hypermesh拓扑优化后的模型如何保存为3dj
点击export,后缀改为3dj即可,这个软件导出非常好导出,建议先保存文件再导出
ug拓扑优化未找到结果
我的有限元分析一直是求解成功,但是导入结果的时候出现未找到结果,找了很多帖子都说的是nastram过期,但是不会安装。我就试着将用户默认设置中仿真/前后处理/Nastram/求解器参数位置更改/nx12NXNASTRANconf ast12.rcf。重新进行分析就找到结果了。希望对需要的人来说有用,如果这样不行,可以下单独的nastram来求。
用ANSYS13.0做拓扑优化,为什么老是提示单元类型不能用于优化呢,单元是SOILD186
我也遇到这个问题,这是因为solid186单元不支持拓扑优化。你可以尝试换成solid92,93或者95单元都可以,这些单元在ansys13.0交互方式里面不能直接选取,但是在材料库里面有,你可以用命令流的方式输入:ET,1,92,然后在element type里面add/delete里面查看就可以了
solidworks拓扑优化的收敛数据表在哪查看
全部折叠拓扑选项“拓扑选项”对话框可指定拓扑算例的分析选项。要访问“拓扑选项”对话框:右键单击拓扑算例顶部的算例图标,然后单击属性。求解器自动解算器选择 软件选择要运行拓扑算例的求解器。具有更快性能的默认解算器为 Intel Direct Sparse。FFEPlus(迭代)是仅当定义有频率约束时的默认解算器。在运行拓扑算例之前运行静态分析 默认情况下选定。 软件将在运行拓扑优化算法之前运行静态分析。使用平面内效果 考虑平面内载荷对刚度计算的影响。使用软弹簧使模型稳定 添加与地面相触的软弹簧,以防止发生不稳定现象。 如果将载荷应用于不稳定的设计,设计可能会像刚性实体一样平移和旋转。 施加适当的约束,以防止刚性实体运动。使用惯性释放 应用惯性力,以抵消不平衡的外部载荷。 选定时,不必应用约束或激活软弹簧选项来稳定模型以防止刚性实体发生运动,就可解决结构问题。使用最小最大公式(为载荷实例) 当多个载荷实例可以单独在某零部件上应用(通过载荷实例管理器定义)时选择该选项。优化算法旨在单独为每个应用的载荷最小化合规性(刚度的倒数)。 对于零部件的最终形状,可以独立应用的已应用载荷实例拥有最大刚度。保留(冻结)区域设置仅限包含载荷的区域 从优化中排除已应用载荷的面。仅限包含夹具的区域 从优化中排除已应用夹具的面。包含载荷和夹具的区域 默认选项。 优化期间将保留已应用载荷和夹具的面。无(用户定义) 选择要保留的区域。 要选择在优化期间保留的面,请右键单击制造控制,然后选择添加保留区域。 /> 结果文件夹指定存储分析结果的文件夹位置。高级收敛检查(草稿品质) 如果选定,则对于每个迭代,求解器将检查目标或约束是否已收敛以阻止求解。 达到收敛的后续迭代之间的数值公差将放宽。 默认情况下,解算器使用较小的数值公差(精度更高);要想使解算器停止,需要同时满足目标和约束。最大迭代数量 自动收敛所需的最大迭代数量将自动设置。用户定义为优化算法指定最大迭代数量,以达到收敛。 输入介于 20 和 101 之间的迭代数量。
ANSYS拓扑优化后如何显示迭代步数与优化目标的曲线
io几句哈哈哈尽快回家后经济改革价格已经钢结构
拓扑优化不收敛的原因
原因是:数值不稳定。拓扑优化通过有限元分析和优化方法结合求解,就是在一个给定的设计空间区域内,依据已知的外载荷或支撑等约束条件。解决材料分布问题,从而使结构刚度最大化或输出位移、内部应力达到设计要求的一种结构设计方法。目前拓扑数值方法都是将问题用有限个参数近似表示,以便利用较为成熟的参数优化方法求解。拓扑优化方法可以在没有特定初始拓扑的情况下得到的结构最优拓扑,而形状优化在结构拓扑不变的前提下优化结构边界的精确形状。相对于形状优化,拓扑优化的优势在于可以给出结构的最优拓扑和边界的大致形状。拓扑优化中常用的两种方法是均匀化法和密度法。
谁有关于MMA算法的悬臂梁拓扑优化matlab程序
悬臂梁的弯矩如何计算,集中力P作用点到固定端之距L,则弯矩为;M=P*L;均布荷载Q作用范围B作用范围中心到固定端之距L。则弯矩为:M=Q*B*L。当满跨均布荷载B=L,作用距为L/2时。弯矩为:M=QL* L/2.
optistruct中怎么设定拓扑优化迭代次数上限?
优化面板里的opticontrol→勾选DESMAX输入改变optistruct的叠代上限值optistruct软体是预设为80次~通常若叠代80次以上就算没有叠代优化完还是会在80次自动结束架设一个物体优化叠代次数为20次若勾选DESMAX输入10则只会叠代到第10次优化便会停止但代表那物体还有剩下的10次叠代还没跑优化不完全若你那物体叠代是93次勾选DESMAX输入93或者比93大的数值便能叠代完93次
99行拓扑优化程序加载荷怎么加
老师说这个是拓扑优化的入门程序,要看明白的,个人感觉不错,%%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%%%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%%%%% 一个由 OLE SIGMUND编写的99行拓扑优化代码,2000年1月 %%%%%%% 为加速而修改的代码,2002年9月,由OLE SIGMUND编写 %%%function top(nelx,nely,volfrac,penal,rmin);% INITIALIZEx(1:nely,1:nelx) = volfrac; loop = 0; change = 1.;% START ITERATIONwhile change > 0.01 loop = loop + 1; xold = x;% FE-ANALYSIS [U]=FE(nelx,nely,x,penal); % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS [KE] = lk; c = 0.; for ely = 1:nely for elx = 1:nelx n1 = (nely+1)*(elx-1)+ely; n2 = (nely+1)* elx +ely; Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); c = c + x(ely,elx)^penal*Ue"*KE*Ue; dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue"*KE*Ue; end end% FILTERING OF SENSITIVITIES [dc] = check(nelx,nely,rmin,x,dc); % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD [x] = OC(nelx,nely,x,volfrac,dc); % PRINT RESULTS change = max(max(abs(x-xold))); disp([" It.: " sprintf("%4i",loop) " Obj.: " sprintf("%10.4f",c) ... " Vol.: " sprintf("%6.3f",sum(sum(x))/(nelx*nely)) ... " ch.: " sprintf("%6.3f",change )])% PLOT DENSITIES colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);end %%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%function [xnew]=OC(nelx,nely,x,volfrac,dc) l1 = 0; l2 = 100000; move = 0.2;while (l2-l1 > 1e-4) lmid = 0.5*(l2+l1); xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid))))); if sum(sum(xnew)) - volfrac*nelx*nely > 0; l1 = lmid; else l2 = lmid; endend%%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [dcn]=check(nelx,nely,rmin,x,dc)dcn=zeros(nely,nelx);for i = 1:nelx for j = 1:nely sum=0.0; for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx) for l = max(j-floor(rmin),1):min(j+floor(rmin),nely) fac = rmin-sqrt((i-k)^2+(j-l)^2); sum = sum+max(0,fac); dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k); end end dcn(j,i) = dcn(j,i)/(x(j,i)*sum); endend%%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [U]=FE(nelx,nely,x,penal)[KE] = lk; K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);for elx = 1:nelx for ely = 1:nely n1 = (nely+1)*(elx-1)+ely; n2 = (nely+1)* elx +ely; edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2]; K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE; endend% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)F(2,1) = -1;fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);alldofs = [1:2*(nely+1)*(nelx+1)];freedofs = setdiff(alldofs,fixeddofs);% SOLVING
ansys拓扑优化结果能分步查看吗
不能分步查看,只有最终的优化结果!不过你可以在迭代的过程中注意观察拓扑优化后的形状;也可以在优化的命令流中加一句迭代完一次后截个图才输出,这样你就可以看到上面的效果了,不过只是图片而已;还有一种方法是你一次一次的优化,这样就可以得到你想要的效果了。忘采纳!
求教:我想问下,在hyperworks中做拓扑优化后 优化后的结构 怎么才能提取出来 然后可以导入三维模型呢?
用面板上post中的ossmooth,文件路径选择你的文件,想生成x_t格式的就选择parasolid,threshold是保留的单元的密度,如选择0.5则只会用密度大于0.5的单元生成CAD模型,autobead一栏选择none,然后点击ossmooth,等一会儿会生成面单元,然后在接下来出现的面板中点FE-surf,就开始生成面了,完成后点击save&exit,就保存面了,最后用File下的Export输出Geometry选择你想生成的格式就行啦,但是只有面的CAD模型,不知道怎么生成实体的,我还在试验,有经验的可以一起交流一下,谢谢!
hypermesh拓扑优化时如何划分设计区域和非设计区域?
先建两个不同的component,点(organize)按钮,出现下面这个对话框,将设计区和非设计区的网格放在不同的component中
力学中的拓扑优化和数学中的拓扑学有什么联系
有公式上的联系理论上的联系力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体是撒旦和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。力学是一门基础学科,同时又是一门技术学科。它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
对于侧面碰撞部件做拓扑优化用哪个软件
拓扑优化还是用optistruct或者tosca,国内可能用optistruct的多一些,国际特别是德国一般用tosca多一些,日本好像也有一款软件,另外常用的ansys和abaqus等也可以做拓扑优化。
ansys找不到拓扑优化模块
ansys找不到拓扑优化模块,解决方法如下:1、下载workbench附加的ACT安装包。2、找到AnsysTopologyOptimization,下载。3、通过workbench→ACTstartpage选框进行加载。就能在Toolbox里找到拓扑优化模块。
Workbench里的Shape Optimization真的是拓扑优化吗?难道不是形状优化?
不是,ansys18有拓扑优化模块
hypermesh拓扑优化如何定义应力响应
先提取应力、固有频率为响应:Analysis面板,optimization,responses,选择staticstress,选择对应的部件结构并创建。Analysis面板,optimization,responses,选择frequency,选择对应的阶数并创建。然后设置约束条件:Analysis面板,optimization,dconstraints,分别选择刚才提取的两个响应,并输入对应的上下限值,选择相应的工况,创建约束,后再创建优化目标就可以了。
Hyperworks拓扑优化怎样实现让一个物体的固有频率更加密集
很久没做了,以前的版本貌似没有对应的响应可以做目标。但能否这样考虑:先算一下基准模型的固有频率,然后对相隔一些阶数的频率值设置对应的目标,进行“压缩”。比如原来的1阶频率为10HZ, 5阶为100HZ, 建立优化模型时,f1下限为10,f5上限为50——即将前5阶频率压缩到10~50,以达到你说的在10——50Hz内频率更多。不知道这样是否可行,个人愚见。
用ansys workbench做拓扑优化设计的时候 如何指定优化区域
指定优化和非优化的区域在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…… ……Et,1,solid92 Et,2,solid92 …… Type,1 Vsel,s,num,,1,2Vmesh,all …… Type,2Vsel,s,num,,3 Vmesh,all ………… 说明:上述代码片段定义相同的单元类型,但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。
拓扑优化和轻量化是同一个意思吗
当然不是一个意思,拓扑优化是看你自己想做的目标,例如轻量化,减振降噪,增加固有频率等等目标。
ANSYS Workbench14的拓扑优化模块在哪啊?怎么用
这才是workbench真正的拓扑优化,需要额外下载workbench附加的ACT安装包,找到Ansys Topology Optimization ,然后下载下来,通过workbench→ACT start page选框进行加载。就可以在Toolbox里看到了。
拓扑优化加权柔度加权值是多少
加权值是40。为对某新能源车型前悬挂下摆臂进行结构轻量化设计,运用悬挂动力学模型提取摆臂各连接点在各工况下的静载荷,结合拓扑优化分析方法,获得摆臂的最佳传力路径和材料分布,明确轻量化优化方向。目前,各国关于汽车环保的法规要求越来越严格。为降低汽车能耗、增加汽车续航里程,汽车轻量化已成为汽车研发的重点。国内外各大企业都投入高额的研发经费,通过结构优化设计和新材料的运用,对汽车轻量化进行多方位的研究,并已经取得显著成果。
hypermesh与optistruct这两个软件一样吗?我想用hypermesh划分网格,用optistruct做拓扑优化,谢谢
hypermesh与optistruct是hyperworks软件中的两个模块,类似于word和excel是microsoft office中的两个模块。其中hypermesh是前处理器(包括画网格以及加载约束等),optistruct是求解器,可以做优化和线性分析。
拓扑优化的商用软件
目前,连续体拓扑优化的研究已经较为成熟,其中变密度法已经被应用到商用优化软件中,其中最著名的是美国Altair公司Hyperworks系列软件中的Optistruct和德国Fe-design公司的Tosca等。前者能够采用Hypermesh作为前处理器,在各大行业内都得到较多的应用;后者最开始只集中于优化设计,支持所有主流求解器,以及前后处理,操作十分简单可以利用已熟悉的CAE软件来进行前处理加载,而后利用TOSCA进行优化十分方便。近年来和Ansa联盟,开发了基于Ansa的前处理器,并开发了TOSCA GUI界面,以及ansys workbench当中ACT的插件,可以直接在workbench当中进行拓扑优化仿真。此外,由于Ansys的命令比较丰富,国内也有不少研究者采用Ansys自编拓扑优化程序的。
美国拓扑优化的成果有哪些
拓扑半金属的发现和拓扑绝缘体材料的开发等。1、拓扑半金属是一种新型材料,具有优异的电学、光学和磁学性质。2、拓扑绝缘体是一种特殊的材料,在外部磁场或施加电压的情况下,其表面会出现特殊的电子状态。
如何利用ANSYS进行拓扑优化
这个问题你提出也有几天了,尚未收到回答。不知道你有没有自己网站搜一下?网上还是有些这样类似的文章的。如下,是我网上找到的,仅供你参考:1.1、定义需要求解的结构问题对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在0.1~0.4之间)、密度等相关的结构特性方面的信息,以供结构计算能够正常执行下去。1.2、选择合理的优化单元类型在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定:(1)2D平面单元:PLANE82单元和PLANE183单元; ??(2)3D实体单元:SOLID92单元和SOLID95单元;(3)壳单元:SHELL93单元。上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。1.3、指定优化和非优化的区域在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…………Et,1,solid92Et,2,solid92……Type,1Vsel,s,num,,1,2Vmesh,all……Type,2Vsel,s,num,,3Vmesh,all…………说明:上述代码片段定义相同的单元类型(solid92),但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。目标函数和约束条件 ANSYS程序提供一个专门用于预定义总体积的拓扑函数,即VOLUME,它既可用于目标函数,也可以用于约束条件。另外,目标函数和约束条件必须按照以下所示进行配对定义才有效。注:1、ANSYS程序只对单元类型编号等于1的单元部分进行拓扑优化,对于单元类型编号等于或大于2的单元网格不进行拓扑优化。2、(1)拓扑优化只能基于线性结构静力分析或模态分析,其它分析类型暂时还不支持。(2)ANSYS实际提供的拓扑优化为基于线性结构静力分析的最大静态刚度拓扑优化设计和基于模态分析的最大动态刚度优化设计,同时需要达到体积最小化目的。(3)采用单载荷步或多载荷步的线性结构静力分析时,施加相应的载荷和边界条件。采用模态频率分析,仅仅施加边界条件。3、拓扑优化的结果对网格划分密度非常敏感,较细密的网格可以产生更加清晰、确定的拓扑结果,但计算会随着单元规模的增加而需要更多的收敛时间;相反,较粗的网格会生成模糊、不确定的拓扑结果。另外,拓扑优化结果对载荷情况十分敏感,有时很小的载荷变化将导致拓扑优化结果的巨大差异。1.4、定义载荷步或者需要提取的频率1.4.1 线性结构静态分析对于结构优化而言,其总是在特定的载荷(或者载荷步),约束和目标下进行的,在优化分析的过程中,必须执行线性结构静态分析,才能获得需要的优化之后的形状。在ANSYS中,可以对单步载荷或者多步载荷执行优化分析,当然,单步载荷是最简单的了。然而,对于某个特定载荷步,必须使用LSWRITE载荷步存储命令将载荷步预存起来,再用LSSOLVE命令进行求解。先看看下面的代码片段:…………D,10,all,0,,20,1Nsel,s,loc,y,0Sf,AllselLswrite,1Ddel,Sfdel,Nsel,s,loc,x,0,1D,all,all,0F,212,fx,Lswrite,2…………Lswrite,3…………Finish……Tocomp,mcomp,multiple,3Tovar,mcomp,objTovar,volume,con,,10TodefToloop,20…………说明:该代码片段首先定义了3个载荷步,并利用LSWRITE命令将载荷步预存;之后利用Tocomp命令定义优化任务目标名称mcomp,并将体积减少10%作为优化的约束条件,之后用Todef初始化优化过程,最后利用Toloop命令执行优化计算,最大计算次数20次。内容比较多,我无法全部粘贴过来,如果你觉得有用,可以前往 http://wenku.baidu.com/link?url=McAL72vjf8z7IDvahHWQ0IHLzrNJ_AVmqG0m2WHjqgPP1sQekREO-CEzIYeeIxkWSj9ChSMK2rJ3fR3Hw1n18jrRFMqmEesnf-B6Xz_3v_W
我用hypermesh 做拓扑优化,优化后的模型要再次进行力学分析,要用ossmooth导出模型吗
用CATIA GDE可以比较自动地根据HM优化的结果建立光顺模型。更进一步地,CATIA GDE模块即所谓的认知增强设计、功能驱动的创成式设计,一体化程度非常高,包含TOSCA结构优化器、ABAQUS求解器、CATIA结构自动建模、仿生建模。能够一键自动从优化的结果生成参数化的3D实体模型。能做优化前的前处理、拓扑优化、自动生成3D实体、力学分析、方案比较,得到的最优概念方案进一步进行详细设计,含面向铣削的自动建模、面向增材制造的仿生建模等。然后力学分析。然后可对局部作形状优化、参数优化,减少应力集中。
拓扑优化的介绍
拓扑优化是结构优化的一种。结构优化可分为尺寸优化、形状优化、形貌优化和拓扑优化。
什么软件进行拓扑优化好
用patran做拓扑优化,不知你用个没
水平集拓扑优化的原理
它的基本原理是利用水平集的移动来隐式地表示结构的拓扑变化、具有较强的处理拓扑变化能力、成为一种较有发展潜力的拓扑描述方法。
拓扑优化以后的最大应力最大位移都比之前的大很多满足要求吗。
是的。结构拓扑优化后,最大应力和位移大约是原来原来的两倍。从优化结果来看,拓扑优化主要是对刚度影响不大的区域进行删除,例如拓扑优化前的云图蓝色应力区域,完全满足要求。
ansys找不到拓扑优化模块
在ToolsOptionsApperence下,把BetaOptioons上的复选框选中,这样拓扑优化模块就出现了。Ansys18之前的版本没有自带的拓扑优化模块,要安装拓扑优化模块的ACT插件安装包,较麻烦,能安装18版本,加入了拓扑优化模块,能对静力学分析与模态分析模块进行拓扑优化。
ansys拓扑优化的数据怎么导出来
1、打开拓扑优化模型,并选择要导出的结果数据。2、在工具栏中选择Solution选项卡,然后选择Table子选项卡。3、在Table菜单中选择Insert,然后选择要导出的数据类型,例如位移、应力等等。4、在InsertTable窗口中,选择您要导出的数据类型,然后单击Insert。5、在Table菜单中,选择Export,然后选择TabletoExcel。6、在ExporttoExcel窗口中,选择您要导出的文件路径和文件名,然后单击OK即可将拓扑优化的数据导出到Excel表格中。
ansys拓扑优化好用吗
ansys拓扑优化好用。过将区域离散成足够多的子区域,借助有限元分析技术对于结构进行强度分析或模态分析等,按照指定优化策略和准则从这些子区域中删除一定数量单元,用保留下来的单元描述结构的最优拓。
ABAQUS可以进行拓扑优化设计吗?
ABAQUS可以进行拓扑优化设计。ABAQUS11.0新增加了ATOM(拓扑优化模块)。 ABAQUS结构优化是一个帮助用户精细化设计的迭代模块。结构优化设计能够使得结构组件轻量化,并满足刚度和耐久性要求。ABAQUS提供了两种优化方法——拓扑优化和形状优化。拓扑优化(Topology optimization)通过分析过程中不断修改最初模型中指定优化区域的单元材料性质,有效地从分析的模型中移走/增加单元而获得最优的设计目标。形状优化(Shape optimization)则是在分析中对指定的优化区域不断移动表面节点从而达到减小局部应力集中的优化目标。拓扑优化和形状优化均遵从一系列优化目标和约束。
拓扑优化的优化方法
目前连续体拓扑优化方法主要有均匀化方法 、变密度法 、渐进结构优化法 (ESO)以及水平集方法 等。离散结构拓扑优化主要是在基结构方法基础上采用不同的优化策略(算法)进行求解,比如程耿东的松弛方法 ,基于遗传算法的拓扑优化 等。
拓扑优化网格过滤原理
拓扑优化中时常会伴随着网格依赖性、棋盘格以及灰度单元过多等现象。网格依赖性一般是指优化构型中的最小尺寸依赖于有限元网格;棋盘格现象是指优化构型中实体和空洞交替出现而呈现出如“棋盘格”;灰度单元过多则会导致优化构型中实体与空洞交界处模糊不清,影响材料识别。所以为了得到清晰的优化构型,通过过滤(灵敏度过滤或密度过滤),但是灵敏度过滤或密度过滤会导致实体与空洞交接处灰度单元增加,所以再通过Heaviside投影能得到清晰的优化构型。
形状优化与拓扑优化区别
形状优化与拓扑优化区别如下。1、根据查询相关公开信息,形状优化是结构件外形或者孔洞形状为优化对象。2、拓扑优化是材料分布为优化对象,通过拓扑优化,可以在均匀分布材料的设计空间中找到最佳的分布方案。
catia拓扑优化命令在哪
在工具栏中。1、点击工具栏中的“模型准备”按钮,展开其子菜单,选择“拓扑优化”。2、在出现的拓扑优化对话框中,选择对要优化的部件进行定义并进行相关设定。3、在对话框中点击“应用”,CATIA将开始进行拓扑优化完成后,可以在工具栏“视图”按钮下的“规格树”视图中查看结果。
材料设计和结构拓扑优化设计的差别是什么
两者的区别还是很明显的;目前各大CAD软件中的“拓扑优化”是引入材料性能以及受力位置等参数后,对一个型体进行分析,之后仅保留受力区域结构的一种算法而CAD软件中的“创成式设计”指的是由计算机通过执行一系列的预先编好的算法后生成某种型体的过程。操作者不需要对型体的每个结构进行细致调整,在定义了一些参数特征后输入一系列特定程序后来让软件自己进行运算,最终得到一种型体。“拓扑优化”,仅仅是“创成式设计”可以采用的算法的一种。
拓扑优化要多久
5小时。材料使用量为30%,厚度控制于15mm以下,进行拓扑优化计算,计算时间5小时。拓扑优化(topologyoptimization)是一种根据给定的负载情况、约束条件和性能指标,在给定的区域内对材料分布进行优化的数学方法。
应力拓扑优化松弛方法
应力拓扑优化是一种结构优化方法,旨在通过调整材料内部的微观结构,以使材料的应力分布均匀,并减小材料内部的应力浓度和应力集中现象。目前常见的应力拓扑优化松弛方法包括以下几种:1. 最小化总应变能的方法(MSES):MSES将材料的内部结构看作是一系列节点和元素构成的连续体,通过在节点和元素之间分配应变能来实现拓扑优化。2. 基于边缘滤波算法的方法:该方法采用边缘滤波器来识别应力集中和变形区域,并通过调整材料内部结构来实现应力的均匀分布。3. 基于拓扑优化的方法:该方法将材料内部的结构看作是一系列单元的组合,通过拓扑优化算法来调整单元的位置、大小和数量等,以达到优化材料内部结构的目的。4. 拓扑梯度优化方法:该方法基于材料的拓扑结构和应力分布,通过梯度优化算法来调整材料内部的结构,使其达到最优的应力分布状态。5. 基于移动最小二乘算法的方法:该方法采用移动最小二乘算法来拟合应力分布,然后通过改变材料内部的结构,以达到最小化应力分布的目的。这些方法各自具有优缺点,应根据具体情况选择合适的方法进行应力拓扑优化。
拓扑优化
3.5.2.1 边交换拓扑优化方法的思想通过改变网格的拓扑结构来提高网格质量。二维时,最常用的是边交换算法。类似于Delaunay三角剖分中涉及的最小角最大化特性,应尽量使三角网格中每个三角形单元避免出现狭长的角。二维三角形网格中,针对共用一条边的一对三角形组成的凸四边形,通过改变上述三角形对的共用边(即凸四边形的对角线)进行局部重构从而提高三角形对的质量。图3.27 边交换方法如图3.27所示,两个相邻三角形所形成的四边形的4个顶点分别为A、B、C和D,并且,∠ACB=α1,∠ADB=α2,A、B、C三点确定一个圆,D相对于此圆有3种情形,相应地,凸四边形的对角线也有3种选择:(1)当点D位于圆上,即α1+α2=π时,理论上可以任意选择对角线,但为了获得最好的三角形形态,分别计算交换对角线之前的原三角形对的最小内角,再计算交换对角线之后形成的新三角形对的最小内角,比较两个情况下最小内角的大小,若交换对角线之前的最小内角大,则不用交换对角线,反之,交换对角线。(2)当点D位于圆内,即α1+α2>π时,交换对角线,删除三角形对ΔABC、ΔADB共用边AB,连接CD,组成新的三角形对ΔADC、ΔBCD。(3)当点D位于圆外,即α1+α2<π时,不需要交换对角线。上述做法与Delaunay三角剖分方法中的Lawson算法的LOP方法基本相同,该方法需要计算三角形的外接圆和判断点是否落在圆内,下面给出一种直接根据三角形对的4个顶点坐标判断是否需要交换对角线的方法。设A、B、C和D四个点的坐标分别为(x1,y1)、(x2,y2)、(x3,y3)和(x4,y4),由余弦定理可得:sin(α1+α2)=((x1-x3)×(y2-y3)-(x2-x3)×(y1-y3))+((x2-x4)×(x1-x4)+(y2-y4)×(y1-y4))+((x1-x3)×(x2-x3)-(y1-y3)×(y2-y3))×((x2-x4)×(y1-y4)-(x1-x4)×(y2-y4))因此可以根据sin(α1+α2)的符号决定是否交换对角线:(1)当sin(α1+α2)=0时,可任意选择对角线。(2)当sin(α1+α2)<0时,需要交换对角线。(3)当sin(α1+α2)>0时,不需要交换对角线。实际应用时,不需要采用边交换方法使每个三角形都满足空外接圆特性,而只要针对某些明显需要边交换的三角形对,如两个三角形的最大角都为钝角且两个最大角对应的边为该三角形对的共用边,如图3.28所示,存在大量这样的三角形,此时,对上述三角形进行边交换将显著提高网格质量,同时为了避免交换后质量降低,判断交换前后三角形对的6个内角的最小角度的大小:若交换前三角形对的6个内角中的最小角小于交换后新的三角形对的最小内角,则交换对角线,反之,不交换。图3.28 边交换方法优化三角形网格实例在VC++环境下,上述算法的完整代码如下,其中函数EdgeSwap(CSurf*surf)为边交换主函数,进行边交换操作;该函数调用的MaxAngleInTrgl()和MinAngleInTrgl()的作用是分别计算一个三角形内最大角和最小角。三维地质建模方法及程序实现三维地质建模方法及程序实现三维地质建模方法及程序实现三维地质建模方法及程序实现3.5.2.2 插入/删除点网格单元中,往往要衡量单元某一边与边中点处期望长度的比例,二维中这个比例的理想值是1.53,如果这个比例太大就要将边分解,插入点可以用来改变这个比例,并且通过仔细选择点插入的位置可以控制单元的几何形状,达到单元优化的效果。网格加密方法中的二分法实质上也是一种通过插入某些边的中点的拓扑优化方法。二分法是将边的中点作为加密点的一种递归算法。具体方法为:先将三角形网格中长度大于设定阈值的边的中点作为新结点,之后按照图3.29所列3种情况重新划分三角形并更新相应的三角形及边的邻接关系,并将新三角形投入下一循环进行边长判断,直到所有边长均小于或等于相应的阈值为止。图3.29 二分法加密结点与单元重划分删除点的操作主要是作为一种重定义技术。许多实例当中,通过删除一个区域的网格完成删除点的操作,然后重新选择长度比例对这个空腔进行网格重新生成。点删除技术的不同应用也可以用来改善单元的几何形状达到网格优化的目的。最常见的做法是当两点距离小于某一个阈值时,删除这两点,并加入这两点的中点,且更新通过上述两点的网格单元的拓扑。
哪位知道怎么做拓扑优化
拓扑优化是结构优化的一种。结构优化可分为尺寸优化、形状优化、形貌优化和拓扑优化。拓扑优化(topology optimization),是指一种根据给定的负载情况、约束条件和性能指标,在给定的区域内对材料分布进行优化的数学方法。设计参数即为优化对象,比如板厚、梁的截面宽、长和厚等。形状优化:以结构件外形或者孔洞形状为优化对象,比如凸台过渡倒角的形状等。形貌优化:是在已有薄板上寻找新的凸台分布,提高局部刚度。拓扑优化:以材料分布为优化对象,通过拓扑优化,可以在均匀分布材料的设计空间中找到最佳的分布方案。由此可见,拓扑优化相对于尺寸优化和形状优化,具有更多的设计自由度,能够获得更大的设计空间,是结构优化最具发展前景的一个方面。图示例子展示了尺寸优化、形状优化和拓扑优化在设计减重孔时的不同表现。
拓扑优化到底什么意思
拓扑优化到底意思是指一种根据给定的负载情况、约束条件和性能指标,在给定的区域内对材料分布进行优化的数学方法。拓扑优化是一种将拓扑结构和优化算法相结合的优化方法。它通过改变拓扑结构来实现优化设计的目的。拓扑优化的研究领域主要分为连续体拓扑优化和离散结构拓扑优化。不论哪个领域,都要依赖于有限元方法。拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。“连通性”最简单的拓扑性质。而“可定向性”是一个不平凡的性质。连续体拓扑优化是把优化的材料离散成有限个单元,离散结构拓扑优化在设计空间内建立有限个梁单元组成的基结构,由算法确定空间内单元的去留,留下来的单元是最终的拓扑方案,从而实现拓扑优化。拓扑优化的优点:1、优化设计大多数时候,产品设计需要平衡各类因素并确定最佳的设计解决方案。提前考虑各类因素,可极大程度上避免设计失败的可能性。减少对环境的影响,由于拓扑优化能够最大限度的减少材料的使用,其可以被定义为可持续设计。2、材料使用的最小化拓扑优化最吸引的地方就是在于其可以减少不必要的重量。特别是在航空领域,每增加一克的配重就需要增加大量的设计成本。更轻的重量和更小的尺寸也就意味着更少的能耗。3、具有成本效益拓扑优化可以最大限度的减少材料的使用和成本。并且还节省了其他因素,例如包装、更少的移动和运输能源。拓扑优化产生的许多复杂的几何形状会使标准制造工艺变得“难以实现”,但是当3D打印的技术越发成熟,这种设计实现起来也不是那么困难。