烯烃复分解

DNA图谱 / 问答 / 标签

2005年诺贝尔化学奖授予了在“烯烃复分解反应”研究中作出突出贡献的三位科学家.烯烃具有可燃性,某烯烃

生成物质的氢原子个数为12,碳原子个数为6,氧原子个数为18;反应物中现在已知的是18个氧原子,所以在式子“2X”中应该有12个氢原子和6个碳原子.则X的化学式为:C 3 H 6 .故选C.

2005年诺贝尔化学奖获得者施罗克等人发现,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂.工业

A.反应①的生成物均为化合物,则不属于置换反应,故A错误;B.由反应②可知,MoO3属于酸性氧化物,故B错误;C.反应①中,Mo、S元素的化合价升高,则Mo和S均被氧化,故C正确;D.原等量的MoO3,转移电子数相同,若转移6mol电子,需要还原剂物质的量之比为3:3:2,故D错误;故选C.

14,2005年诺贝尔化学奖授予法国和美国的三位科学家,以表彰他们在烯烃复分解反应研究方面作出的重要贡献

答案选B“烯烃复分解反应过程被化学家描述为“交换舞伴的交谊舞”。这个是题中给的描述,单凭这一点已经可以选出答案,它们只是交换原先各自的一部分给对方。也可以从另一个角度来理解,参考无机化学中的复分解反应,其通式为:AX+BY=AY+BX。反应规律也就是化合物1中的阳离子结合化合物2中的阴离子,化合物2中的阳离子结合化合物1中的阴离子。例如:NaOH+HCl=NaCl+H2O烯烃复分解,既然命名为复分解,和上述反应必然有着相似之处。所以,再来看题目(注意B中的两个大圆一个是横线标志的,一个是竖线标志的)。二者交换其配体(黑、白的小圆),形成两个新化合物。【化学一加一】团队:sy930915为您解答希望能够帮助到你~如有疑惑,欢迎追问

罗伯特?格拉布等三位科学家因在烯烃复分解反应研究方面取得了显著成就而荣获2005年诺贝尔化学奖.烯烃的

F是油脂水解产物之一,能与水任意比互溶,则F为OHCH2CH(OH)CH2OH,E水解生成F,则E为ClCH2CH(Cl)CH2Cl,结合信息烯烃的复分解反应机理可知C为CH2=CHCH3,D为CH2=CHCH2Cl,即A为CH3CH=CHCH3,C→K发生加聚反应,K为聚丙烯,由G→H→I为连续氧化反应,I与F反应生成J,J的化学式为C9H14O6,则I为CH3COOH,H为CH3CHO,G为CH3CH2OH,G发生消去反应生成B,即B为乙烯(CH2=CH2),(1)由上述分析可知,A为CH3CH=CHCH3,J为乙酸和丙三醇生成的酯,则J为,故答案为:CH3CH=CHCH3;;(2)C→D的化学方程式为CH2=CHCH3+Cl2→CH2=CHCH2Cl+HCl,该反应为取代反应,G→B的反应类型为乙醇发生消去反应生成乙烯,属于消去反应,故答案为:CH2=CHCH3+Cl2→CH2=CHCH2Cl+HCl;取代反应;消去反应;(3)A为CH3CH=CHCH3,烯烃同分异构体为CH2=CHCH2CH3、CH2=C(CH3)CH3,通过烯烃复分解反应后形成的新烯烃有CH3CH=CH2、CH2=CH2、CH3CH=CHCH2CH3、CH3CH=C(CH3)CH3、CH3CH2CH=CHCH2CH3、、CH3CH2CH=C(CH3)CH3,共有7种,这些新烯烃和氯化氢在一定条件下发生加成反应,则其产物只有一种结构的新烯烃,则烯烃的结构对称,烯烃为CH2=CH2、CH3CH2CH=CHCH2CH3、,故答案为:7;CH3CH2CH=CHCH2CH3;;(4)因FeCl3溶液可和烯醇式反应显紫色,溴水与烯烃反应使溴水褪色,为证明平衡的存在,则向乙酰乙酸乙酯中滴加几滴5%的FeCl3溶液,立即显紫色,再滴加Br2的CCl4溶液至恰好无色,然后溶液颜色又逐渐恢复紫色,即可证明,故答案为:向乙酰乙酸乙酯中滴加几滴5%的FeCl3溶液,立即显紫色,再滴加Br2的CCl4溶液至恰好无色,然后溶液颜色又逐渐恢复紫色,即可证明.

对烯烃复分解反应的研究获得了2005年诺贝尔化学奖其反应可形象的描述为“交换舞伴”,催化剂金属卡宾(如

C6H5CH2CH=CH2与CH2=M交换后生成C6H5CH2CH=M、CH2=CH2、C6H5CH2CH=CHCH2C6H5,不会交换生成C,故选C.

三位科学家因在烯烃复分解反应研究中的杰出贡献而荣获2005年度诺贝尔化学奖,烯烃复分解反应可示意如

选项A中,两个碳碳双键断裂后,生成物中新形成的环为六元环,且新环中所形成的碳碳双键位置符合要求,故A正确.选项B、D中,两个碳碳双键断裂后,生成物中新形成的环均为五元环,不符合要求,故B、D错误.选项C中,物质两个碳碳双键断裂后,生成物中新形成的环为六元环,但新环中碳碳双键的位置不符合要求,故C错误.所以本题的答案为A.烯烃的复分解反应的实质是:两种烯烃中的碳碳双键分别断裂,相互交换成分形成另外两种烯烃.本题中,碳碳双键断裂后,剩余两个支链必须含有4个碳原子,且新形成的碳碳双键与N原子相隔1个碳原子.求采纳,摘自百度知道。

三位科学家因在烯烃复分解反应研究中的杰出

选项A中,两个碳碳双键断裂后,生成物中新形成的环为六元环,且新环中所形成的碳碳双键位置符合要求,故A正确。选项B、D中,两个碳碳双键断裂后,生成物中新形成的环均为五元环,不符合要求,故B、D错误。选项C中,物质两个碳碳双键断裂后,生成物中新形成的环为六元环,但新环中碳碳双键的位置不符合要求,故C错误。所以本题的答案为A。烯烃的复分解反应的实质是:两种烯烃中的碳碳双键分别断裂,相互交换成分形成另外两种烯烃。本题中,碳碳双键断裂后,剩余两个支链必须含有4个碳原子,且新形成的碳碳双键与N原子相隔1个碳原子。

烯烃复分解反应得到的是顺式烯烃吗

不是的。烯烃复分解时当两个相同的原子或原子团居于双键同一边的为顺式,分居双键两边的为反式,称为顺反异构。

烯烃复分解反应的展望

尽管烯烃复分解反应的研究已经取得了很大突破,但仍然存在不少挑战。首先,时下的催化体系,对于形成四取代烯烃的交叉复分解反应以及桶烯的开环聚合还不能有效地实现,钌的催化体系还不能适用于带有碱性官能团(如氨基、氰基)的底物,烯烃复分解反应中的立体化学问题、特别是有关催化不对称转化(尽管使用手性Mo催化剂已经实现了开环聚合反应的动力学拆分)的问题还没有很好地解决,关于交叉复分解反应中产物的顺、反异构体的选择性控制,虽然对于某些特定的底物已经取得了一些成功,但还没有普遍的规律可循;另外,烯烃复分解反应的工业应用还很少。所有这些都是需要解决的问题,其关键是在基础研究方面能否有进一步突破,特别是在催化的效率、选择性等方面。2005年的诺贝尔化学奖颁给了3位在烯烃复分解反应研究方面做出突出贡献的化学家伊夫·肖万、罗伯特·格拉布和理查德·施罗克。【注:图片形象地表示一对舞者(烯烃),在催化剂(金属卡宾)作用下,和另一对舞者(另一烯烃)连成环状,接着相互改变搭档(形成两个新的烯烃)。】

烯烃复分解反应的研究历程

综述关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到20世纪50年代中期。在以后的20多年里,所发展的催化剂均为多组分催化剂,如MoO3/ SiO2,Re2O7/A12O3,WC16/Bu4Sn等。但是,由于这些催化体系通常需要苛刻的反应条件和很强的路易斯酸性条件,使得反应对底物容许的功能基团有很大的限制。这些问题促使人们去进一步认识和理解反应进行的机制。20世纪70年代初期,Chauvin提出的烯烃与金属卡宾通过[2+2]环加成形成金属杂环丁烷中间体的相互转化过程,是时下被广泛认同的机制。在试图合成金属杂环丁烷化合物的过程中,导致了在20世纪70年代末、80年代初的烯烃复分解反应单组分均相催化剂的发现,如钨和钼的卡宾络合物,特别是Schrock催化剂用于催化烯烃的复分解反应,都取得了比以往的催化体系更容易引发、更高的反应活性和更温和的反应条件,更重要的是单组分催化剂的发现使得人们深入地研究催化剂的结构-性能关系成为可能,从而为发现新一代的、性能更优秀的催化剂奠定了基础。第一代Grubbs催化剂的发现:20世纪90年代以前的催化剂,以过渡金属(如钛、钨、钼等)卡宾络合物为主,尽管取得了一些成功,但这些催化剂大都对氧和水非常敏感,对含有羰基和羟基的底物也不适用,这样就限制了它们的广泛应用。一个突破性的进展是1992年美国加州理工学院的Robert Grubbs发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚台反应,克服了其他催化剂对功能基团容许范围小的缺点,该催化剂不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,于1996年Grubbs对原催化剂作了改进,该催化剂不但具有比原催化剂更高的活性和相似的稳定性,而且更容易合成,成为应用最为广泛的烯烃复分解催化剂。第一代Grubbs催化剂的应用:由于Grubbs催化剂的诞生,使得过去许多有机合成化学家束手无策的复杂分子的合成变得轻而易举。烯烃的开环复分解聚合反应已经成功应用于一些特殊功能高分子材料,如亲水性高分子、高分子液晶等的合成。关环复分解反应在许多复杂药物、天然产物以及生理活性化合物合成过程中,表现出了特殊的优越性和高效率,如Grubbs将关环复分解反应应用于环肽化合物以及超分子体系--索烃的高效合成;Nicolaou、Danishefsky等用于抗癌物质Epothilone A 及其类似物的合成,Martin用于抗癌物Manzamine A 的合成,其中在D环和E环的构筑过程中,两次运用关环复分解反应;Furstner 用于具有抗癌活性的Tricolorin A 和G及其类似物的全合成;Schreiber运用已改进了的催化烯烃交叉复分解反应,用于FK 1012的合成等。关环复分解反应在昆虫信息素Peachtwig borer的生产中己有应用,产量大于300千克,E值为0.87,具有较好的原子经济性。第二代Grubbs催化剂的开发:迩来,Grubbs通过系统地对催化剂结构-性能关系进行研究,发现催化剂的活性与其膦配体的解离有关,认为催化循环过程中经过一个高活性的单膦中间体,根据这一设计理念,提出了以比膦配体具有更强给电子能力和更高稳定性的N-杂环卡宾配体代替其中一个膦配体,于1999年发展了第二代Grubbs催化剂。第二代Grubbs催化剂除了具有第一代催化剂的优点以外,更重要的是其催化活性比第一代催化剂提高了两个数量级,在开环复分解聚合反应中,催化剂用量可以降低至百万分之一,在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。第二代Grubbs催化剂的应用:时下,第二代Grubbs催化剂己成功地应用于烯烃的开环复分解聚合反应,它不仅对于高张力的环状烯烃,而且对于低张力的环状烯烃以及空间位阻较大的多取代环状烯烃的开环聚合表现出特殊的高催化活性。在关环复分解反应中,特别适用于空间位阻较大的三、四取代烯烃。利用第二代Grubbs催化剂首次实现了通过交叉复分解反应合成三取代烯烃,并表现出好的立体化学选择性,这些都是第一代Grubbs催化剂所不能达到的。因此,可以预测,第二代Grubbs催化剂将获得更为广泛的应用,特别是应用于一些工业催化过程。

烯烃复分解反应的简介

在金属化合物的催化作用下,烯烃里的碳-碳双键会被拆散、重组,形成新分子,这种过程被命名为烯烃复分解反应。烯烃在某些过渡金属(如钨、钼、铼、钌等)络合物的催化下,发生双键断裂,重新组合成新的烯烃的反应。又称烯烃易位反应。20世纪中叶在烯烃聚合反应研究中发现烯烃复分解反应。

有机化学的烯烃复分解反应

概说 化学键的断裂与形成是化学研究领域中最基本的问题,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一,碳-碳双键和三键的键能与碳-碳单键相比要高得多,因此要切断前者并使其按照希望的方式重新结合,则需要更高的能量,所以寻找适当的催化剂实现上述转化,成为化学家近半个世纪的挑战课题。烯烃复分解反应,是指在金属催化下的碳-碳重键的切断并重新结合的过程。按照反应过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。由此可以看出,烯烃复分解反应在高分子材料化学、有机合成化学等方面具有重要意义。根据美国《科学观察》所列举的化学领域的最热门课题,钌(Ru,-种稀有元素)金属络合物催化的烯烃复分解反应,在2001年中长期成为化学研究领域中关注的热点。1.历史回顾 关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到20世纪50年代中期。在以后的20多年里,所发展的催化剂均为多组分催化剂,如MoO3/ SiO2,Re2O7/A12O3,WC16/Bu4Sn等。但是,由于这些催化体系通常需要苛刻的反应条件和很强的路易斯酸性条件,使得反应对底物容许的功能基团有很大的限制。这些问题促使人们去进一步认识和理解反应进行的机制。20世纪70年代初期,Chauvin提出的烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,是目前被广泛认同的机制。在试图合成金属杂环丁烷化合物的过程中,导致了在20世纪70年代末、80年代初的烯烃复分解反应单组分均相催化剂的发现,如钨和钼的卡宾络合物,特别是Schrock催化剂用于催化烯烃的复分解反应,都取得了比以往的催化体系更容易引发、更高的反应活性和更温和的反应条件,更重要的是单组分催化剂的发现使得人们深入地研究催化剂的结构-性能关系成为可能,从而为发现新一代的、性能更优秀的催化剂奠定了基础。2.第一代Grubbs催化剂的发现与应用 20世纪90年代以前的催化剂,以过渡金属(如钛、钨、钼等)卡宾络合物为主,尽管取得了一些成功,但这些催化剂大都对氧和水非常敏感,对含有羰基和羟基的底物也不适用,这样就限制了它们的广泛应用。一个突破性的进展是1992年美国加州理工学院的Robert Grubbs发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚台反应,克服了其他催化剂对功能基团容许范围小的缺点,该催化剂不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,于1996年Grubbs对原催化剂作了改进,该催化剂不但具有比原催化剂更高的活性和相似的稳定性,而且更容易合成,成为应用最为广泛的烯烃复分解催化剂。 由于Grubbs催化剂的诞生,使得过去许多有机合成化学家束手无策的复杂分子的合成变得轻而易举。烯烃的开环复分解聚合反应已经成功应用于一些特殊功能高分子材料,如亲水性高分子、高分子液晶等的合成。关环复分解反应在许多复杂药物、天然产物以及生理活性化合物合成过程中,表现出了特殊的优越性和高效率,如Grubbs将关环复分解反应应用于环肽化合物以及超分子体系--索烃的高效合成;Nicolaou、Danishefsky等用于抗癌物质Epothilone A 及其类似物的合成,Martin用于抗癌物Manzamine A 的合成,其中在D环和E环的构筑过程中,两次运用关环复分解反应;Furstner 用于具有抗癌活性的Tricolorin A 和G及其类似物的全合成;Schreiber运用已改进了的催化烯烃交叉复分解反应,用于FK 1012的合成等。关环复分解反应在昆虫信息素Peachtwig borer的生产中己有应用,产量大于300千克,E值为0.87,具有较好的原子经济性。3.第二代Grubbs催化剂的开发与应用 最近,Grubbs通过系统地对催化剂结构-性能关系进行研究,发现催化剂的活性与其膦配体的解离有关,认为催化循环过程中经过一个高活性的单膦中间体,根据这一设计理念,提出了以比膦配体具有更强给电子能力和更高稳定性的N-杂环卡宾配体代替其中一个膦配体,于1999年发展了第二代Grubbs催化剂。第二代Grubbs催化剂除了具有第一代催化剂的优点以外,更重要的是其催化活性比第一代催化剂提高了两个数量级,在开环复分解聚合反应中,催化剂用量可以降低至百万分之一,在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。目前,第二代Grubbs催化剂己成功地应用于烯烃的开环复分解聚合反应,它不仅对于高张力的环状烯烃,而且对于低张力的环状烯烃以及空间位阻较大的多取代环状烯烃的开环聚合表现出特殊的高催化活性。在关环复分解反应中,特别适用于空间位阻较大的三、四取代烯烃。利用第二代Grubbs催化剂首次实现了通过交叉复分解反应合成三取代烯烃,并表现出好的立体化学选择性,这些都是第一代Grubbs催化剂所不能达到的。因此,可以预测,第二代Grubbs催化剂将获得更为广泛的应用,特别是应用于一些工业催化过程。4.发展趋势与展望 经过近半个世纪的努力,金属卡宾催化的烯烃复分解反应已经发展成为标准的合成方法并得到广泛应用,Grubbs催化剂的反应活性以及对反应底物的适用性已经和传统的碳-碳键形成方法(如Diels-Alder反应、Wittig反应,曾分别获得诺贝尔化学奖)相媲美。从其发展历程可以看出,每一次研究的突破,无不归因于长期坚恃不懈的基础研究积累,从而不断地创新,广泛的应用前景是其能成为一个热点领域的根本动力。 尽管烯烃复分解反应的研究已经取得了很大突破,但仍然存在不少挑战。首先,目前的催化体系,对于形成四取代烯烃的交叉复分解反应以及桶烯的开环聚合还不能有效地实现,钌的催化体系还不能适用于带有碱性官能团(如氨基、氰基)的底物,烯烃复分解反应中的立体化学问题、特别是有关催化不对称转化(尽管使用手性Mo催化剂已经实现了开环聚合反应的动力学拆分)的问题还没有很好地解决,关于交叉复分解反应中产物的顺、反异构体的选择性控制,虽然对于某些特定的底物已经取得了一些成功,但还没有普遍的规律可循;另外,烯烃复分解反应的工业应用还很少。所有这些都是需要解决的问题,其关键是在基础研究方面能否有进一步突破,特别是在催化的效率、选择性等方面。 2005年的诺贝尔化学奖颁给了3位在烯烃复分解反应研究方面做出突出贡献的化学家伊夫·肖万、罗伯特·格拉布和理查德·施罗克。【注:图片形象地表示一对舞者(烯烃),在催化剂(金属卡宾)作用下,和另一对舞者(另一烯烃)连成环状,接着相互改变搭档(形成两个新的烯烃)。】

烯烃复分解反应的介绍

烯烃复分解反应,是指在金属催化下的碳-碳重键的切断并重新结合的过程。按照反应过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。由此可以看出,烯烃复分解反应在高分子材料化学、有机合成化学等方面具有重要意义。根据美国《科学观察》所列举的化学领域的最热门课题,钌(Ru,-种稀有元素)金属络合物催化的烯烃复分解反应,在2001年中长期成为化学研究领域中关注的热点。

烯烃复分解反应

也称作烯烃换位反应,是指在金属催化剂作用下的两个碳-碳双键的切断并重新结合的过程。按照反应过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。烯烃复分解反应的相关研究可以追溯到20世纪50年代中期,而正式的概念于1967年被N.Calderon等人提出烯烃复分解反应可以实现有机分子碳链的增长及特殊环状分子的构建,在高分子材料化学、有机合成化学等方面具有重要意义。根据美国《科学观察》在2001年所列举的化学领域的最热门课题,钌金属络合物催化的烯烃复分解反应成为化学研究领域长期关注的热点。

有机化学的烯烃复分解反应

烯烃复分解反应,是指在金属催化下的碳-碳重键的切断并重新结合的过程。按照反应过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。由此可以看出,烯烃复分解反应在高分子材料化学、有机合成化学等方面具有重要意义。根据美国《科学观察》所列举的化学领域的最热门课题,钌(Ru,-种稀有元素)金属络合物催化的烯烃复分解反应,在2001年中长期成为化学研究领域中关注的热点。  在金属化合物的催化作用下,烯烃里的碳-碳双键会被拆散、重组,形成新分子,这种过程被命名为烯烃复分解反应。  烯烃在某些过渡金属(如钨、钼、铼、钌等)络合物的催化下,发生双键断裂,重新组合成新的烯烃的反应。又称烯烃易位反应。20世纪中叶在烯烃聚合反应研究中发现烯烃复分解反应。