阵列卡

DNA图谱 / 问答 / 标签

组建RAID磁盘系统,阵列卡是必须的吗?

  组建RAID磁盘系统,阵列卡这个硬件是必须的。但是如果主板芯片组集成了阵列控制器,就不用再购买磁盘阵列扩展卡了。  以使用广泛的Intel的主板芯片组为例,如下图,定位高端的Z87和H87芯片组集成了阵列控制器,可以直接提供阵列功能,中低端的B85和H81就没有集成阵列控制器,必须采用磁盘阵列扩展卡来实现磁盘阵列。

sata阵列卡一块硬盘

sata阵列卡不是一块硬盘。阵列卡的作用是使多块(至少2块以上)硬盘,可以作为一个整体来被使用,理论上可以提高100%以上传输速度(要看硬盘数量多少以及阵列的模式来定),实际上不会但至少能提高30%以上不需要单独插一块做主盘raid0模式,只提供速度没有数据备份2块(或多块)硬盘合并后的实际使用大小不变。

阵列卡缓存用处大不大

大。阵列卡缓存的主要作用是,加快数据读写速度,提高磁盘的效用,避免不必要的等待时间,可以减少操作所带来的延迟提高系统性能得到更好的响应时间,所以阵列卡缓存的作用是非常大的。阵列卡缓存是阵列卡先将数据传输到缓存,再由缓存和外边数据总线交换数据的一种过程,实际指的是相对低速的硬盘盘片与相对高速的外部设备之间的缓冲器。

硬盘阵列卡磁盘阵列卡有什么用

上个世纪八十年代,美国加利福尼亚大学伯克利分校研究小组希望能找出一种新的技术,在短期内,立即提升效能来平衡计算机的运算能力。在当时,CPU效能每年大约成长30~50%,而硬磁机只能成长约7%,硬磁机的增长已经严重跟不上CPU的增长速度,于是,RAID就这样诞生了。RAID,为RedundantArraysofIndependentDisks的简称,中文为廉价冗余磁盘阵列。RAID理论,作为高性能的存储系统,已经得到了越来越广泛的应用。RAID阵列技术允许将一系列磁盘分组,以实现为数据保护而必需的数据冗余,以及为提高读写性能而形成的数据条带分布。RAID最初用于高端服务器市场,不过随着计算机技术的快速发展,RAID技术已经渗透到计算机遍布的各个领域。如今,在家用电脑主板中,RAID控制芯片也随处可见。RAID级别介绍一般常用的RAID阶层,分别是RAID0、RAID1、RAID2、RAID3、RAID4、RAID5,RAID50、RAID6、以及RAID0+1或称RAID10。实现方式软件模拟实现:SoftwareRAID,结合内核中的md工具,生产环境中一般没有人使用硬件实现:硬件级别的RAID配置多块硬盘在bios中实现外接式磁盘阵列:通过扩展卡提供适配能力内接式RAID:主板集成RAID控制器1)可以通过SAS接口的适配器接口扩展出串行端口附加存储,以logicalunitnumber逻辑单元号表现窄带:8个接口,7target宽带:16个接口,15个target2)RAID控制器需要系统驱动使用,在BIOS中可以设置,通过适配器连接到RAID磁盘阵列3)RAID控制器本身有CPU,还可以有内存来加速,另外设置电源方式断电时候的应急写入RAID0也称为条带模式,即把连续的数据分散到多个磁盘上存取,如图所示。当系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。因为读取和写入是在设备上并行完成的,读取和写入性能将会增加,这通常是运行RAID0的主要原因。但RAID0没有数据冗余,如果驱动器出现故障,那么将无法恢复任何数据。RAID1RAID1又称为镜像,一个具有全冗余的模式,如图所示。RAID1可以用于两个或2xN个磁盘,并使用0块或更多的备用磁盘,每次写数据时会同时写入镜像盘。这种阵列可靠性很高,但其有效容量减小到总容量的一半,同时这些磁盘的大小应该相等,否则总容量只具有最小磁盘的大小。RAID2从概念上讲,RAID2同RAID3类似,两者都是将数据条块化分布于不同的硬盘上,条块单位为位或字节。然而RAID2使用一定的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID2技术实施更复杂。因此,在商业环境中很少使用。由于海明码的特点,它可以在数据发生错误的情况下将错误校正,以保证输出的正确。它的数据传送速率相当高,如果希望达到比较理想的速度,那最好提高保存校验码ECC码的硬盘,对于控制器的设计来说,它又比RAID3,4或5要简单。没有免费的午餐,这里也一样,要利用海明码,必须要付出数据冗余的代价。输出数据的速率与驱动器组中速度最慢的相等。RAID3RAID3是将数据先做XOR运算,产生ParityData后,在将数据和ParityData以并行存取模式写入成员磁盘驱动器中,因此具备并行存取模式的优点和缺点。进一步来说,RAID3每一笔数据传输,都更新整个Stripe_即每一个成员磁盘驱动器相对位置的数据都一起更新_,因此不会发生需要把部分磁盘驱动器现有的数据读出来,与新数据作XOR运算,再写入的情况发生_这个情况在RAID4和RAID5会发生,一般称之为Read、Modify、WriteProcess,我们姑且译为为读、改、写过程_。因此,在所有RAID级别中,RAID3的写入性能是最好的。RAID4RAID4是采取独立存取模式,同时以单一专属的ParityDisk来存放ParityData。RAID4的每一笔传输_Strip_资料较长,而且可以执行OverlappedI/O,因此其读取的性能很好。如果一个驱动器出现故障,那么可以使用校验信息来重建所有数据。如果两个驱动器出现故障,那么所有数据都将丢失。不经常使用这个级别的原因是校验信息存储在一个驱动器上。每次写入其它磁盘时,都必须更新这些信息。因此,在大量写入数据时很容易造成校验磁盘的瓶颈,所以目前这个级别的RAID很少使用了。RAID5RAID5与RAID4之间最大的区别就是校验信息均匀分布在各个驱动器上,这样就避免了RAID4中出现的瓶颈问题。如果其中一块磁盘出现故障,那么由于有校验信息,所以所有数据仍然可以保持不变。如果可以使用备用磁盘,那么在设备出现故障之后,将立即开始同步数据。如果两块磁盘同时出现故障,那么所有数据都会丢失。RAID5可以经受一块磁盘故障,但不能经受两块或多块磁盘故障。RAID5也是采取独立存取模式,但是其ParityData则是分散写入到各个成员磁盘驱动器,因此,除了具备OverlappedI/O多任务性能之外,同时也脱离如RAID4单一专属ParityDisk的写入瓶颈。但是,RAI?D5在座资料写入时,仍然稍微受到读、改、写过程的拖累。基本上来说,多人多任务的环境,存取频繁,数据量不是很大的应用,都适合选用RAID5架构,例如企业档案服务器、WEB服务器、在线交易系统、电子商务等应用,都是数据量小,存取频繁的应用。RAID50由两组RAID5磁盘组成,每一组都使用了分布式奇偶位,而两组硬盘再组建成RAID0,实现跨磁盘抽取数据。RAID50提供可靠的数据存储和优秀的整体性能,并支持更大的卷尺寸。即使两个物理磁盘发生故障,数据也可以顺利恢复过来。RAID50最少需要6个驱动器,它最适合需要高可靠性存储、高读取速度、高数据传输性能的应用。这些应用包括事务处理和有许多用户存取小文件的办公应用程序。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响吞吐量。故障后重建信息的时间比镜像配置情况下要长。RAID6raid6是由一些大型企业提出来的私有raid级别标准,它的全称叫“independentdatadiskswithtwoindependentdistributedparityschemes”。这种raid级别是在raid5的基础上发展而成,因此它的工作模式与raid5有异曲同工之妙,不同的是raid5将校验码写入到一个驱动器里面,而raid6将校验码写入到两个驱动器里面,这样就增强了磁盘的容错能力,同时raid6阵列中允许出现故障的磁盘也就达到了两个,但相应的阵列磁盘数量最少也要4个。RAID-6是在RAID-5基础上把校验信息由一位增加到两位的raid级别。RAID10RAID0+1/RAID10,综合了RAID0和RAID1的优点,适合用在速度需求高,又要完全容错,当然经费也很多的应用。RAID0和RAID1的原理很简单,合起来之后还是很简单,我们不打算详细介绍,倒是要谈谈,RAID0+1到底应该是RAID0+RAID1,还是RAID1+RAID0,也就是说,是把多个RAID1做成RAID0,还是把多个RAID0做成RAID1?RAID0+RAID1假设有四台磁盘驱动器,每两台磁盘驱动器先做成RAID1,再把两个RAID1做成RAID0,这就是RAID0+RAID1:A=DriveA1+DriveA2B=DriveB1+DriveB2RAID0=A+BRAID1+RAID0假设有四台磁盘驱动器,每两台磁盘驱动器先做成RAID0,再把两个RAID0做成RAID1,这就是RAID1+RAID0:A=DriveA1+DriveA2B=DriveB1+DriveB2RAID1=A+B在这种架构之下,如果A有一台磁盘驱动器故障,A就算毁了,当然RAID1仍然可以正常工作;如果这时B也有一台磁盘驱动器故障,B也就算毁了,此时RAID1的两磁盘驱动器都算故障,整个RAID1资料就毁了。因此,RAID0+RAID1应该比RAID1+RAID0具备比较高的可靠度。所以精容数安建议,当采用RAID0+1/RAID10架构时,要先作RAID1,再把数个RAID1做成RAID0。重点RAID取代不了备份,它需要结合其他某种数据保护机制一起使用。如果RAID不结合其他某种数据保护方法或者技术,那么被删除的文件就会永远消失。不过如果有备份、快照或者数据的其他副本或视图,那么被删除的文件是可以恢复过来的。

阵列卡的种类

第一种是 IDE阵列卡 ,以前主要用在一些数据重要或要接很多个硬盘的服务器与工作站电脑中,可以支持 RAID 0、1、0+1、3、5。 现在基本上已经淘汰了。第二种是 SATA阵列卡,主要作用于大容量数据存储、网吧、数据安全等服务器领域,同时一些低端卡也满足了一些家用客户的需求,能够支持 RAID 0、1、0+1、5 、6。第三种是 SCSI阵列卡 使用在高端工作站或者是服务器中,可以支持很多块SCSI接口的硬盘。能够支持RAID 0、1、0+1、3、5 。这种阵列卡性能很好速度很快 当然价格也比较高。不过,现在基本上已经淘汰了。第四种是 SAS阵列卡 主要使用在一些高端工作站与服务器中,已经取代了昔日的SCSI接口,并且可以兼容SATA接口硬盘,能够支持 RAID 0、1、0+1、5 、50、6、60。

pcie固态硬盘阵列卡怎么用

安装PCIe固态硬盘阵列卡。1、.安装PCIe固态硬盘阵列卡,将卡插入PCIe插槽中,然后将卡的SATA接口连接到主板上的SATA接口。2、将需要组成阵列的多个固态硬盘连接到卡上的SATA接口上,开机时按下相应的键进入BIOS设置界面,在BIOS设置中找到存储设备选项,将PCIe固态硬盘阵列卡设为启动设备。3、保存设置后,电脑会自动重启,在重启后的操作系统中,找到新识别的硬盘,进行分区和格式化操作,当硬盘格式化完成后,就可以使用PCIe固态硬盘阵列卡进行高速的数据读写操作了。

阵列卡有缓存和没缓存的区别

性能,读取时间不同。1、有缓存的阵列卡可以提供更高的性能,它们具有内置的缓存,可以缓存读取和写入操作,无缓存的阵列卡则没有内置的缓存,性能会受到限制。2、有缓存的阵列卡可以在缓存中存储数据的备份,以防止数据丢失,无缓存的阵列卡不具备与有缓存的阵列卡相同的容错能力,无法在缓存中存储数据的备份。

怎么安装阵列卡

首先我们将启动设为光驱启动,放入服务器自带的工具盘其中包括了所有的驱动,阵列卡需要先将其自带光盘里的R动复制到软盘里面再安装;装上阵列卡,重启的时候会发现自检到一快RAID卡,然后我们按下F8,这就到了阵列卡模式设置菜单;启动光盘是傻瓜式安装,第一步选择你所要安装的系统,接下来一步是要你选择你的分区大小了,接着系统会提示你插入WIN2000的安装盘,插入安装盘后,系统会自动复制文件,接着又会重启,下面是WIN2000的安装了,安装完WIN2000系统后,点击开始,程序,计算机管理,磁盘管理,将剩下的空间

直通卡和阵列卡的区别

阵列卡就是英语中的raid卡,直通卡就是HBA卡,HBA卡有两种模式,IT模式和IR模式,IR模式的直通卡不是硬阵列卡!别拿IR模式的直通卡说是硬阵列卡!这是张冠李戴了。 HBA卡就是一个通道卡,它的作用是让计算机能够对磁盘进行存取操作,一般都是针对sas硬盘的,可以看成是sas控制器,类似南桥的SATA控制器。但是HBA卡的HBA芯片也是有CPU的,也分为IT模式和IR模式,IT模式下所连接的磁盘对系统是透明的,由系统直接识别和管理,而IR模式下磁盘由HBA控制器控制然后模拟磁盘给系统使用,虽然类似阵列卡(和南桥的raid模式是一个道理),但是不能说是硬阵列卡。IR模式下的HBA卡可以组建raid0,raid1甚至raid5,但是raid5的写入性能还不如单个硬盘,我一直觉得IR模式的HBA卡就是废物,基本找不到什么用途会特别需要这种卡。后来想想应该是厂商拿来骗钱的。 硬阵列卡其实可以看做一个微型计算机系统,阵列卡通过一个ROC(raid-on-chip)芯片来完成对存储设备的管理,并按需模拟磁盘给计算机使用,存储设备本身对操作系统不透明,由阵列卡管理。ROC芯片中有通用CPU,一般是mips,powerpc或者arm架构,用来通用计算,还有内存控制器为这个CPU提供内存,还有xor引擎,专门用来加速raid5,raid6等等。 简单的识别方式就是没有内存颗粒作为阵列卡缓存的就是HBA卡或者说直通卡,而有内存颗粒作为阵列卡缓存的就是硬阵列卡,做raid5或者raid6速度是有保障的。IR模式的直通卡,即使做raid5,也是聋子的耳朵-摆设,毫无实用价值。

磁盘阵列卡是什么意思,磁盘阵列卡是什么意思

  什么是磁盘阵列卡,计算机专业术语名词解释   磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。磁盘阵列卡则是实现这一技术的硬件产品,磁盘阵列卡拥有一个专门的处理器,还拥有专门的存贮器,用于高速缓冲数据。使用磁盘阵列卡服务器对磁盘的操作就直接通过阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。

阵列卡有什么用

问题一:阵列卡分为那几种,各有什么用处 第一种是 IDE阵列卡 一般使用在 台式PC机中,可以支持 RAID 0、1、0+1 。 第二种是 SATA阵列卡 独立的不多见的很多都集成在主板上!!一般也用在 台式PC机或者低端工作站中! 能够支持 RAID 0、1、0+1、5 。 第三种是 SCSI阵列卡 使用在高端工作站或者是服务器中,可以支持很多块SCSI接口的硬盘。 能够支持RAID 0、1、0+1、5 。这种阵列卡性能很好速度很快 当然价格也比较高。 第四种是 是SAS阵列卡 是SATA接口的SCSI硬盘专用卡 。 问题二:其实服务器的阵列卡是干什么用的? 你好,简单的说,就是硬盘的性能提高!磁盘阵列需要至少两个硬盘来做的,比如80G的两块硬盘,组成磁盘阵列后,电脑识别到的就80G一个磁盘,而不是80G+80G=160G这样,通常服务器是组成这个状态的,因为我帮人弄过服务器,也组过磁盘阵列,这个阵列需要主板一块芯片来完成的,需要主板的支持,普通PC上没没有阵列卡这个我不确定,但觉的这阵列还是主板自带的功能比较完美,其实现在主流的主板都具有磁盘阵列功能的,不用额外去买什么的,谢谢! 满意请采纳 问题三:RAID有什么用? RAID 独立磁盘冗余阵列。简单的说,我们把数个硬盘组合起来成为一颗硬盘,以增加数据的传输效率,并提高数据安全性。视硬盘数目而定,你可以有多种选择,以达成以下目标:追求高安全性、追求性能、或是两者兼具。要使用不同模式的磁盘阵列,除了硬盘以外,还需要购买相对应的RAID控制卡。这些卡多半可以 *** 所有计算机的PCI插槽,甚至已经内建在主板上。 RAID:各种模式的比较 RAID 0:Striping(条带) 就技术上来说,这模式根本无法符合RAID的精神,因为它没有冗余地记录任何数据。这也表示RAID 0不能保证任何数据的安全。所有数据会被平均分散的储存在所有硬盘上,这个阵列被称为「条带集(stripe set)」,这方法也被称为「拉链法(zipper method)」。它的优点非常明显,由于数据分散在多个硬盘上,传输速率会以硬盘的数目倍增,上限为传输通道的最大值(例如在UltraATA/100的计算机上,速度为100 MB/s),或是PCI总线的最大值(以66 MHz、32位的计算机来说,速度为266 MB/s)。然而,这项速度上的优势却牺牲了数据安全性,除非你能保证所有的硬盘都不会出问题。如果任何一个硬盘坏掉,那你会失去所有数据。 RAID 1:磁盘镜像 而RAID 1则完全与RAID 0相反,不追求高性能,而以数据安全性优先。在读写时,所有阵列中的硬盘都会一起动作,读写相同的数据,所以一份数据会有两个的备份,而且保证是最新的数据。 RAID 2:Striping RAID 2采用了与RAID 0相同的方法,「条带集」会将数据分散在所有硬盘上;但它不是以区块的方式作分散,而是以位(bit)的方式来作。这是因为在存取数据时,RAID 2还加入了ECC(Error Correcting Code)校验码,这些校验码会记录在额外的硬盘上。如果你要确保数据的完整性,那就需要10个数据硬盘,以及4个ECC硬盘。如果要再高一个等级,那就要用到32个数据硬盘,以及7个ECC硬盘。这应该说明了RAID 2未曾流行过的原因。 由于RAID 2使用了以位为基础的「条带集」,所以性能只有二流的表现。如果存取的次数愈多、存取的数据愈短,那RAID 2的表现就愈差。 RAID 3:数据条带化,专门的奇偶校验盘 RAID 3加入了更细致的错误检查方法,数据是以字节(byte)的方式分配到每个硬盘里面去,而奇偶校验码则存在一个单独的硬盘中。但这也正是RAID 3的缺点,因为每次存取数据时,都要到另一个硬盘中去读取校验码;也因此组成磁盘阵列的本意,也就是增进性能这一点,反而被打了折扣。顺道一提,RAID 3最少需要3颗硬盘。 这模式需要非常复杂的控制卡,这也是RAID 3、4、5没有办法流行主流市场的原因。 RAID 4:数据条带化,专门的奇偶校验盘 RAID 4所使用的技术与RAID 3类似,但不是以字节的方式写入数据,而是区块(block)。理论上,这可以加快存取速度;但到另一颗硬盘中去读取校验码仍然是它的瓶颈。 RAID 5:分布式数据、分布式奇偶校验 RAID 5是公认在性能与数据安全上获得平衡的方式。不管是原始数据或是奇偶校验码,都平均的分散在所有硬盘中。它的速度只比RAID 3稍慢;但是安全性会受限,只容许一个硬盘损坏,如果有2个以上损坏,那所有数据都会遗失。要组成RAID 5,最少需要3个硬盘。 RAID 6:分布式数据、分布式奇偶校验 提到RAID 6,就跟提到RAID 5......>> 问题四:磁盘阵列是什么,主要做什么用?? 1、磁盘阵列 由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。 2、作用 把相同的数据存储在多个硬盘的不同的地方(因此,冗余地)的方法。通过把数据放在多个硬盘上,输入输出操作能以平衡的方式交叠,改良性能。因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。 问题五:服务器上阵列卡的缓存有什么用 最主要是加快读写速度,有的是必须有缓存阵列卡才管用 问题六:谁告诉我阵列卡啥作用 阵列卡 的全称 叫作 磁盘阵列卡 是用来做 RAID(廉价冗余磁盘阵列) 用的!! 阵列卡 分3种 第一种是 IDE阵列卡! 一般使用在 台式PC机中! 可以支持 RAID 0、1、0+1 。 第二种是 SATA阵列卡 独立的不多见的很多都集成在主板上!!一般也用在 台式PC机或者低端工作站中! 能够支持RAID 0、1、0+1、5 。 第三种是 SCSI阵列卡 使用在高端工作站或者是服务器中!!可以支持很多块SCSI接口的硬盘! 也能够支持 能够支持RAID 0、1、0+1、5 。这种阵列卡性能很好速度很快 当然价格也比较高了! 问题七:raid是什么??为什么要用raid?有好什么好处?? raid最初是考虑提高硬盘的读取速度的,因为单块硬盘的读取速度是一定的,相对于cpu的处理速度来说成了系统的瓶颈,而raid可以把多块硬盘当成一个逻辑驱动器,实现同时从多块硬盘存取数据,提高了存储的吞吐量,相当于提高了存取速度,同时也间接扩大了存储容量。 随着其发展,raid又加入了保证数据安全的功能,也就是数据的校验和备份,这会导致存储空间并不是最初的raid0的多块硬盘总的容量之和,产生了冗余。根据不同方案对数据安全的侧重程度,其冗余也不同。raid0冗余最小,但安全性最低。在存储容量的扩展方面,冗余和安全是一对死敌。 总的来看,raid的发展其实并没有背弃其最初的目的:提高硬盘的存取速度!但其在存储速度方面的发展其实已经没有潜力了,只能开始着手解决他带来的负面影响――数据安全性降低。最初的raid0,因为用了多块硬盘,并且数据是分散存储在不同硬盘的,这就增加了其出问题的几率。这种情况下,同样的出错率,单硬盘和多硬盘相比明显安全性更高,单硬盘坏了一个其余的还可以用,多硬盘一损俱损,所有数据都没了!如此看来,存取速度和安全性也是矛盾的。 我们能做的只有选择合适自己的,并努力预防损失。
 首页 上一页  1 2