拓扑学

DNA图谱 / 问答 / 标签

力学中的拓扑优化和数学中的拓扑学有什么联系

有公式上的联系理论上的联系力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体是撒旦和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。力学是一门基础学科,同时又是一门技术学科。它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。

拓扑学最难的是什么,有什么技巧吗

拓扑学是19世纪发展起来的一个重要的几何分支。早在欧拉或更早的时代,就已有拓扑学的萌芽。著名的“哥尼斯七桥问题”以及“麦比乌斯丁的《拓扑学初步》。里斯丁是高斯的学生,1834年以后是哥根大学教授。他本想称这个学科为”位置几何学“,但这个名称陶特用来指射影几何。于是改用”topology”这个名字。“topology"直译的意思是地志学,也就是和研究地形、地貌相类似的有关学科。1956年,统一的《数学名词》把它确定成拓扑学。 拓扑学虽然是几何学的一个分支,但是这种几何学又和通常的”平面几何“、”立体几何“不同。通常的平面几何或立体几何研究的对象是点、线、面之间的机关位置以及它们的试题性质。拓扑学研究的内容与研究对象的长短、大海、面积、体积及试题性质和数量关系无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等图形,也就是说,通常的平面几何是研究在运动中大小和形状都不变的学科,但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每个图形的大小、形状中以改变。 里斯丁以后,黎曼把拓扑学的概念引入复变函数论中,发展成黎曼曲面论。 早期的拓扑学明显地分为两支:一是点集拓扑,以康托的贡献为起点;另一支是组合拓扑,由上世纪末庞加莱所首创。庞加莱平时行支迟缓、笨拙,视力很差,常常给人心不在焉的印象。可是,庞加莱具有超凡的心算和数学思维能力。庞国莱对20世纪数学影响十分浣。1895年,他出版了《analysissitus(位置分析)》,第一次系统地论述了拓朴学的内容。后来被发展成20世纪极富有成果的拓朴学分支,庞加莱的研究领域十分广泛。他在巴黎大学开设的讲座包括毛细管学、弹性力学、热力学、、光学、电学、宇宙学等,在数学方面还涉及非欧几何,不变量理论、分析力学,包括概率论。 拓扑学是一门新兴的学科,它一出现,很快就渗透到了各个领域里去。