20秒。粒子物理学中称为不稳定粒子的基本粒子,现已测定的平均寿命都小于10-20秒。考虑到粒子的质量m总是随粒子的运动速度而改变,粒子物理学中提到质量都是指粒子在静止时所表现的质量。微观现象的普遍规律决定了只有完全稳定的粒子其质量才具有完全确定的值,可衰变的粒子的质量分布在某一确定值附近的一定范围内。这种分布可用该种粒子的质量分布P(m)图表示出来。粒子的质量分布图中有一个最大值。这个最大值所对应的质量M就是通常所说该种粒子的质量。最大值两边曲线降到最大值一半处的两点之间的质量差用Г代表。Г反映了由于粒子是可衰变的而引起的粒子质量分布的范围,Г称为衰变宽度。Г=h/τc2(等于平均寿命τ的倒数乘普朗克常数h再除以光速c2)。换言之,自然单位制中衰变宽度等于平均寿命的倒数,它直接反映粒子稳定的程度。实验中直接测量的通常是平均寿命或衰变宽度。对于绝大多数粒子,平均寿命很短而衰变宽度大,所以实验上通常是直接测量衰变宽度。只有平均寿命很长的粒子,如平均寿命约为10-8秒,才能直接测量它的平均寿命。

24Na 衰变到 24Mg 衰变常数是多少

24Na衰变道24Mg的半衰期T(1/2)=14.99 h,则衰变常数为λ=ln(2)/14.99/3600=0.000012836 (1次/s)衰变过程中会释放一个1392keV的电子,同时24Mg从激发态到态跃迁释放两条级联γ线,能量为1369keV,2754keV。

镭226,88Ra的半衰期1590年,求它的衰变常数,平均寿命,1毫克镭的放射性活度?

先求平均寿命。由题意,镭所剩的百分比p与时间t(年)的关系为p=(1/2)^(t/1590)所求平均寿命即为(约为2293.89)衰变常数即为平均寿命的倒数 ln2/1590,约为0.00043594放射性活度A即单位时间中衰变的原子核数,约等于30685170.15Bq具体过程:

硅元素的衰变常数

与其放射性同位素有关。根据不同的放射性同位素会有所不同。最常见的硅的同位素为28Si,其本身是不稳定的,但是其半衰期非常长,可达到24亿年,在大多数情况下可以看作是稳定的。硅元素是一种化学元素,原子序数为14,化学符号为Si。硅元素是地壳中重要的非金属元素之一,占地壳总量的约28%,是人类社会中广泛应用的材料之一。

怎样理解衰变规律,衰变常数以及半衰期呢?

补充下,衰变是两种,射线是三种。三种射线: α射线、β射线、γ射线.衰变原子核放出α粒子或β粒子后,就变成新的原子核.这种变化称为原子核的衰变.1、衰变规律:原子核衰变时电荷数和质量数都守恒.质量数守恒(注意不是质量守恒);电荷数守恒;动量守恒;能量守恒.2、衰变方程:α衰变:AZX→A-4Z-2Y+42Heβ衰变:AZX→AZ+1Y+0-1e3、两个重要的方程:23892U→23490Th+42He23490Th→23491Pa+0-1e说明:γ射线是原子核受激发产生的,一般是伴随α衰变或β衰变进行的,即衰变模式是:α+γ,β+γ,没有α+β+γ这种模式!

镭226,88Ra的半衰期1600年,求它的衰变常数,平均寿命,1克镭的放射性活度

已知镭的半衰期为1600年,求它的衰变常数和1克纯镭的放射性活度。解:1g类所含母核数为N=6.02X1023X1-266=2.66X1021个且T1/2=0.693/ λ.①A =λ·N ②由①②得:衰变常数λ=1.37X10-11,放射性活度A=3.644X1010.

U238的衰变常数是多少

铀-238自发裂变半衰期T=1.01E+16年,λ=ln2/T≈6.863E-17每年≈2.175E-24每秒.

放射性核素90Sr的半衰期为25年(一年为365天),求其衰变常数λ和平均寿命ι。并计算1毫克的这个

半衰期公式是这么推出的:根据衰变定律dN/N=-λdt ==>ln(N)=-λt+c ==>N=N0*exp(-λt),当N=0.5N0时,对应的时间τ就是这种核素的半衰期。代入得2=exp(λτ)==>τ=ln(2)/λ;对于本题,将τ=25年代入上式,得到衰变常数λ=ln(2)/25年=ln(2)/(25*365.25*24*3600)=1.2675*ln(2)*10^(-9)/s;平均寿命T为衰变常数λ的倒数:T=1/λ=1.14×10^9s≈36年1mol锶90质量为90克,1毫克Sr90的摩尔数为k=(0.001/90)(阿佛加德罗常数NA=6.02*10^23/mol),包含原子核的个数n=k*(NA)=6.69×10^18;一个半衰期(25年),有一半0.5n发生衰变,平均每秒衰变的个数0.5n/(25×365.25×24×3600)=1.02×10^11个(约为一千亿个)

碘131的衰变常数怎么算

一、放射性核素半衰期的计算公式为:lt=loe-λt,lt为所用时间为t时的放射性活度,lo为标定值,e为自然对数的底,入为一常数,入=0.693/T1/2,T1/2为所用某种放射性核素的半衰期;分别计算不同放射性核素的入值,如碘-131的半衰期为8.04天,入=0.693/8.04=0.086194。