- 北营
-
原创][论文] 迈克耳孙-莫雷实验之真相
——一个足可以从源头推翻爱因斯坦相对论的有力证据
陆明华
E-mail:minghua6@126.com
网址:www.wuwuming.fosss.org
( 2006-03-23 首发于人民网科教论坛 )
迈克耳孙-莫雷实验为推翻以太假说做出了不可磨灭的贡献。然而,既然以太假说不能成立,那么,由于迈克耳孙-莫雷实验的条纹移动ΔN的计算始终依赖于以太假说,所以其计算方法也是不可靠的,由此而得出“光速不变,它与地球的运动状态无关”这样的结论显然是不严谨的,同时也是经不起推敲的。但是,“光速不变,它与地球的运动状态无关”这一错误论断却一直沿用至今,并始终是支持爱因斯坦相对论的有力证据。
100年前,爱因斯坦将迈克耳孙-莫雷实验作为建立相对论的可靠支柱。而今,本文将它作为推翻爱因斯坦相对论的有力证据。
1.迈克耳孙-莫雷实验简介
本文有关迈克耳孙-莫雷实验简介的内容都来之于科学出版社1998年出版的大学物理教材《简明大学物理》,特此声明。
在电磁理论发展初期,人们认为光是在所谓“以太”的介质中传播,以太被作为绝对参考系的代表,为了确定绝对参考系(或以太参考系)的存在,历史上许多物理学家做过很多实验,其中最著名的是1881年迈克耳孙探测地球在以太中运动速度的实验,以及1887年他和莫雷所做的更为精确的实验[ ]。
1.1.迈克耳孙-莫雷实验的设计思想
如果有一惯性系S",相对于绝对空间(或以太)沿光速传播方向以速度v运动,那么自S"系观察光的传播速度V "(光) 为 c-v ,因此如果从地面一点(视地球为近似惯性系)来测量在不同方向上(如相互垂直的方向)传播的光速,则由于地球的运动将有不同的光速值,这样就可以借以判定地球相对于绝对参考系(或以太)的运动,从而找出绝对参考系(或以太)。这正是迈克耳孙-莫雷实验的设计思路[ ]。
1.2.迈克耳孙干涉仪
于劈形膜干涉实验可知,劈形膜干涉条纹的位置决定于光程差,只要光程差有一微小的变化就会引起干涉条纹的明显移动。迈克耳孙(Michelson 1852~1931)干涉仪就是利用这种原理制成的,其结构如图 01(图略)所示,M1和M2是两面精密磨光的平面反射镜,其中M1是固定的,它的平面位置可以微调;M2用螺旋控制,可作微小移动,G1和G2是两块材料相同、厚薄均匀而且相等的平行玻璃片。在G1的一个表面上镀有半透明的薄银膜,使照射到G1上的光线分成振幅近于相等的透射光和反射光,因此称为分光板,G1、G2这两块玻璃片与M1和M2的倾角为45°。
由光源S发生的光线,射到G1上后分成两束光线,光线①透过G1及G2到达M1,经M1反射后,再穿过G2经G1上的银膜反射到视场中。光线②从G1的镀膜面反射到M2,经M2反射后,再穿过G1到达视场中。显然,光线①和②是两条相干光线,它们在视场中相遇时产生干涉。
由于分光板G1的存在,使M1相对于镀膜面形成一虚像M1"位于M2附近,光线①可以看作是从M1"处反射的。M1"和M2之间形成一空气膜,光线②通过G1三次,加上G2后光线①也通过三次与G1厚度相同的玻璃片(G2起光程补偿作用),这样M1"与M2之间空气膜厚度就是光线①和②的光程差(本文作者加注:这可能是《简明大学物理》教材编辑有误,不然的话,就与下面的公式合不起来。如按下面的公式来表达应为:M1"与M2之间空气膜厚度是光线①和②的光程差的一半)。如果M1与M2并不严格垂直,那么,M1"与M2也不严格平行,则在M1"和M2之间形成空气劈形膜,光线①和②形成等厚干涉,这时观察到的干涉条纹是明暗相间的条纹。若入射单色光波长为λ,则每当M2向前或向后移动λ/2的距离时,光线①和②所产生的光程差δ为±2(λ/2)= ±λ,就可看到干涉条纹移过一条。所以计算视场中移过的条纹数目ΔN,就可以算出M2移动的距离Δx [ ]
Δx = ΔNλ/2
当M2也固定不动时,假如在某种状态下,能够使得光线①和②产生的光程差的变化值Δδ为λ,就可看到干涉条纹移过一条。那么,计算视场中移过的条纹数目ΔN,就可以算出光线①和②所产生的光程差改变量Δδ
Δδ =ΔNλ
同理,如果能测算出光线①和②所产生的光程差变化值Δδ时,就可算出干涉条纹移过的条数ΔN
ΔN = Δδ/λ
1.3.迈克耳孙-莫雷实验的推理过程
如图02(图略)所示,迈克耳孙干涉仪整个装置可绕垂直于图面的轴线转动,并保持光程PM1=PM2=L固定不变,设地球相对于绝对参考系自左向右以速度v运动。当装置处于图示位置时,PM1与v平行,光束①在P、M1间来回所经路线也与v平行,而光速②在P、M2间来回所经路线则与v垂直。可以证明,光束①在P、M1间来回所需时间t1比光速②在P、M2间来回所需时间t2稍长,即t1>t2。如把整个装置绕垂直于图面的轴线转90°,光束①、②所经路线正好互换,于是光束①所需时间t1就比光速②所需时间t2稍短。因而在转动过程中,就能从望远镜T观察到干涉条纹的移动,经计算可得条纹移动数目为:
ΔN = 2Lv2 /λc2
但出乎意料,虽经多次反复实验,都未观察到条纹的移动。这实验,后经多人改进反复做过,始终没有观察到地球相对于以太(或绝对参考系)运动的效应[ ]。
1.4.迈克耳孙-莫雷实验中条纹移动ΔN的计算
由前所述,根据伽利略速度变换,可得
t1 = L/(c-v) +L/(c+v)
= 2Lc/(c2-v2 )
= 2L/[c(1-v2/c2)]
光束②在P→M2"→P”间所经路程实际上是如图03(图略)所示的等腰三角形的两腰之和。故有
ct2 /2 = [L2+(vt2/2)2]1/2
经计算可得
t2 = 2L/(c2-v2)1/2
= 2L/[c(1-v2/c2)1/2]
两束光的时间差为
Δt = t1-t2
=2L/[c(1-v2/c2)] - 2L/[c(1-v2/c2)1/2]
= (2L/c){(1+v2/c2+…) - [1+v2/(2c2)+…]}
≈ (L/c)(v2/c2)
于是,两光束的光程差为
δ= cΔt
≈ Lv2/c2
若把整个装置转过90°,则前后两次的光程差为2δ,在此过程中干涉条纹移动ΔN条,由上式,有
ΔN = 2δ/λ
≈ 2Lv2/(λc2)
然而,无论进行多少次实验,都未能观察到条纹的移动。因此,当时的研究者得出了如下的结论,即:迈克耳孙-莫雷实验结果表明了不存在绝对参考系,以太假说不能成立;光速不变,它与地球的运动状态无关。人们对这一问题比较认同的看法是:迈克耳孙-莫雷实验是否是狭义相对论的实验基础,学术界说法不一。但该实验及其结果有助于我们接受相对论理论[ ]。
以上是《简明大学物理》上关于迈克耳孙-莫雷实验的内容介绍,而以下的内容是本文对《简明大学物理》上关于迈克耳孙-莫雷实验的内容所进行的分析。
2.迈克耳孙-莫雷实验为何始终观察不到地球运动效应呢?
迈克耳孙-莫雷实验的结果否定了光的传播依赖以太这种特殊介质的假说,同时也否定了绝对参考系的存在,这是该实验对物理学所做出的举世公认的最显著的贡献。然而,它对于理论物理还有着更为重要的意义,却并不为人所知,也长期被人们所忽视。那就是,由于迈克耳孙-莫雷实验中条纹移动ΔN的计算过程依赖于以太假说,所以其计算方法本身同样也是不可靠的。如果在当时,人们能够对迈克耳孙-莫雷实验中条纹移动ΔN的计算方法作进一步的探索和研究的话,就不会草率地得出“光速不变,它与地球的运动状态无关”这样一个错误的结论。从而可以有效地遏止像爱因斯坦相对论这样的十分隐密的伪科学理论的产生和发展。
2.1.迈克耳孙-莫雷实验的条纹移动ΔN的计算没有摆脱以太假说的阴影。
当初,迈克耳孙-莫雷实验的条纹移动ΔN的计算依赖于以太假说。光在以太中传播如同声音在空气中传播一样,相对于以太,光速(指光的速率)c恒定不变。按照这样的假设所进行的计算,所得的结果与实验结果完全不符。这除了说明以太假设是错误的以外,同时也说明了依赖于以太假说所进行的迈克耳孙-莫雷实验的条纹移动ΔN的计算也是站不住脚的。
在迈克耳孙-莫雷实验的条纹移动ΔN的计算过程中,始终存在着这样一个参考系,在这个参考系中,光束在传播过程中不管遇到什么情况,光速值始终恒定为c 。如图04(图略)所示的参考系中,光束①在P、M1间来回所需时间t1有两部分构成,光程P→M1"所需的时间为t1",而光程M1"→P”所需的时间为t1” 。显然,
t1=t1"+t1”
由于在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,光束①在P、M1间来回所需时间
t1=L/(c-v)+L/(c+v)
所以
t1"=L/(c-v)
t1”=L/(c+v)
故得
ct1"=L+v t1"
ct1”=L-v t1”
光程P→M1"所需的时间为t1",而光程M1"→P”所需的时间为t1” 。在图04所示的参考系中,光束①在P→M1"的光程中,光速为c ,在经过以速度v运动着的平面反射镜M1反射后,即在M1"→P” 的光程中,光速值仍为c 。同样,如图05(图略)所示,光束②在P、M2间来回所需时间t2有两部分构成,光程P→M2"所需的时间为t2",而光程M2"→P”所需的时间为t2” 。显然,
t2"=t2”= t2/2
在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,光束②在P、M2间来回所需时间
t2 = 2L/(c2-v2)1/2
故得
(ct2/2)2=L2+(v t2/2)2
由此可得
c t2"=[L2+(v t2")2]1/2
c t2”=[L2+(v t2”)2]1/2
在图05所示的参考系中,速度为c的入射光束一部分经分光板G1反射后成为光束②,由上分析可知,光束②在P→M1"的光程中,光速值为c ,在M2"→P”的光程中,光速值也为c 。
综上所述,在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,始终存在着这样一个参考系,在这个参考系中,光束不管遇到什么情况,其速率始终恒定为c 。也就是说,在迈克耳孙-莫雷实验的条纹移动ΔN的计算过程中,实际上始终依赖于以太假说。然而,按这样的理论所计算出来的结果与实际结果却完全不符。说明以太假说的确是不能成立的。同时也说明了迈克耳孙-莫雷实验的条纹移动ΔN的计算方法同样也是不可靠的。必须摆脱对以太假说的依赖后对迈克耳孙-莫雷实验的条纹移动ΔN进行重新计算。
2.2.对迈克耳孙-莫雷实验的结果进行重新分析。
本文所谓的重新计算,只是为了在计算过程中摆脱以太假说的影响,完全遵守伽利略的相对性原理对其实验过程进行分析,寻找出彻底摆脱以太假说的有别于过去的全新的计算方法。
迈克耳孙-莫雷实验所研究的对象实际上有两个,一为光束,二为迈克耳孙干涉仪本身。研究内容为它们之间的相互作用。根据伽利略相对性原理,当我们研究确定的彼此相互发生作用的对象时,研究所得的结果是不会随着所选择的参考系的不同而不同。也就是说,我们不管选择什么样的参考系来研究这个问题,所得的结果都是相同的。由于已经否定了以太假说,所以根本不存在对于光的传播有着特殊意义的参考系。我们可以选用任何一个参考坐标系来研究这个问题。因此,本文选用相对于光源静止的参考坐标系S和相对于干涉仪静止的参考坐标系S"这两个坐标系来研究这个问题。看看从这两个参考坐标系中所得出的结果到底是什么?是不是相同?
2.2.1.在相对于干涉仪静止的参考坐标系S"中进行分析
如图06(图略)所示,S是相对于光源静止的参考坐标系,所以光源相对于S坐标系是静止的,光源所发出的光,其速率相对于坐标系S为c;而S"是相对于干涉仪静止的参考坐标系,在S坐标系中以速率v沿x轴的正向作匀速直线运动。根据伽利略速度变换可得相对于S" 坐标系的S坐标系、光源及光的速度
V"(S)= V"(光源)=-v
V"(光)=c-v
干涉仪在S" 坐标系中是静止的,入射光束的速率为c-v,光束在P处穿过P后形成光束①,速率仍为c-v。由于相对于反射镜M1入射光束的速率为c-v,故其反射光束的速率也为c-v。同理,当光束在P处经P反射到视场时,光束的速率也为c-v。设光束①在P 、M1之间来回传播所需的时间为t1,光束①从P 到M1所需的时间为t1"; 光束①从M1到P所需的时间为t1”。显然
(c-v) t1" = L1
(c-v) t1”= L1
t1" = L1/(c-v)
t1”= L1/(c-v)
由此可得,光束①在P、M1间来回所需的时间为
t1=t1"+t1”
= L1/(c-v) +L1/(c-v)
= 2L1/(c-v)
如图07(图略)所示,光束②是进入干涉仪的光束在P处经P反射而成的,由于入射光束的速率相对于P为c-v,故经P反射的光束②的速率也为c-v。同理,经M2反射后,光束②的速率仍为c-v。在回到P处时穿过P后进入视场与光束①相会合。其速率仍然为c-v。设光束②在P 、M1之间来回传播所需的时间为t2,光束②从P 到M2所需的时间为t2"; 光束②从M2到P所需的时间为t2”。显然
(c-v) t2" = L2
(c-v) t2”= L2
t2" = L2/(c-v)
t2”= L2/(c-v)
因此,光束②在P、M2间来回所需的时间为
t2=t2"+t2”
= L2/(c-v) +L2 / (c-v)
= 2L2 /(c-v)
由此可见,两光束的时间差为
Δt =t1-t2
= 2L1/(c-v) -2L2 /(c-v)
= 2(L1-L2)/(c-v)
= 2Δx /(c-v)
于是,两光束的光程差为
δ= V"(光)Δt
= (c-v)Δt
= 2Δx (c-v) /(c-v)
= 2Δx
由此可见,两光束的光程差与光速无关,与干涉仪的运动速度无关,只与干涉仪内部PM1与PM2的距离差值Δx有关。也就是说,只要干涉仪相对于光源不作急加速运动或者快速旋转运动的话,那么,不管是把整个装置转过90°,还是180°,只要干涉仪内部PM1与PM2的距离差值Δx不变,两光束所产生的光程差也不会发生改变,就自然观察不到任何干涉条纹的移动了。这样的分析显然与实验的结果是相吻合的。
那么,以上的分析结果是不是对于相对于干涉仪静止的参考坐标系S"有着特殊的依赖呢?下面,本文继续将这个问题摆在相对于光源静止的参考坐标系S中进行分析。
2.2.2.在相对于光源静止的参考坐标系S中进行分析
如图08(图略)所示,S是相对于光源静止的参考坐标系,所以光源相对于S坐标系是静止的,光源所发出的光,其速率相对于坐标系S为c;干涉仪在S坐标系中以速率v沿x轴的正向作匀速直线运动。在坐标系S中干涉仪及光的速度
V (干涉仪)= v
V (光)=c
在坐标系S中,射入运动着的干涉仪的光束速率为c,光束在P处穿过分光板G1后形成光束①,速率仍为c。由于干涉仪以速率v与光束同向运动,当干涉仪由PM1运动到P"M1"时,相对于反射镜M1",其入射光束的速率为c-v,故相对于反射镜M1"的反射光束的速率也为c-v。因此,相对于坐标系S,经反射镜M1"反射的光束速率就为(c-v)-v。光束①返回到P”处就被反射到视场中,由于光束①返回到P”处时相对于运动着的P”的速度为c-v,所以反射进入视场的光束相对于运动着的P”的速度也为c-v,而相对于坐标系S,反射进入视场的光束的速率应为[(c-v)2+v2]1/2。如图08(图略)所示,设光束①在P 、M1"和P”之间传播所需的时间为t1,光束①从P 到M1"所需的时间为t1"; 光束①从M1"到P”所需的时间为t1”。那么
ct1"= L1+v t1"
[(c-v) -v]t1”= L1-v t1”
算得
t1" = L1/(c-v)
t1”= L1/(c-v)
由此可得,光束①在P、M1" 和 P”之间传播所需的时间为
t1=t1"+t1”
= L1/(c-v) +L1/(c-v)
= 2L1/(c-v)
如图09(图略)所示,光束②是进入干涉仪的光束在P处反射而成的,由于入射光束相对于运动的P的速率为c-v,故经P反射的光束②相对于运动的P的速率也为c-v,且相对于运动的P来说方向与入射光速相垂直,因此,相对于坐标系S,经P反射的光束②的速率应为[(c-v)2+v2]1/2。经M2"反射后,光束②的速率为[(c-v)2+v2]1/2。在回到P”处时穿过P”后进入视场与光束①相会合。其速率仍然为[(c-v)2+v2]1/2,如相对于运动的P来说,其速率仍应为(c-v)。如图09(图略)所示,设光束②在P 、M2"和P”之间传播所需的时间为t2,光束②从P 到M2"所需的时间为t2"; 光束②从M2"到P”所需的时间为t2”。由图09可知
(PM2") 2 = (P"M2") 2+(PP") 2
(M2"P”) 2 = (M2"P”) 2+(P"P”) 2
那么
{[(c-v)2+v2]1/2 t2" }2 = (L2)2+(v t2" )2
{[(c-v)2+v2]1/2 t2” }2 = (L2)2+(v t2” )2
计算可得
t2" = L2/(c-v)
t2”= L2/(c-v)
因此,光束②在P、M2"和P”之间传播所需的时间为
t2=t2"+t2”
= L2/(c-v) +L2 / (c-v)
= 2L2 /(c-v)
由此可见,两光束的时间差为
Δt =t1-t2
= 2L1/(c-v) -2L2 /(c-v)
= 2(L1-L2)/(c-v)
= 2Δx /(c-v)
光束①和②进入干涉仪视场后相对于坐标系S的速率均为[(c-v)2+v2]1/2。然而,由于只有当观察者与干涉仪保持相对静止时才能对干涉仪进行观察,所以进入干涉仪视场的光束的速率只能选择相对于干涉仪的速率才与事实相符。光束①和②进入干涉仪视场后相对于干涉仪的速率均为c-v 。于是,两光束的光程差为
δ= (c-v)Δt
= 2Δx (c-v) /(c-v)
= 2Δx
由此可见,在相对于光源静止的参考坐标系S中进行分析,尽管相对光速有所不同,但同样也得出了在相对于干涉仪静止的参考坐标系S"中进行分析所得出的结论。
3.结论
由以上对迈克耳孙-莫雷实验结果的重新分析可以得出如下结论:迈克耳孙-莫雷实验的条纹移动ΔN取决于两光束的光程差的改变量Δδ,而两光束的光程差的改变量Δδ取决于两光束的光程差δ,而两光束的光程差δ,相对于任意一个惯性参考坐标系S来说,与光速VS(光)无关,与干涉仪的运动速度VS (干涉仪)也无关,只与干涉仪内部PM1与PM2的距离差值Δx有关。也就是说,在迈克耳孙-莫雷实验的过程中,只要干涉仪相对于光源不作急加速运动和快速旋转运动的话,那么,不管把整个装置转过90°还是180°,只要干涉仪内部PM1与PM2的距离差值Δx不变,两光束所产生的光程差也不会发生改变,就自然观察不到任何干涉条纹的移动了。这就是迈克耳孙-莫雷实验为何始终观察不到地球运动效应的真正原因。
在以上对迈克耳孙-莫雷实验结果的分析过程中,本文唯一遵循的就是伽利略相对性原理。也就是说,本文在以上的分析中只有一个前提,那就是假设光的传播必须遵守伽利略相对性原理,而在这样的前提下做出的分析所得的结果恰恰与实验结果完全吻合。而一百多年前所作的分析就是因为并没有完全遵守伽利略相对性原理,始终不能摆脱以太假说的影响。所以其分析的结果才与实验结果不符。这一实验再一次证明了伽利略相对性原理所揭示的规律具有普遍的适用性。原先认为光的传播规律特殊并不符合伽利略相对性原理的观点是站不住脚的。这一实验充分证明了光的传播也完全遵循伽利略相对性原理。
爱因斯坦依据迈克耳孙-莫雷实验的结果草率地得出光速对于所有惯性观测者都一样的结论,并把建立在如此意义上的光速不变作为一条基本原理,于此推导出洛伦兹变换来代替伽利略变换,在此基础上才建立起狭义相对论和广义相对论。由此可见,爱因斯坦相对论不但没有科学理论的支持,而且也没有科学实践的支持。可以说,爱因斯坦相对论是有史以来隐藏最深的伪科学理论。同时也是仍在不断发展着的并且是目前体系化程度最高的伪科学理论体系。
100年前,爱因斯坦将迈克耳孙-莫雷实验作为建立相对论的可靠支柱。而今,本文将它作为推翻爱因斯坦相对论的有力证据。
后记:
在人类探索未知世界的历程中,迈克耳孙-莫雷实验给予人们什么启示呢?它让人们产生了对科学本身的反思。技术侧重于知识和方法,而科学侧重于精神和态度。科学的本质可以概括为实事求是的探索精神和脚踏实地的认真态度。如果离开了实事求是和脚踏实地这两点,那么科学技术就只能剩下技术两字了。
- 康康map
-
当然,除了超光速时空逆转,其他都实验了,没问题.你知道核子的裂,聚变吗?相对论是基础原理.
- meira
-
相对论刚建立时就完美地解释了水星进动现象,其预言的光的弯曲也很快得到证实。
彭罗斯宣称,对赫尔斯-泰勒脉冲星系统的观测已经累积起了如此确凿的关于引力波存在的证明,这实际上使得广义相对论的精确度已经和实验吻合到10的负14次方,赫尔斯和泰勒因此获得1993年诺贝尔奖。
量子电动力学的实验值符合到小数点后第11位。
要撼动相对论或量子力学,虽不是不可能。但恐怕要在小数点后10位好好掂量掂量才行~~
- 床单格子
-
你的"探索"精神是值得夸奖的,然而你的要求超过了你的"理解"能力.相对论是不容质疑的.没有"狭义相对论"就没有今日的"量子理论"我推荐你读一读<新量子世界>湖南科学技术出版社出版.另外再读一读<物理天文学前沿>同样是这个出版社的书.毫不夸张地说,没有"广义相对论"是不能有这样成果的.我很高兴回答你的问题.
- Chen
-
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
广义相对论
一个极其不可思议的世界
谷锐译 原文:Slaven
广义相对论的基本概念解释:
在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。
为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。
质量的两种不同表述:
首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。
现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。
因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。
人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。
牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。
日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。
现在我们关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的速度相同。不论是月亮的还是太阳的,它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值)
引力质量和惯性质量的等同性是爱因斯坦论据中的第三假设
爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。为了这个目标,他作出了被称作“等同原理”的第三假设。它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。
让我们来考查一个惯性系K",它有一个相对于伽利略系的均匀加速运动。在K 和K"周围有许多物体。此物体相对于K是静止的。因此这些物体相对于K"有一个相同的加速运动。这个加速度对所有的物体都是相同的,并且与K"相对于K的加速度方向相反。我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K"是静止的并且存在一个均匀的引力场。
因此如果我们确立等同原理,两个物体的质量相等只是它的一个简单推论。 这就是为什么(质量)等同是支持等同原理的一个重要论据。
通过假定K"静止且引力场存在,我们将K"理解为一个伽利略系,(这样我们就可以)在其中研究力学规律。由此爱因斯坦确立了他的第四个原理。
爱因斯坦第二假设
我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。
实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。
长度收缩:
长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是:
参照系中运动物体的长度比其静止时的长度要短
时间膨胀:
所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:
某一参照系中的两个事件,它们发生在不同地点时的时间间隔
总比同样两个事件发生在相同地点的时间间隔长。
此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。
时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称 为"介子"的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。?
应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。
爱因斯坦第一假设
全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。
第一个可以这样陈述:
所有惯性参照系中的物理规律是相同的
此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚:
假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”
不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。
你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。
另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。
实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)
例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。
这里有一个最低限度:爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?
爱因斯坦第二假设
19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。
麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中:
(如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧)
麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。
我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。
现在我们回到爱因斯坦。
爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同
爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢?
火车上的试验
为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。 火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒“发射”光子。
光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。
问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢?
好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。
记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能:
1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米
2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同
尽管听起来很奇怪,但两者实际上都是正确的。
爱因斯坦第二假设
时间和空间
我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。
实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。
长度收缩:
长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是: 参照系中运动物体的长度比其静止时的长度要短下面用图形说明以便于理解:
上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。
这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。
时间膨胀:
所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:
某一参照系中的两个事件,它们发生在不同地点时的时间间隔
总比同样两个事件发生在相同地点的时间间隔长。
这更加难懂,我们仍然用图例加以说明:
图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。
此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。
时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称为介子的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。?
应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。
伽玛参数(γ)
现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢?
答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的握障担飧龉坛中?/γ秒。
为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式: 这里的关键是分母中的v2/c2。v是我们所讨论的物体的运动速度,c是光速。因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。
第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。
宇宙执法者的历险
宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么:
AD能即使到达B星并取得解药吗?
我们做如下的计算:
A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。
那么AD必死无疑。
等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。
1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星!
2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。
AD将生还并继续与邪恶战斗。
如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短...
如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。
宇宙执法者的历险——微妙的时间
好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题:
相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短?
好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。
让我们来研究一些同时发生的事件。
首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的:
1、 EN的表读数为39
2、 AD到达B行星
3、 AD的表读数为12.2
这些事件在EN的参照系中是同时发生的。
现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的:
1、 AD到达B行星
2、 AD的钟的读数为1.2
3、 EN的钟的读数为3.2
前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。
从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。
质量和能量
除了长度收缩和时间膨胀以外,相对论还有许多推论。其中最著名、最重要的是关于能量的。
能量有许多状态。任何运动的物体都因其自身的运动而具有物理学家所谓的“动能”。动能的大小和物体的运动速度及质量有关。(“质量”非常类似于“重量”,但并不完全相同)放在架子上的物体具有“引力势能”。因为如果架子被移掉,它就(由于引力)具有获得动能的可能。
热也是一种形式的能,其最终可以归结于组成物质的原子和分子的动能,此外还有许多其他形式的能。
把上述现象都和能量联系起来的原因,即它们之间的联系,是能量守恒定律。这个定律是说,如果我们把宇宙中全部的能量都加起来(我们可以用象焦耳或千瓦时这样的单位定量地描述能量),其总量永不改变。此即,能量从不会产生或消灭,尽管它们可以从一种形态转化为另一种形态。例如,汽车是一种可以将(在引擎的汽缸中的)热能转化为(汽车运动的)动能的设备;灯泡(可以)将电能转化为光能(这又是两种能的形式)。
爱因斯坦在他的相对论中发现了能量的另一种形式,有时被称作“静能量”。我已经指出一个运动物体由于其运动而具有了能量。但爱因斯坦发现,同样一个物体在其静止不动的时候同样具有能量。物体内静能量的数量依赖于其质量,并以公式E=mc2给出。
由于光速是如此之大的一个数,一个典型物体
- 芝华塔尼欧的少年
-
当然可信
- 小菜G的建站之路
-
可信,实验依据有一点!
- 血莲丿红尘
-
你可以实验嘛