DNA图谱 / 问答 / 问答详情

matlab中 wavedec2(x,N,wname)使用的是什么样的算法,比如跟Mallat算法或多孔算法有什么联系和区别?

2023-07-20 01:23:24
TAG: 算法 区别
共1条回复
康康map

wavedec2是二维小波分解算法,Matlab小波算法的书很多,自己找本看看吧!

相关推荐

matlab图像小波分解,dwt2和wavedec2有什么区别

dwt2是单一尺度DWT,只能分解一层,wavedec2是多尺度DWT,可以分解多层。在matlab中的wavedec2函数是调用dwt2函数实现的,就是将dwt2分解的一层结果再用一次dwt2分解就得到了第二层的分解结果,以此类推得到wavedec2各层的分解结果。所以对于实际问题的处理通常使用wavedec2函数,dwt2函数可以认为只是作为wavedec2函数的子函数,其应用地并不多。
2023-07-19 21:29:011

matlab wavedec和wavedec2的区别

使用小波"wname"对信号X进行单层分解,求得的近似系数存放在数组cA中,细节系数存放在数组cD中 [cA,cD]=dwt(X,"wname")中返回的cA,cD分别存放是信号的近似和细节 [C,L]=wavedec(X,N,"wname") 利用小波"wname"对信号X进行多层分解 A=appcoef(C,L,"wname",N) 利用小波"wname"从分解系数[C,L]中提取第N层近似系数 [C,L]=wavedec(X,1,"wname")中返回的近似和细节都存放在C中,即C=[cA,cD],L存放是近似和各阶细节系数对应的长度 DWT2是二维单尺度小波变换,其可以通过指定小波或者分解滤波器进行二维单尺度小波分解 DWT2的一种语法格式是[cA,cH,cV,cD]=dwt2(X,"wname") WAVEDEC2是二维多尺度小波分解 WAVEDEC2的语法格式是[C,S]=wavedec2(X,N,"wname"),其中N为大于1的正整数 也就是说DWT2只能对某个输入矩阵X进行一层分解,而WAVEDEC2可以对输入矩阵X进行N层分解
2023-07-19 21:29:091

matlab图像小波分解,dwt2和wavedec2有什么区别

dwt2是单层DWT函数,能分解一层。wavedec2是多层DWT函数,用于多层分解,其函数其实是每次调用dwt2函数实现多层分解滴,所以也可将dwt2看作wavedec2函数滴子函数。
2023-07-19 21:29:161

如图,使用matlab编程实现小波变换对一幅图像进行处理,从而得出4个座标图。

A = imread("image.bmp");B = A(:,:,1);[lowf,highfH,highfV,highfD,C,S] = wavelet2D(double(B),"morlet",2);function[lowf,highH,highV,highD,C,S] = wavelet2D(signal,wavelet,level)[C,S]=wavedec2(signal,level,wavelet);lowf = appcoef2(C,S,wavelet,level);highH=detcoef2("h",C,S,level);highV=detcoef2("v",C,S,level);highD=detcoef2("d",C,S,level);A = wrcoef2("a",C,S,wavelet,level);Dh =wrcoef2("h",C,S,wavelet,level);Dv =wrcoef2("v",C,S,wavelet,level);Dd =wrcoef2("d",C,S,wavelet,level);subplot(2,2,1),image(A);subplot(2,2,2),imshow(Dh);subplot(2,2,3),imshow(Dv);subplot(2,2,4),imshow(Dd);
2023-07-19 21:29:242

小波分解是什么意思?分解后得到的是什么?小波分解后进行重构得到图形d1,d2,又是什么?

有一维和二维小波分解,MATLAB中的代码分别为wavedec和wavedec2。小波对图像进行分解时,会得到一个逼近子图像和三个不同方向(水平、垂直、对角线)的细节子图像,继续对子图像进行小波分解便得到图像的小波多尺度分解。对子图进行单支重构(wrcoef)并叠加就得到和原图像大小相同的图像了。建议你看看孙延奎写的小波方面的书籍,比较浅显易懂
2023-07-19 21:29:311

用小波分解图像之后,对分解系数进行了修改,但是最后重构的图像不对?

运行后是什么样的错误?没看到细节不好判断,但我怀疑有可能是数据类型不匹配一类。把具体的出错信息发上来看看吧。看到了,问题应该出在矩阵维度上,wavedec2做完小波分解后会返回两个变量,一个是小波系数,另一个是相当于索引的矩阵,文档中分别以C和S表示。在使用waverec2重构的时候,输入变量也应是一样的内容。按照你的思路,应该是cn为滤波后的小波系数,那么I应该就是wavedec2的第二个返回变量,如果cn没变,则I不应该变。滤波的时候最好不要打乱小波系数的顺序,否则重新组织起来很烦的。wavedec2生成的小波系数组织方式参见后面的参考资料。其实做图像处理还可以考虑用dwt2这个函数。近似图像特别亮?如果排除滤波的影响,我觉得haar小波应该不会出现这个现象。以上。专业路过的老狼
2023-07-19 21:29:381

如何用matlab进行离散小波分解

clear;clcload tire ;% 用小波函数db1对信号进行2尺度分解[c,s] = wavedec2(x,2,"db1");sizex = size(x)sizec = size(c)val_s = s % 提取尺度2的所有方向的高频系数[chd2,cvd2,cdd2] = detcoef2("all",c,s,2); sizecd2 = size(chd2)% 提取尺度1的所有方向的高频系数 [chd1,cvd1,cdd1] = detcoef2("all",c,s,1); sizecd1 = size(chd1)% 提取尺度2的低频系数ca2 = appcoef2(c,s,"db1",2); sizeca2 = size(ca2)% 提取尺度1的低频系数ca1 = appcoef2(c,s,"db1",1); sizeca1 = size(ca1)nbc = size(map,1);colormap(pink(nbc));figure(1);subplot(221);image(wcodemat(x,nbc));title("原始图像");subplot(223);image(wcodemat(ca2,nbc));title("尺度2的低频系数");subplot(224);image(wcodemat(ca1,nbc));title("尺度1的低频系数");figure(2);subplot(221);image(wcodemat(chd2,nbc));title("尺度2水平方向的高频系数");subplot(222);image(wcodemat(cvd2,nbc));title("尺度2垂直方向的高频系数");subplot(223);image(wcodemat(cdd2,nbc));title("尺度2斜线方向的高频系数");subplot(224);image(wcodemat(chd1,nbc));title("尺度1水平方向的高频系数");figure(3);subplot(121);image(wcodemat(cvd1,nbc));title("尺度1垂直方向的高频系数");subplot(122);image(wcodemat(cdd1,nbc));title("尺度1斜线方向的高频系数");
2023-07-19 21:29:541

matlab 小波

彩色图像是3维矩阵,二维小波当然会出错,每一层分开处理即可下面是例子:x=imread("liftingbody.png");imshow(x);%显示原图[c,s]=wavedec2(double(x),2,"db1");%分解y=waverec2(c,s,"db1");%重构figure;imshow(uint8(y))%显示
2023-07-19 21:30:091

matlab中swt2函数多尺度分解的图像怎么出现偏移

plot(t,T);tfit=0:24;A=polyfit(t,T,2);Tfit=polyval(A,tfit);hold onplot(tfit,Tfit);polyval(A,12.5)%
2023-07-19 21:30:282

function y=mywavedec2(x,dim)怎么执行

"f()中的x是传地址的 "所以本过程中的x=10,在y=f(x)后,x在f()里被改变成x=20并带回。 "y=f(x)即f(x)的返回值,f()返回值是f()中的x*y即20*2=40,因为f()中f=x*y
2023-07-19 21:30:341

求二值化后的图片用MATLAB去噪的程序

load wbarb; % 装载原始图像 subplot(221); % 新建窗口 image(X); % 显示图像 colormap(map); % 设置色彩索引图 title("原始图像"); % 设置图像标题 axis square; % 设置显示比例,生成含噪图像并图示 init=2055615866; % 初始值 randn("seed",init); % 随机值 XX=X+8*randn(size(X)); % 添加随机噪声 subplot(222); % 新建窗口 image(XX); % 显示图像 colormap(map); % 设置色彩索引图 title("含噪图像"); % 设置图像标题 axis square; %用小波函数coif2 对图像XX 进行2 层分解 [c,l]=wavedec2(XX,2,"coif2"); % 分解 n=[1,2]; % 设置尺度向量 p=[10.28,24.08]; % 设置阈值向量,对高频小波系数进行阈值处理 %nc=wthcoef2("h",c,l,n,p,"s"); %nc=wthcoef2("v",c,l,n,p,"s"); nc=wthcoef2("d",c,l,n,p,"s"); X1=waverec2(nc,l,"coif2"); % 图像的二维小波重构 subplot(223); % 新建窗口 image(X1); % 显示图像 colormap(map); %设置色彩索引图 title("第一次消噪后的图像"); % 设置图像标题 axis square; % 设置显示比例,再次对高频小波系数进行阈值处理 %mc=wthcoef2("h",nc,l,n,p,"s");mc=wthcoef2("v",nc,l,n,p,"s"); mc=wthcoef2("d",nc,l,n,p,"s"); X2=waverec2(mc,l,"coif2"); % 图像的二维小波重构 subplot(224); % 新建窗口 image(X2); % 显示图像 colormap(map); % 设置色彩索引图 title("第二次消噪后的图像"); % 设置图像标题 axis square; % 设置显示比例这个程序改一改吧
2023-07-19 21:30:441

求助:在MATLAB中 如何利用mallat算法 求得小波变换系数?

如果只要得到小波系数,可以1D直接使用wavedec (2D使用wavedec2)函数进行分解,得到分解结果的CL组构(2D得到CS组构),然后用appcoef和detcoef(2D使用appcoef2和detcoef2)函数提取细节和逼近小波系数,你可以直接参看matlab的帮助文档,非常简单。
2023-07-19 21:31:021

怎么用matlab把压缩成tiff

1.用matlab实现图像压缩时,如何将图片仿真 图像压缩是当今信息时代迫切需求的一门图像处理技术,它极大的减少了图像的数据量,为图像的存储,传输提供了方便。 小波变换,是一种广泛用于图像压缩的方法。它能让图像按不同的分辨率分析。 根据Mallat算法的思想,图像能分解成一个轮廓信号(低频子图)和水平,垂直,对角线三个方向上的细节信号(高频子图)。而轮廓信号又可以进一步分解。 而图像的主要能量部分是低频部分,而且人眼视觉系统对低频部分更为敏感,所以可以对低频部分采用较低压缩比;对高频部分采用较大压缩比来进行压缩。 本文提出的是一种结合小波变换,DCT变换和矢量量化的压缩方法。根据人眼的视觉特性,首先对图像进行小波分解,然后,对低频分量进行压缩比不大的DCT变换;对不同方向不同分辨率的高频分量进行不同码字大小的矢量量化编码,然后对反变换和解码后的系数进行小波重构。矢量量化过程中的码书设计采用的是LBG算法。 这样,根据对图像质量的不同要求,我们可以改变小波分解的层数,来得到不同压缩比的图像。本篇论文只对小波分解一层和两层后压缩进行了仿真和分析,表明该方案结合了各种压缩方法的优点,在满足图像质量的同时能得到较大的压缩比。 目前,在包装装潢设计中常用的图形处理软件有Pho-toshop,CorelDraw,AutoCAD等。但是这些软件中很少涉及到对图像进行压缩处理,以满足图像进行传输和储存的需要。 基于这一点考虑,在此尝试着用MATLAB编程来处理包装装潢图像的压缩,实现包装与计算机的紧密结合。 1 MATLAB MATLAB是MathWorks公司推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图像显示于一体,它附带的小波分析工具箱功能强大,可以完成小波分析的绝大部分工作。 MATLAB工具箱的出现避免了程序设计中的重复性劳动,缩短了开发周期,降低了成本,因而受到工科院校师生和研究人员的青睐。 在介绍利用MATLAB小波工具压缩图像的文献中,总是将真彩色RGB图像转换为灰度级索引图像进行处理.经过这种处理以后,图像的存储数据能得到一定的压缩,但由压缩后的数据难以恢复成理想的彩色图像。 文中用MATLAB中有关函数处理图像压缩,而且由压缩后的数据可以还原出图像.实验结果表明,还原出的图像效果是理想的。文中主要以lena图像的处理为例,对它进行二进小波多层分解后,将低频和高频近似的系数矩阵作相应的处理,来研究用MATLAB中的小波工具箱压缩图像的方法。 2 图像压缩方法 在实际应用中,首先需要从图像文件中读取图像数据.MATLAB使用imreed()函数完这一任务.例如,在电脑D盘中有一彩色图像文件picl.jps,则可由下述语句读取: X=imread(′D:picl.′); MATLAB图像处理工具箱支持4种基本图像类型:索引图像、灰度图像、二进制图像和RGB图像.MATLAB直接从图像文件中读取的图像为RGB图像.它存储在三维数组中。这个三维数组有3个面,依次对应子红(Red)、绿(Green)、蓝(Blue)3种颜色,而面中的数据则分别是这3种颜色的强度值,面中的元素对应于图像中的像素点。 索引图像数据包括图像矩阵X与颜色图数组map,其中颜色图map是按图像中颜色值进行排序后的数组。对于每个像素,图像矩阵X包含一个值,这个值就是颜色图数组map中的索引。 颜色图map为m*3双精度矩阵,各行分别指定红、绿、蓝(R、G、B)单色值,map=〔RGB〕,R、C、B为值域为〔0,1〕的实数值,m为索引图像包含的像素个数.然后可根据情况采用不同的小波函数,进行索引图像的分解压缩。这里对上面产生的索引图像X用dbl小波进行2层分解。 〔c,l〕=wavedec2(X,2,′dbl′)。 在这里,一个索引图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的.高分辨率(即高频细节)子图像上大部分点的数值接近于0,越是高频这种现象越明显.对一个图像来说,表现一个图像最主要的部分是低频(即近似)部分。 多层小波分解的所有成分系数均保存在向量c中,低频近似与高频细节的系数需从向量C中提取。MATLAB分别使用appcoet2()和detcoef2()函数来完成这一工作。 这种方法是对低频和高频部分进行处理,因而提取低频和高频近似系数。 cAl=appcoef2(c,1,′dbl,′1);cH1=detcoef2(′h′,c,1,1); cDl=detcoef2(′d′,c,l,1);cVl=detcoef2(′v′,c,l,1)。 matlab实现离散余弦变换压缩(JPEG压缩原理) JPEG图像压缩算法: 输入图像被分成8*8或16*16的小块,然后对每一小块进行二维DCT(离散余弦变换)变换,变换后的系数量化、编码并传输; JPEG文件解码量化了的DCT系数,对每一块计算二维逆DCT变换,最后把结果块拼接成一个完整的图像。在DCT变换后舍弃那些不严重影响图像重构的接近0的系数。 DCT变换的特点是变换后图像大部分能量集中在左上角,因为左上放映原图像低频部分数据,右下反映原图像高频部分数据。而图像的能量通常集中在低频部分。 实例程序: function Jpeg I=imread("D:MATLAB7 oolboximagesimdemoscameraman.tif"); %该图片在安装matlab的目录中找,原图为灰度图象 。 2.使用MATLAB图像压缩怎么做 I = imread("cameraman.tif"); % 输入图像 I = im2double(I); % 数据类型转换 T = dctmtx(8); % 计算二维离散DCT矩阵 dct = @(x)T * x * T"; % 设置函数句柄 B = blkproc(I,[8 8],dct); % 图像块处理 mask = [1 1 1 1 0 0 0 0 % 掩膜 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; B2 = blkproc(B,[8 8],@(x)mask.* x); % 图像块处理 invdct = @(x)T" * x * T; % 设置函数句柄 I2 = blkproc(B2,[8 8],invdct); % 图像块处理 imshow(I), figure, imshow(I2) % 显示原始图像和压缩重构图像 3.用matlab把11张tif图片做成一个连续动画 使用如下代码方式可以达到你想要的效果。 clear; clc; for i=2:50 c=strcat("a",num2str(i));%这里可以根据自己图片名字儿作相应的修改 c=strcat(c,".bmp"); I=imread(c); % I=rgb2gray(I) figure(1); imshow(I); end 图片的保存方式如:a21.bmp,这样可以实现你的汽车动画。如果想要使用你的汽车图片做的话,请把汽车图片发给我,我帮你看看。
2023-07-19 21:31:091

可以用appcoef2和detcoef2从[C,S]中提取出4种分量。现在我想让C中的LL和HL为0,然后重构回C。该如何重构

您好:I=imread("rice.png");[c,s]=wavedec2(I,2,"db1");a=appcoef2(c,s,"db1",1);%%%提取低频a=uint8(a);subplot(221)imshow(a)k=imnoise(a,"gaussian",0,0.02);%%对低频加噪声subplot(222)imshow(k)t=wrcoef2("a",c,s,"db1",2);%%由低频重构t=uint8(t);subplot(223)imshow(t)
2023-07-19 21:31:161

如何用C语言实现小波多层变换wavedec2

C语言标准库当中没有这种函数,去OpenCV库当中找找有没有类似函数,如果自己实现想是相当麻烦
2023-07-19 21:31:231

matlab中出现expected, ";" found.. 错误

最后一行的括号不匹配,imshow(uint8(imgResult));xlabel ("(c)小波融合图像"); 一般出现这种错误的情况有两种:1.你的该行代码中出现了中文的分号“;”,只要把他改为英文“;”的就行。2.该行的括号不匹配,少了或多了。解决的办法就是补齐。
2023-07-19 21:31:302

新手求助matlab图像去噪求峰值信噪比函数调用问题

去掉分号就哦了
2023-07-19 21:31:581

基于小波变换的图像压缩问题

matlab没怎么学。按错误提示:应该是wdencmp函数的参数不对。你搜下这个函数怎么用,小波变换这些,网上源程序也很多的
2023-07-19 21:32:052

matlab中怎样实现多层小波重构?

T=wpdec(y,5,"db40");%对信号y进行小波包分解,层数为5,得到的T为小波树,plot一下就可看到a10=wprcoef(T,[1,0]);%a10是对节点[1,0]进行重构后得到的信号。貌似没有对那一层重构这一说法吧,只能是对某层的某个节点进行重构。节点的编号你可以从小波树中看出来这是我的做法,不过用的是小波包分解。不知对你有没有用
2023-07-19 21:32:155

matlab 如何对图像进行9/7小波分解

小波分解重构 V2.0 版程序存在的问题分析http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2628911.aspx 小波图像分解 Matlab 程序 - V3.0版http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2630153.aspx 小波图像重构 Matlab 程序 - V3.0版http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2630365.aspx%----------------------------------------------------------% 本文给出了小波图像分解程序的修正代码,并对一些细节问题进行了图示讨论。修正前的小波图像分解与重构程序,请看如下文章:相关的文章有:1、自己动手编写小波信号分解与重构的Matlab程序http://blog.csdn.net/chenyusiyuan/archive/2007/11/13/1881781.aspx2、用自编的程序实现小波图像分解与重构http://blog.csdn.net/chenyusiyuan/archive/2007/11/13/1881940.aspx下面是针对上述文章中存在的问题而修改的小波图像分解程序。function coef=mywavedec2(x,N,wname)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 函数 MYWAVEDEC2() 对输入矩阵 x 进行 dim 层分解,得到相应的分解系数矩阵 y% 输入参数:x —— 输入矩阵% N —— 分解级数% wname —— 分解所用的小波函数% 输出参数:coef —— 分解系数矩阵,其结构如下:% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1}% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10, modified: 2008-06-04%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 求出小波函数的滤波器组系数向量[Lo_D,Hi_D] = wfilters(wname,"d");% 画出原始图像imshow(x);title("Original Image");% 标明图像大小[r,c]=size(x);xlabel(["Size : ",num2str(r),"*",num2str(c)]);% 将矩阵x的数据格式转换为适合数值处理的double格式xd=double(x); coef=[];for i=1:N [cA,cV,cH,cD]=mydwt2(xd,Lo_D,Hi_D); % 第 i 级小波分解 xd=cA; % 将第 i 级分解得到的低频系数矩阵作为第 i+1 级分解的源矩阵 outmp={cV;cH;cD}; % 将第 i 级分解得到的高频系数矩阵cV,cH,cD存入细胞矩阵 outmp % 注意细胞矩阵的赋值是用大括号“{}”的,而普通矩阵赋值是用方括号“[]” % 细胞矩阵不要求其中的子矩阵的行列数都相同 coef=[outmp;coef]; % 将细胞矩阵 outmp 存入输出矩阵 coef,coef将由空矩阵变为细胞矩阵 % 注意这里的方括号不能用大括号取代 % 否则,使用大括号会将初始的coef空矩阵也作为细胞矩阵的子矩阵 % 而且,在迭代中 coef 将是一个不断嵌套的细胞矩阵,不便于后续处理和读取 % 上面这个语句是一种有效的在迭代过程中保存数据的方法 % 设待存数据为 data,可以是单个数、向量或矩阵 % 保存数据的矩阵为 mat,初始为空矩阵:mat=[] % 则可按以下格式保存迭代过程产生的数据 % mat=[mat;data]; % 方括号内的分号“;”表示数据 data 是按“列”排序的方式存入矩阵 mat % mat=[mat,data]; % 方括号内的逗号“,”表示数据 data 是按“行”排序的方式存入矩阵 mat % data 也可以在 mat 前嵌入,即 mat=[data;mat] 或 mat=[data,mat]end% 迭代结束后,矩阵 coef 中保存的是各级分解中的高频系数矩阵% 故需将迭代后得到的矩阵 cA,即第 dim 级低频矩阵存入矩阵 coefcoef=[cA;coef];% 最后,小波系数矩阵 coef 的结构如下% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1} % 画出各级低频、高频系数矩阵% 首先建立一个名为“Wavelet Decomposition -- Wavelet Type: , Levels: ”的图像窗口figure("Name",["Wavelet Decomposition -- Wavelet Type: ",wname," , Levels: ",num2str(N)]);% 图像的第1行显示低频系数,置中,左右两个subplot为空subplot(N+1,3,2);yt=uint8(coef{1});[yrow,ycol]=size(yt);imshow(yt);title( ["Approximation A",num2str(N)]);xlabel(["Size : ",num2str(yrow),"*",num2str(ycol)]);% 第2-(N+1)行显示各级高频系数titllist={["Vertical Detail V"];["Horizontal Detail H"];["Diagonal Detail D"]};pn=2; % pn 是子图的显示序号for pr=1:N for pc=1:3 subplot(N+1,3,pn+2); yt=[]; % 为了使高频细节内容(轮廓、边缘)更清晰,将高频系数增加100灰度值 yt=uint8(coef{pn})+100; [yrow,ycol]=size(yt); imshow(yt);title([ titllist{pc},num2str(N-pr+1)]); xlabel(["Size : ",num2str(yrow),"*",num2str(ycol)]); % 每行的第一个图像的Y轴,显示该行高频系数对应的分解级别 if mod(pn+2,3)==1 ylabel(["Level ",num2str(N-pr+1)]); end pn=pn+1; endendfunction [cA,cV,cH,cD]=mydwt2(x,Lo_D,Hi_D)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 函数 MYDWT2() 对输入的r*c维矩阵 x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]% 输入参数:x —— 输入矩阵,为r*c维矩阵。% Lo_D,Hi_D —— 小波分解的滤波器组系数向量% 输出参数:cA,cV,cH,cD —— 是小波分解系数矩阵的四个相等大小的子矩阵% cA:低频部分分解系数; cV:垂直方向分解系数;% cH:水平方向分解系数; cD:对角线方向分解系数。% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10, modified: 2008-06-04%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [row,col]=size(x); % 读取输入矩阵的大小for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解 tmp1=x(j,:); [ca1,cd1]=mydwt(tmp1,Lo_D,Hi_D,1); % tmp1 长度为 row ,滤波器长度为 lnf ,则 [ca1,cd1] 的总长为 ( row + lnf -1 ) x1(j,:)=[ca1,cd1]; % 将分解系数序列存入缓存矩阵 x1 中end [row1,col1]=size(x1); % row1=row + lnf -1, col1=col+lnf-1for k=1:col1 % 再对缓存矩阵 x1 的每一列序列进行一维离散小波分解 tmp2=x1(:,k); [ca2,cd2]=mydwt(tmp2,Lo_D,Hi_D,1); x2(:,k)=[ca2,cd2]" ; % 将分解所得系数存入缓存矩阵 x2 中 % 注意不要遗漏了上一行代码中的转置符号“ "”。 Matlab 6.5 及以下较低的版本不支 % 持行、列向量的相互赋值,故要把行向量[ca2,cd2]转置为列向量,再存入 x2 的相应列end[row2,col2]=size(x2);cA=x2(1:row2/2,1:col2/2); % cA是矩阵x2的左上角部分cV=x2(1:row2/2,col2/2+1:col2); % cV是矩阵x2的右上角部分cH=x2(row2/2+1:row2,1:col2/2); % cH是矩阵x2的左下角部分cD=x2(row2/2+1:row2,col2/2+1:col2); % cD是矩阵x2的右下角部分function [cA,cD] = mydwt(x,lpd,hpd,dim)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 函数 [cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]% 输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解层数。% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数。% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%cA=x; % 初始化cA,cDcD=[];for i=1:dim cvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波 dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数 cA=dnl; % 下抽样后的平均部分系数进入下一层分解 cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 函数 Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列 Y。% 下抽样是对输入序列取其偶数位,舍弃奇数位。例如 x=[x1,x2,x3,x4,x5],则 y=[x2,x4].% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%N=length(x); % 读取输入序列长度M=floor(N/2); % 输出序列的长度是输入序列长度的一半(带小数时取整数部分)i=1:M;y(i)=x(2*i); —— 图示讨论1、小波分解的行、列变换过程(使用Haar小波)% 行变换代码[row,col]=size(x); % 读取输入矩阵的大小for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解 tmp1=x(j,:); [ca1,cd1]=mydwt(tmp1,Lo_D,Hi_D,1); % tmp1 长度为 row ,滤波器长度为 lnf ,则 [ca1,cd1] 的总长为 ( row + lnf -1 ) x1(j,:)=[ca1,cd1]; % 将分解系数序列存入缓存矩阵 x1 中end 行变换的结果图示: 可见,行变换将图像矩阵分为左右两部分,左边是平均系数,右边是细节系数,并且由图可见细节系数是垂直性的,属于 vertical detail。% 列变换代码[row1,col1]=size(x1); % row1=row + lnf -1, col1=col+lnf-1for k=1:col1 % 再对缓存矩阵 x1 的每一列序列进行一维离散小波分解 tmp2=x1(:,k); [ca2,cd2]=mydwt(tmp2,Lo_D,Hi_D,1); x2(:,k)=[ca2,cd2]"; % 将分解所得系数存入缓存矩阵 x2 中end 列变换的结果图示: 列变换后,所得矩阵就是一级小波变换的结果,可分为4部分:左上角的平均系数 cA、右上角的垂直细节系数 cV、左下角的水平细节系数 cH、右下角的对角线细节系数 cD。则 mydwt2 的输出序列是 [cA,cV,cH,cD]。不过,我不大理解的是,一般教材和Matlab的说明文档都是把系数序列按这样的次序列出的:[cA,cH,cV,cD] ,即先水平后垂直,在显示时,水平细节在右上角,垂直细节在左下角。2、小波分解的结果(1)Haar 小波,2级分解(2)Bior3.7 小波,2级分解
2023-07-19 21:32:301

关于连续小波变换的几个问题,求教

首先应明白连续或不连续多指数学的概念而已,应用中的信号都是离散的,只是你的采样足够高就可认为是连续的,所以小波变换中关心的是点数问题,而不关心信号是否连续。对于CWT或DWT其连续与否不是指分析信号,而是你说的a或b的问题,但你仍可以借鉴上面对于信号连续的理解。CWT中a是连续的,b其实就是点数,也可认为是连续的。最早的DWT是没有mallat算法的,那时a是以2的幂次方变化离散,b却是连续变化的,即二进小波变换。这种变换很鸡肋,还不如直接做CWT。DWT的应用之所以远远多于CWT就是引入了mallat算法,好处是终于可以分解和重构信号了,这种方式对信号特征的研究非常有利。DWT的核心思想其实就是CWT引出的伸缩和平移的概念,a以2的幂次方变化实现了小波的伸缩,b通过下抽样实现了小波的平移。从实际应用中进行小波变换的目的和效果来看,cwt中2/4/8/16/32的小波系数结果应该对应DWT中的阶次(层数)1/2/3/4/5的小波细节系数(或更准确的是重构后的小波细节,因为cwt的系数个数是不变的等于原信号长度,但DWT细节系数是每层近似减半的,重构后才会等长,b也是姑且认为是减半的不连续吧)。再追问吧,第二问题可能更多,我尽量精简。哎,干嘛要把问题写在一起,这就是麻烦啊,你必须追问我才能再写!
2023-07-19 21:32:371

我用matlab写的函数用于处理图像,为什么C#调用不成功呢?总是出现错误?

你好呀,我对Matlab的混合编程也很感兴趣,我们可以交流一下,不过你的代码不全呀,MyFunctionCacu类具体是如何构造的
2023-07-19 21:32:441

急!!!在线等,求解答:一个小波去噪的matlab程序,高手进

供参考: lev=5; [c,l]=wavedec(x,lev,wname); sigma=wnoisest(c,l,1); alpha=2; thr1=wbmpen(c,l,sigma,alpha) [thr2,nkeep]=wdcbm(c,l,alpha) xd1=wdencmp("gbl",c,l,wname,lev,thr1,"s",1); [xd2,cxd,lxd,perf0,perfl2]=wdencmp("lvd",c,l,wname,lev,thr2,"h"); [thr,sorh,keepapp]=ddencmp("den","wv",x) xd3=wdencmp("gbl",c,l,wname,lev,thr,"s",1); subplot(411);plot(x);title("原始信号","fontsize",12); subplot(412);plot(xd1);title("使用penalty阈值降噪后信号","fontsize",12); subplot(413);plot(xd2);title("使用Birge-Massart阈值降噪后信号","fontsize",12); subplot(414);plot(xd3);title("使用缺省阈值降噪后信号","fontsize",12);s=[-1.58 0.42 0.46 0.78 -0.49 0.59 -1.3 -1.42 -0.16 -1.47 -1.35 0.36 -0.44 -0.14 1 -0.5 -0.2 -0.06 -0.6 0.42 -1.52 0.51 0.76 -1.5 0.16 -1.29 -0.65 -1.48 0.6 -1.65 -0.55]; [C,L]=wavedec(s,1,"db3"); ca1=wrcoef("a",C,L,"db3",1); x1=ca1 ;[C,L]=wavedec(s,2,"db3"); ca2=wrcoef("a",C,L,"db3",2); x2=ca2 ;[C,L]=wavedec(s,3,"db3"); ca3=wrcoef("a",C,L,"db3",3); x3=ca3 ;[C,L]=wavedec(s,4,"db3"); ca4=wrcoef("a",C,L,"db3",4); x4=ca4 ;cg = wrcoef("a",C,L,"sym5",1); x5=cg;p=1:31; subplot(6,1,1);plot(p,s);ylabel("s"); subplot(6,1,2);plot(p,x1);ylabel("ca1"); subplot(6,1,3);plot(p,x2);ylabel("ca2"); subplot(6,1,4);plot(p,x3);ylabel("ca3"); subplot(6,1,5);plot(p,x4);ylabel("ca4") subplot(6,1,6);plot(p,x5);ylabel("ca5") %加入的重构,是不是你要的?
2023-07-19 21:32:531

关于小波变换后的系数问题

离散小波变换变换采用普通二进小波变换系数都是减少一半的,没有见到哪个教材变换后,每一层的系数都是不变的。wavemenu小波工具箱进行变换在离散小波变换时,每一层的系数也是减少一半的,你看到是每一层变换后的小波系数重构的结果,其元素个数是和原数据大小相等的,其原因是重构过程进行了插值。除非采用离散平稳小波变换(SWT),那样变换后每一层的系数才是不变的。顺便说一句,小波变换的系数通常对分析信号没有意义,有时还是虚数,连图都成不了,只有通过重构(小波逆变换)才能变成有实际意义的结果。
2023-07-19 21:33:032

matlab去噪

l和1弄混了,改过来就好,如gb1
2023-07-19 21:33:422

图像的亚像素边缘检测 MATLAB代码

Press the "Start" button to see a demonstration of denoising tools in the Wavelet Toolbox. This demo uses Wavelet Toolbox functions. % Set signal to noise ratio and set rand seed. sqrt_snr = 3; init = 2055615866; % Generate original signal and a noisy version adding % a standard Gaussian white noise. [xref,x] = wnoise(3,11,sqrt_snr,init); % Denoise noisy signal using soft heuristic SURE thresholding % and scaled noise option, on detail coefficients obtained % from the decomposition of x, at level 5 by sym8 wavelet. % Generate original signal and a noisy version adding % a standard Gaussian white noise. lev = 5; xd = wden(x,"heursure","s","one",lev,"sym8"); % Denoise noisy signal using soft SURE thresholding. xd = wden(x,"rigrsure","s","one",lev,"sym8"); % Denoise noisy signal using fixed form threshold with % a single level estimation of noise standard deviation. xd = wden(x,"sqtwolog","s","sln",lev,"sym8"); % Denoise noisy signal using fixed minimax threshold with % a multiple level estimation of noise standard deviation. xd = wden(x,"minimaxi","s","sln",lev,"sym8"); % If many trials are necessary, it is better to perform % decomposition one time and threshold it many times : % decomposition. [c,l] = wavedec(x,lev,"sym8"); % threshold the decomposition structure [c,l]. xd = wden(c,l,"minimaxi","s","sln",lev,"sym8"); % Load electrical signal and select a part. load leleccum; indx = 2600:3100; x = leleccum(indx); % Use wdencmp for signal de-noising. % find default values (see ddencmp). [thr,sorh,keepapp] = ddencmp("den","wv",x); % denoise signal using global thresholding option. xd = wdencmp("gbl",x,"db3",2,thr,sorh,keepapp); % Some trial examples without commands counterpart. % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 5; % [xref,x] = wnoise(1,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 4; % [xref,x] = wnoise(2,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init);
2023-07-19 21:33:491

怎样重构从第一层到第九层的高频细节信号

用MATLAB对一语音信号进行小波分解,然后对其各层系数进行处理以达到小波抑制的目的,重构处理后的信号,画出波形分析。%装载原始信号load sumsin;s=sumsin;%==============================%设置小波名并利用coif3小波进行4层分解w="coif3";maxlev=4;[c,l]=wavedec(s,maxlev,w);newc=c;%==============================%将分解后的第三、四层细节系数值为0newc=wthcoef("d",c,l,[3,4]);%==============================%在原始信号的时间区间[400,600]内将第一层细节系数值为0%并且将其他系数进行衰减,求出第一层系数起始点和终止点的%索引值k=maxlev+1;first=sum(l(1:k-1))+1;last=first+l(k-1);indd1=first:last;%==============================%将系数除以3,进行信号衰减newc(indd1)=c(indd1)/3;%==============================%在区间[400,600]上求出第一层系数索引indd1=(first+400/2):(first+600/2);%==============================%将该索引值置为0newc(indd1)=zeros(size(indd1));%==============================%将第二层中相应于原始信号t=500的时间点处的系数置为4k=maxlev;first=sum(l(1:k-1))+1;newc(first+500/2^2)=4;%==============================%综合修改后的分解结构synth=waverec(newc,l,w);%==============================%用图示出上述修改结果subplot(2,2,1);plot(s);title("原始信号");subplot(2,2,2);plot(c);title("coif3小波分解后的系数");subplot(2,2,3);plot(synth);title("小波抑制后的信号");subplot(2,2,4);plot(newc);title("修改后的小波分解系数");转自 http://captainandboat.spaces.live.com/blog/cns!9A3607F7808D2D0D!168.entry2. 用MATLAB实现对一特定信号用不同小波进行分解,提取各层的高低频系数,画出各系数波形,并重构。代码:t=0:1:100*pi;s=sin(3*t)+sin(0.3t)+sin(0.03t);subplot(6,2,1);plot(s);title("原始信号s");%====================================%对s进行小波分解:db3 5层[c,l]=wavedec(s,5,"db3");%====================================%提取小波分解的低频系数a5=appcoef(c,l,"db3",5);a4=appcoef(c,l,"db3",4);a3=appcoef(c,l,"db3",3);a2=appcoef(c,l,"db3",2);a1=appcoef(c,l,"db3",1);%====================================%提取小波分解的各层高频系数d5=detcoef(c,l,5);d4=detcoef(c,l,4);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1); %====================================%绘出各系数的图形subplot(6,2,3);plot(a5);Ylabel("a5");subplot(6,2,5);plot(a4);Ylabel("a4");subplot(6,2,7);plot(a3);Ylabel("a3");subplot(6,2,9);plot(a2);Ylabel("a2");subplot(6,2,11);plot(a1);Ylabel("a1");subplot(6,2,4);plot(d5);Ylabel("d5");subplot(6,2,6);plot(d4);Ylabel("d4");subplot(6,2,6);plot(d3);Ylabel("d3");subplot(6,2,8);plot(d2);Ylabel("d2");%====================================%重构信号ss1=waverec(c,l,"db1");subplot(5,2,9);plot(s1);Ylabel("s1");%====================================%下面用小波‘coif3"重复上述过程[c,l]=wavedec(s,3,"coif3");a3=appcoef(c,l,"coif3",3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);subplot(5,2,2);plot(a3);Ylabel("a3");subplot(5,2,4);plot(d3);Ylabel("d3");subplot(5,2,6);plot(d2);Ylabel("d2");subplot(5,2,8);plot(d1);Ylabel("d1");s2=waverec(c,l,"coif3");subplot(5,2,10);plot(s2);Ylabel("s2");
2023-07-19 21:33:571

morlet小波函数进行4层分解,在运行时出现错误,到底哪里出错了,应该怎么修改呢。

没细看,不过最明显的错误是wavedec函数是做DWT的,而Morlet小波是不具有有限冲激响应滤波器和尺度方程的小波,它是没法做DWT的,它只能做CWT或是用它的复数形式CMorlet小波做CCWT,所以是wavedec函数不能使用"morl"小波基的问题,换其它7种能做DWT的小波基试试吧!另外,你那语句是做3层分解的,不是4层。
2023-07-19 21:34:041

matlab小波分析

相关工具包没有安装,我的就没啥事可以得到以下WAVEDEC Multi-level 1-D wavelet decomposition. WAVEDEC performs a multilevel 1-D wavelet analysis using either a specific wavelet "wname" or a specific set of wavelet decomposition filters (see WFILTERS). [C,L] = WAVEDEC(X,N,"wname") returns the wavelet decomposition of the signal X at level N, using "wname". N must be a strictly positive integer (see WMAXLEV). The output decomposition structure contains the wavelet decomposition vector C and the bookkeeping vector L. For [C,L] = WAVEDEC(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and Hi_D is the decomposition high-pass filter. The structure is organized as: C = [app. coef.(N)|det. coef.(N)|... |det. coef.(1)] L(1) = length of app. coef.(N) L(i) = length of det. coef.(N-i+2) for i = 2,...,N+1 L(N+2) = length(X). See also dwt, waveinfo, waverec, wfilters, wmaxlev. Reference page in Help browser doc wavedec你可以重装的全的或者下个小波的工具包set path设置下路径就行了
2023-07-19 21:34:114

求一个关于matlab的基于小波变换的图像增强代码

以下是一个基于小波变换的 MATLAB 图像增强代码示例:% 读入原始图像I = imread("lena.png");% 将图像转换为灰度图像if size(I, 3) == 3I = rgb2gray(I);end% 对图像进行小波变换[C, S] = wavedec2(I, 2, "db4");% 提取小波系数H = wrcoef2("h", C, S, "db4", 1);V = wrcoef2("v", C, S, "db4", 1);D = wrcoef2("d", C, S, "db4", 1);% 将水平、垂直、对角小波系数合并W = cat(3, H, V, D);% 对小波系数进行增强for i = 1:3W(:, :, i) = adapthisteq(W(:, :, i), "NumTiles", [8 8], "ClipLimit", 0.005);end% 将增强后的小波系数合并I_enhanced = waverec2(W, S, "db4");% 显示原始图像和增强后的图像subplot(1, 2, 1); imshow(I); title("原始图像");subplot(1, 2, 2); imshow(I_enhanced); title("增强后的图像");这段代码读入一个图像,将其转换为灰度图像,进行小波变换,并提取出水平、垂直和对角小波系数。然后,对这些小波系数进行直方图均衡化增强,并将增强后的小波系数合并。最后,使用小波反变换将增强后的小波系数合成为增强后的图像,并将原始图像和增强后的图像显示在同一窗口中。注意,这只是一个基本示例,可以根据需要进行修改和调整。
2023-07-19 21:34:192

matlab问题

【原始代码】[c, s] = wavedec(x, lev, wname);【修改为】[c, s] = wavedec2(x, lev, wname);【原因】你用1维小波还是2维小波?因为是图片,所以应该用2维。就这么简单。qihongshao@163.com免费解答。
2023-07-19 21:34:341

小波变换图像处理

生活中需要对一些图像进行处理,比如压缩,去噪,图像增强,图像锐化与钝化,图像融合,图像的分解等,以便对于图像的成分,边缘等细节信息有更加深刻的认识,小波分析由于其固有的时频特性,既可以对图像进行时域分析,也可以对图像进行频率分析,这使得小波分析在图像处理中得到了广泛的应用,本节对其中一些图像处理功能及函数进行讲解:wavedec2函数用于对图像进行二维小波分解,其函数调用格式如下:[c,l]=wavedec2(X,n,"wname");其中,X表示原始图像,n表示分解层数,wname表示小波函数,c表示各层系数,l表示各层系数对应的长度ddencmp用于得到全局阀值,其调用格式如下:[thr,sorh,keepapp]=ddencmp(‘cmp","wp",X);[thr,sorh,keepapp]=ddencmp(‘cmp","wv",X);其中cmp表示压缩,wp表示小波包,wv表示小波,X表示原始信号,thr表示阀值,sorh表示阀值类型,s表示软阀值,h表示硬阀值,keepapp=1表示保持近似系数不变wdencmp用于对数据或图像进行阀值去噪或压缩,其调用格式如下:[xcomp,c1,l1,perf0,perfl2]=wdencmp(‘gbl",c,l,"wname",n,thr,sorh,keepapp);glb表示利用全局阀值,perf0表示恢复比,perfl2表示压缩比示例:利用二维小波对图像进行压缩编写对应的m文件如下: clc; load woman; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"sym4");%%获取全局阀值%% [thr,sorh,keepapp]=ddencmp("cmp","wp",X); [xcmp,c1,l1,perf0,perfl2]=wdencmp("gbl",c,l,"sym4",3,thr,sorh,keepapp); subplot(1,2,2) imshow(xcmp,map); title("压缩后图片");程序运行结果如下图:小波变换用与图像去噪,噪声会影响图像处理的输入,采集,处理的各个环节及输出结果等全过程,因此对于图像的噪声处理是一个不可忽略的重要的问题,去噪已经成为图像处理中不可或缺的一部分示例:对图像进行二维小波去噪编写对应的m文件如下: load julia;%%产生噪声信号%% init=3718025452; rand("seed",init); xnoise=X+8*rand(size(X)); colormap(map); subplot(1,3,1) imshow(X,map); title("原始信号") subplot(1,3,2) imshow(xnoise,map); title("含有噪声的信号");%%获取全局阀值%% [thr,sorh,keepapp]=ddencmp("den","wp",xnoise); [xden,c1,l1]=wdencmp("gbl",xnoise,"sym4",3,thr,sorh,keepapp); subplot(1,3,3) imshow(xden,map); title("去除噪声后信号");程序运行结果如下图:小波分析用于图像增强,图像增强是对图像进行一定处理,使图像比原图更加清晰,视觉效果更好。示例:利用小波分析对图像进行增强编写对应的m文件如下: clc; load facets; subplot(1,2,1) imshow(X,map); title("原始信号"); [c,l]=wavedec2(X,3,"sym4"); sizec=size(c); fori=1:sizec(2) if(c(i)>250) c(i)=2*c(i); else c(i)=0.5*c(i); end end y=waverec2(c,l,"sym4"); subplot(1,2,2) imshow(y,map); title("增强图像");程序运行结果如下图:图像钝化图像的钝化可以在时域中,也可以在频域中,在时域中处理较为简单,只需要加一个平滑滤波器,使图像中每个点与其邻点做平滑处理即可,在此主要说明图像钝化在频域中的处理。图像钝化是为了突出低频信息,弱化高频信息。示例:对图像进行频域钝化处理,编写对应的m文件如下: load chess; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"db4"); sizec=size(c); fori=1:sizec(2) if(c(i)>280) c(i)=c(i)*2; else c(i)=c(i)*0.5; end end y=waverec2(c,l,"db4"); subplot(1,2,2) imshow(y,map); title("采用小波方法钝化图像");程序运行结果如下图:图像锐化,与图像钝化刚好相反,是为了突出高频信息,弱化低频信息,从快速变化的成分中分离出系统边界成分,以便进一步识别或者分割等操作。示例:对图像进行锐化处理编写对应的m文件如下: load chess; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"db5"); sizec=size(c);%%突出高频信息,弱化低频信息%% fori=1:sizec(2) if(abs(c(i))<280) c(i)=c(i)*2; else c(i)=c(i)*0.5; end end y=waverec2(c,l,"db5"); subplot(1,2,2) imshow(y,map); title("采用小波方法锐化图像");程序运行结果如下图:小波分析用于图像融合图像融合是将同一图像的两个部分或者不同图像合成一张图,以便合成之后的图形比原来更容易理解。示例:利用二维小波变换将两幅图像融合在一起编写对应的m文件如下: clear all; load bust; X1=X; map1=map; load woman; X2=X; map2=map; subplot(1,3,1) imshow(X1,map1); title("第一幅图像"); subplot(1,3,2) imshow(X2,map2); title("第二幅图像");%%对第二幅图形低频部分和高频部分进行处理%% fori=1:256 forj=1:256 if(X2(i,j)>120) X2(i,j)=X2(i,j)*2; else X2(i,j)=X2(i,j)*0.5; end end end [c1,l1]=wavedec2(X1,3,"sym4"); [c2,l2]=wavedec2(X2,3,"sym4");%%对图像进行融合%% c=c1+c2;%%减少图像的亮度%% c=c*0.5; y=waverec2(c,l1,"sym4"); subplot(1,3,3) imshow(y,map2); title("融合后图像");程序运行结果如下图:小波分析用于图像分解对图像分解的目地在于可以更好的观察图像的细节,对图像做出更好的判断,swt2函数用于对图像进行分解,其调用格式如下:[sa,sh,sv,sd]=swt2(X,N,"wname");其中sa,sh,sv,sd分别表示近似系数,水平系数,竖直系数,对角系数,x分解图像,N分解的层数,wname表示小波基名称示例:对图像进行分解编写对应的m文件如下: clear all; load woman; [sa,sh,sv,sd]=swt2(X,3,"db3"); s=1; fori=1:3 subplot(3,4,s) image(wcodemat(sa(:,:,i),192)); title(["第",num2str(i),"层近似系数"]); subplot(3,4,s+1) image(wcodemat(sh(:,:,i),192)); title(["第",num2str(i),"层水平系数"]); subplot(3,4,s+2) image(wcodemat(sv(:,:,i),192)); title(["第",num2str(i),"层竖直系数"]); subplot(3,4,s+3) image(wcodemat(sd(:,:,i),192)); title(["第",num2str(i),"层对角系数"]); s=s+4; end程序运行结果如下图:
2023-07-19 21:34:491

matlab 波形如何去噪

根据噪音的特征,有两种主要的滤噪信号处理技术:频率域和时空域(time-space domain methods)。如果噪音和有效信号在频率域上具有不同的区域,那么通常使用频率域滤噪方法,比如低通滤波、带通滤波等等。另外一种,如果噪音分布在整个频率域范围内,那么通过常规的选择频率带宽的方法就不能有效的过滤噪音,instead,一种基于噪音统计特征的状态空间方法被使用,这种在时间域上的过滤设计的例子有:Wiener filter, Kalman filter, Savitzky-Golay filter等等。[c,l]=wavedec(s,3,"db1");[thr,sorh,keepapp]=ddencmp("den","wv",s);s2=wdencmp("gbl",c,l,"db1",3,thr,sorh,keepapp);%默认阈值去噪 db1,是yi,不是L;gbl,是L,不是yi[c,l]=wavedec(s,3,"db1");ca3=appcoef(c,l,"db1",3);cd3=detcoef(c,l,3);cd2=detcoef(c,l,2);cd1=detcoef(c,l,1);cdd3=zeros(1,length(cd3));cdd2=zeros(1,length(cd2));cdd1=zeros(1,length(cd1));c1=[ca3 cdd3 cdd2 cdd1];s1=waverec(c1,l,"db1");
2023-07-19 21:34:582

可以分享一下基于emd的小波去噪程序吗?谢谢啦。

供参考: lev=5; [c,l]=wavedec(x,lev,wname); sigma=wnoisest(c,l,1); alpha=2; thr1=wbmpen(c,l,sigma,alpha) [thr2,nkeep]=wdcbm(c,l,alpha) xd1=wdencmp("gbl",c,l,wname,lev,thr1,"s",1); [xd2,cxd,lxd,perf0,perfl2]=wdencmp("lvd",c,l,wname,lev,thr2,"h"); [thr,sorh,keepapp]=ddencmp("den","wv",x) xd3=wdencmp("gbl",c,l,wname,lev,thr,"s",1); subplot(411);plot(x);title("原始信号","fontsize",12); subplot(412);plot(xd1);title("使用penalty阈值降噪后信号","fontsize",12); subplot(413);plot(xd2);title("使用Birge-Massart阈值降噪后信号","fontsize",12); subplot(414);plot(xd3);title("使用缺省阈值降噪后信号","fontsize",12);s=[-1.58 0.42 0.46 0.78 -0.49 0.59 -1.3 -1.42 -0.16 -1.47 -1.35 0.36 -0.44 -0.14 1 -0.5 -0.2 -0.06 -0.6 0.42 -1.52 0.51 0.76 -1.5 0.16 -1.29 -0.65 -1.48 0.6 -1.65 -0.55]; [C,L]=wavedec(s,1,"db3"); ca1=wrcoef("a",C,L,"db3",1); x1=ca1 ;[C,L]=wavedec(s,2,"db3"); ca2=wrcoef("a",C,L,"db3",2); x2=ca2 ;[C,L]=wavedec(s,3,"db3"); ca3=wrcoef("a",C,L,"db3",3); x3=ca3 ;[C,L]=wavedec(s,4,"db3"); ca4=wrcoef("a",C,L,"db3",4); x4=ca4 ;cg = wrcoef("a",C,L,"sym5",1); x5=cg;p=1:31; subplot(6,1,1);plot(p,s);ylabel("s"); subplot(6,1,2);plot(p,x1);ylabel("ca1"); subplot(6,1,3);plot(p,x2);ylabel("ca2"); subplot(6,1,4);plot(p,x3);ylabel("ca3"); subplot(6,1,5);plot(p,x4);ylabel("ca4") subplot(6,1,6);plot(p,x5);ylabel("ca5") %加入的重构,是不是你要的?
2023-07-19 21:35:051

神探狄仁杰之神都龙王剧情

唐朝麟德年间,唐高宗(盛鉴 饰)与武则天(刘嘉玲 饰)强硬派出大军远征,谁知舰队在大海中遇袭,遭到重挫。该事件震惊洛阳,都城百姓狂热祭拜龙王,缭乱众生的“花魁”银睿姬(杨颖 饰)更惹来各方势力觊觎。狄仁杰(赵又廷 饰)奉武后之命调查龙王一案,偏巧卷入绑架银睿姬的案件之中。在与劫匪搏杀过程中,狄仁杰遭遇亦敌亦友的大理寺卿尉迟真金(冯绍峰 饰),遂被对方投入大牢。银睿姬一案内龙王身影再现,使洛阳上空更添一道疑云。狱中狄仁杰凭借缜密推理博取回纥医工沙陀忠(林更新 饰)的信任,逃出大牢同查龙王真相。 两起案件错综复杂,相互纠缠,引向全然未知的方向……
2023-07-19 21:29:463

000875吉电股份有的停牌是利空还是理好?什么时候才会复盘?

————————————————————————————————————最新提示:1)因刊登重大事项,自2010年03月22日起特停 2)06月07日(000875)吉电股份:股票继续停牌公告 3)2010年6月9日网上交流会时间:2010年06月09日下午15:00-17:00 4)05月28日吉电股份(000875):与锦龙股份两公司继续停牌(详见后) 5)预计2010年1月至6月累计净利润为469万元,同比增长114.01%。分红扩股:1)2009年年度利润不分配,不转增 2)2009年中期利润不分配,不转增应该是利好,利润增长
2023-07-19 21:29:521

什么是ui设计

UI 设计(或称界面设计)是指对软件的人机交互、操作逻辑、界面美观的整体设计,也叫界面设计。UI 设计分为实体 UI 和虚拟UI,互联网说的 UI 设计是虚拟 UI, UI 即User Interface(用户界面)的简称。UI 设计师的职能大体包括三方面:一是图形设计,软件产品的产品“外形”设计。二是交互设计,主要在于设计软件的操作流程、树状结构、操作规范等。三是用户测试/研究,这里所谓的“测试”,其目标恰在于测试交互设计的合理性及图形设计的美观性,主要通过以目标用户问卷的形式衡量 UI 设计的合理性。UI设计目前的前景还是很不错的,很多企业都缺少 UI设计师。而且可以看到的是,现在社会的发展,更多的智能机和智能机器人研发出现,这些都离不开UI 设计师。所以说 UI 设计的是很有前途的,是不会失业的。而且 UI 设计门槛不高,要入门也不难的。从工作内容来说,UI 设计在当前的互联网领域、科技领域可以说无处不在,好的 UI 设计能够明显提升用户的使用体验,从而给产品带来更多的附加值,所以UI 设计对于互联网产品是非常重要的。目前 UT 设计通常分为两个大的工作方向,一个是交互设计,另一个是视觉设计。总的来说,UI 设计相比较于编程而言,还是非常适合大众学的并且就业前景很广阔。学完 UI 设计,能获得一份稳定而又不失乐趣的工作,同时有利于追求更高品质的生活,在艺术领域可以获得更多的启迪。
2023-07-19 21:29:533

深圳市美好创亿医疗科技股份有限公司电话是多少?

深圳市美好创亿医疗科技股份有限公司联系方式:公司电话0755-83051518,公司邮箱hr@mailmehow.com,该公司在爱企查共有5条联系方式,其中有电话号码2条。公司介绍:深圳市美好创亿医疗科技股份有限公司是2010-07-15在广东省深圳市龙岗区成立的责任有限公司,注册地址位于深圳市龙岗区宝龙街道宝龙六路3号新中桥工业园A栋101、201、601B栋C栋101、201、401(在深圳市龙岗区宝龙街道锦龙一路9号多利工业园A栋设有经营场所从事生产经营活动)。深圳市美好创亿医疗科技股份有限公司法定代表人熊小川,注册资本36,239万(元),目前处于开业状态。通过爱企查查看深圳市美好创亿医疗科技股份有限公司更多经营信息和资讯。
2023-07-19 21:29:591

《沧浪诗话》哪个版本比较好?(指后人注释的)

郭的校释是经典,张也是专家,笺注本比较详细;最好都备一个。
2023-07-19 21:29:591

磁生电的原理是什么

磁生电,不是磁能生出电来。而是运动的电荷受到磁场的作用力,电荷从导体的内集中到另一端的过程而形成电流。
2023-07-19 21:30:002

ui设计是什么?

UI 设计(或称界面设计)是指对软件的人机交互、操作逻辑、界面美观的整体设计,也叫界面设计。UI 设计分为实体 UI 和虚拟UI,互联网说的 UI 设计是虚拟 UI, UI 即User Interface(用户界面)的简称。UI 设计师的职能大体包括三方面:一是图形设计,软件产品的产品“外形”设计。二是交互设计,主要在于设计软件的操作流程、树状结构、操作规范等。三是用户测试/研究,这里所谓的“测试”,其目标恰在于测试交互设计的合理性及图形设计的美观性,主要通过以目标用户问卷的形式衡量 UI 设计的合理性。UI设计目前的前景还是很不错的,很多企业都缺少 UI设计师。而且可以看到的是,现在社会的发展,更多的智能机和智能机器人研发出现,这些都离不开UI 设计师。所以说 UI 设计的是很有前途的,是不会失业的。而且 UI 设计门槛不高,要入门也不难的。从工作内容来说,UI 设计在当前的互联网领域、科技领域可以说无处不在,好的 UI 设计能够明显提升用户的使用体验,从而给产品带来更多的附加值,所以UI 设计对于互联网产品是非常重要的。目前 UT 设计通常分为两个大的工作方向,一个是交互设计,另一个是视觉设计。总的来说,UI 设计相比较于编程而言,还是非常适合大众学的并且就业前景很广阔。学完 UI 设计,能获得一份稳定而又不失乐趣的工作,同时有利于追求更高品质的生活,在艺术领域可以获得更多的启迪。
2023-07-19 21:30:023

2021照明灯具十大排名

时空是中国照明工程行业的龙头企业,在夜游经济和数字新基建两大业务上均有布局。夜游经济保持稳定增长,数字新基础设施近年来持续加大投入,智能路灯实现量产,处于行业领先地位,是未来新的收入增长点。上市公司:时空科技(605178)、名家汇(300506)、周明科技(300232)、利亚德(300296)本文核心数据:照明工程行业龙头企业全方位对比,2020年时空照明工程行业营收,2020年时空照明工程行业毛利率对比,时空科技团队构成。1.照明工程行业龙头企业的全方位比较目前,照明工程行业的竞争对手包括照明灯具制造商、照明工程设计师、照明工程建设者等。时空科技是中国照明工程的龙头企业之一。2020年时空科技照明工程相关收入8.63亿。行业龙头企业还包括明嘉汇、利亚德、周明科技等。2.时空技术:照明工程的商业布局史。作为照明工程行业的领军企业之一,时空成立于2004年,总部位于北京。时空科技一直专注于城市照明业务,发展初期专注于静态景观和功能照明工程业务。为了完成市场上的差异化升级,时空科技逐步将文化特色和地域特色融入项目中,成为照明工程行业“双a”合格企业。最近几年,时空科技已经把重点放在研发上。智能路灯、智能城市和智能照明领域的投资。2020年将在上交所上市。3.时空科技:照明工程的业务布局与经营现状目前企业主要定位于夜游经济和智慧城市。3354夜游经济商业布局现状:传统照明工程三大空间布局相同。在夜经济方面,时空科技聚焦文化旅游城市国家重大活动、标志性项目、夜经济精品项目,成功实施了覆盖城市空间、景区空间、建筑空间的典型示范项目,如北京冬奥会古杨树场馆整体转播照明系统、西昌月亮湖湿地公园夜景灯光、浙江嘉兴南湖周边景观照明、建筑照明等。夜经济细分为城市空间、商业空间和景区空间。城市空间的时空重点案例有2023年北京冬奥会、2019年北京世界园艺博览会、2016年杭州G20峰会。商业空间的案例有重庆来福士广场、杭州奥体中心、青岛国际院士港等。景区内的项目有西昌月亮湖湿地公园、江西抚州抚河、四川阆中古城、南昌王腾馆等。3354智慧路灯业务布局现状:数字化新基础设施,布局智慧城市经过多年的行业布局探索和自主研发;d智慧城市方面的创新,时空在智慧城市、智慧路灯方面发展了物联网硬件产品开发、系统平台开发、城市大脑架构建设的能力。从物联网感知层、数据层、城市大脑三个维度进行开发、构建和链接,致力于实现智慧互联的理想城市目标。智能路灯是智慧城市的重要组成部分。具有文化创意的智慧路灯可以为智慧城市建设提供完整的系统平台和解决方案。智能路灯可以用在纯照明领域,作为智慧城市的基础设施,也可以用在智慧交通中,收集道路信息。将其使用于城市管理,帮助收集城市信息,有利于信息管理;将其使用于园区,提高园区运营效率;使用到景区,帮助其整合信息,提供更好的服务;将其使用到校园中,为学生的学习和生活提供便利。现在时空的主营业务是照明工程,其中与照明工程相关的产品分为建筑空间、城市空间、景区空间、智能路灯。前三者构成了夜间经济,而智能路灯是新数字基础设施业务的一部分。时空景区空间和科技城市空间收入较大,分别为4.37亿元和3.52亿元,夜间经济业务收入合计8.37亿元,智能路灯业务收入0.27亿元。夜间经济毛利率较高,夜间经济照明三个细分市场的毛利率在35%-43%之间,而属于新型数码基础设施的智能路灯毛利率仅为12.87%。智能路灯属于近年来照明工程行业的热门方向。虽然毛利率不高,但智能路灯业务无疑为时空科技开启了新的营收增长方向。3354智能路灯经营业绩:持续投资研发;d、企业收入的新增长点另外,虽然目前智能路灯营收较低,但前景认为这项业务未来市场空间较大,时空科技已经获得了智能路灯方面的专利机会,领先于行业内大多数企业。2020年,时空科技及其子公司将有18个研发项目和8项新专利,涉及视频数据分析、智能灯杆系统、智能物联网硬件等多个方面。并拥有强大的研究团队,能持续研发相关技术专利。到2020年底,时空科技拥有152个研发中心;技术人员d名,博士1名,硕士28名。5.时空技术:照明工程业务发展规划随着数字化的加速,一场以新基础设施为核心的数字化变革正在影响整个社会。智慧城市、数字产业利用大数据、云计算、AI等数字化新技术,它正在为各种实体经济和传统产业提供支撑,进行产业的全方位数字化转型。时空持续深化新型数字基础设施建设,积极探索未来多元化融合方式。相关问答:LED照明行业的龙头企业是哪家?到目前发展为止,led照明行业没有龙头企业,不过随着时间的推移,未来的龙头应该是传统龙头中脱颖而出那位相关问答:广东上市公司有多少家,我所知道的有美的、格力、佛山照明、海天、佛燃智能,还有哪些公司?这些公司的市场竞争力如何?1、TCL集团(000100) 2、万家乐(000533)3、佛山照明(000541)广东上市公司名单2018广东辖区(除深圳外)上市公司名录表(截止至2018年5月31日)000100.SZTCL集团000150.SZ宜华健康000333.SZ美的集团000429.SZ粤高速A000502.SZ绿景控股000507.SZ 珠海港000513.SZ丽珠集团000523.SZ广州浪奇000524.SZ 岭南控股000529.SZ广弘控股000531.SZ穗恒运A000532.SZ华金资本000533.SZ万家乐000534.SZ万泽股份000539.SZ粤电力A000541.SZ佛山照明000573.SZ粤宏远A000576.SZ 广东甘化000601.SZ 韶能股份000636.SZ 风华高科000637.SZ 茂化实华000651.SZ 格力电器000659.SZ 珠海中富000685.SZ 中山公用000690.SZ 宝新能源000712.SZ 锦龙股份000717.SZ 韶钢松山000776.SZ 广发证券000782.SZ 美达股份000823.SZ 超声电子000828.SZ 东莞控股000861.SZ 海印股份000893.SZ *ST东凌000921.SZ 海信科龙000973.SZ 佛塑科技000976.SZ 华铁股份000987.SZ 越秀金控002005.SZ 德豪润达002016.SZ 世荣兆业002017.SZ 东信和平002027.SZ 分众传媒002030.SZ 达安基因002031.SZ 巨轮智能002035.SZ 华帝股份002045.SZ 国光电器002054.SZ 德美化工002060.SZ 粤水电002063.SZ 远光软件002076.SZ 雪莱特002084.SZ 海鸥住工002101.SZ 广东鸿图002141.SZ 贤丰控股002152.SZ 广电运通002167.SZ 东方锆业002169.SZ 智光电气002177.SZ 御银股份002180.SZ 纳思达002181.SZ 粤传媒002187.SZ 广百股份002192.SZ 融捷股份002198.SZ 嘉应制药002209.SZ 达意隆002212.SZ 南洋股份002233.SZ 塔牌集团002249.SZ 大洋电机002260.SZ *ST德奥002288.SZ 超华科技002291.SZ 星期六002292.SZ 奥飞娱乐002295.SZ 精艺股份002308.SZ 威创股份002311.SZ 海大集团002317.SZ 众生药业002319.SZ 乐通股份002345.SZ 潮宏基002348.SZ 高乐股份002387.SZ 黑牛食品002400.SZ 省广集团002420.SZ 毅昌股份002425.SZ 凯撒文化002431.SZ 棕榈股份002433.SZ 太安堂002441.SZ 众业达002446.SZ 盛路通信002449.SZ 国星光电002461.SZ 珠江啤酒002465.SZ 海格通信002492.SZ 恒基达鑫002495.SZ 佳隆股份002502.SZ 骅威文化002503.SZ 搜于特002511.SZ 中顺洁柔002512.SZ 达华智能002543.SZ 万和电气002544.SZ 杰赛科技002572.SZ 索菲亚002575.SZ 群兴玩具002579.SZ 中京电子002584.SZ 西陇科学002600.SZ 领益智造002611.SZ 东方精工002616.SZ 长青集团002638.SZ 勤上股份002656.SZ 摩登大道002663.SZ 普邦股份002666.SZ 德联集团002668.SZ 奥马电器002670.SZ 国盛金控002676.SZ 顺威股份002678.SZ 珠江钢琴002683.SZ 宏大爆破002684.SZ 猛狮科技002705.SZ 新宝股份002709.SZ 天赐材料002711.SZ 欧浦智网002715.SZ 登云股份002717.SZ 岭南股份002723.SZ 金莱特002728.SZ 特一药业002732.SZ 燕塘乳业002741.SZ 光华科技002745.SZ 木林森002757.SZ 南兴装备002759.SZ 天际股份002762.SZ 金发拉比002774.SZ 快意电梯002776.SZ 柏堡龙002791.SZ 坚朗五金002792.SZ 通宇通讯002806.SZ 华锋股份002809.SZ 红墙股份002824.SZ 和胜股份002832.SZ 比音勒芬002833.SZ 弘亚数控002836.SZ 新宏泽002841.SZ 视源股份002842.SZ 翔鹭钨业002846.SZ 英联股份002853.SZ 皮阿诺002855.SZ 捷荣技术002862.SZ 实丰文化002870.SZ 香山股份002884.SZ 凌霄泵业002888.SZ 惠威科技002898.SZ 赛隆药业002902.SZ 铭普光磁002905.SZ 金逸影视002906.SZ 华阳集团002908.SZ 德生科技002909.SZ 集泰股份002911.SZ 佛燃股份002918.SZ 蒙娜丽莎002919.SZ 名臣健康002920.SZ 德赛西威002922.SZ 伊戈尔002923.SZ 润都股份002930.SZ 宏川智慧200168.SZ 舜_B200986.SZ 粤华包B300004.SZ 南风股份300014.SZ 亿纬锂能300030.SZ 阳普医疗300043.SZ 星辉娱乐300050.SZ 世纪鼎利300053.SZ 欧比特300057.SZ 万顺股份300063.SZ 天龙集团300083.SZ 劲胜智能300089.SZ 文化长城300093.SZ 金刚玻璃300094.SZ 国联水产300098.SZ 高新兴300143.SZ 星普医科300146.SZ 汤臣倍健300147.SZ 香雪制药300149.SZ 量子高科300155.SZ 安居宝300173.SZ 智慧松德300176.SZ 鸿特科技300177.SZ 中海达300219.SZ 鸿利智汇300221.SZ 银禧科技300238.SZ 冠昊生物300242.SZ 佳云科技300246.SZ 宝莱特300273.SZ 和佳股份300281.SZ 金明精机300297.SZ 蓝盾股份300310.SZ 宜通世纪300322.SZ 硕贝德300328.SZ 宜安科技300335.SZ 迪森股份300340.SZ 科恒股份300359.SZ 全通教育300376.SZ 易事特300381.SZ 溢多利300403.SZ 地尔汉宇300404.SZ 博济医药300408.SZ 三环集团300409.SZ 道氏技术300410.SZ 正业科技300415.SZ 伊之密300417.SZ 南华仪器300424.SZ 航新科技300438.SZ 鹏辉能源300448.SZ 浩云科技300458.SZ 全志科技300460.SZ 惠伦晶体300464.SZ 星徽精密300476.SZ 胜宏科技300482.SZ 万孚生物300498.SZ 温氏股份300499.SZ 高澜股份300503.SZ 昊志机电300521.SZ 爱司凯300526.SZ 中潜股份300529.SZ 健帆生物300530.SZ 达志科技300561.SZ 汇金科技300562.SZ 乐心医疗300586.SZ 美联新材300589.SZ 江龙船艇300591.SZ 万里马300599.SZ 雄塑科技300606.SZ 金太阳300607.SZ 拓斯达300616.SZ 尚品宅配300619.SZ 金银河300620.SZ 光库科技300625.SZ 三雄极光300629.SZ 新劲刚300635.SZ 达安股份300639.SZ 凯普生物300681.SZ 英搏尔300687.SZ 赛意信息300691.SZ 联合光电300711.SZ 广哈通信300716.SZ 国立科技300720.SZ 海川智能300723.SZ 一品红300735.SZ 光弘科技300737.SZ 科顺股份300738.SZ 奥飞数据600004.SH 白云机场600029.SH 南方航空600048.SH 保利地产600083.SH 博信股份600098.SH 广州发展600143.SH 金发科技600183.SH 生益科技600185.SH 格力地产600242.SH 中昌数据600323.SH 瀚蓝环境600325.SH 华发股份600332.SH 白云山600382.SH 广东明珠600393.SH 粤泰股份600428.SH 中远海特600433.SH 冠豪高新600499.SH 科达洁能600518.SH 康美药业600589.SH 广东榕泰600673.SH 东阳光科600684.SH 珠江实业600685.SH 中船防务600728.SH 佳都科技600866.SH 星湖科技600868.SH 梅雁吉祥600872.SH 中炬高新600894.SH 广日股份600978.SH 宜华生活601228.SH 广州港601238.SH 广汽集团601515.SH 东风股份601900.SH 南方传媒603002.SH 宏昌电子603038.SH 华立股份603043.SH 广州酒家603233.SH 大参林603268.SH 松发股份603288.SH 海天味业603309.SH 维力医疗603322.SH 超讯通信603328.SH 依顿电子603335.SH 迪生力603336.SH 宏辉果蔬603348.SH 文灿股份603386.SH 广东骏亚603398.SH 邦宝益智603535.SH 嘉诚国际603608.SH 天创时尚603630.SH 拉芳家化603725.SH 天安新材603797.SH 联泰环保603813.SH 原尚股份603833.SH 欧派家居603838.SH 四通股份603848.SH 好太太603861.SH 白云电器603882.SH 金域医学603898.SH 好莱客603920.SH 世运电路603936.SH 博敏电子
2023-07-19 21:30:061

最新参股券商概念股有哪些

代码 名称BK0514 参股券商600832 东方明珠000505 珠江控股600896 中海海盛600639 浦东金桥600068 葛洲坝600663 陆家嘴000812 陕西金叶600310 桂东电力000936 华西股份600650 锦江投资600823 世茂股份600016 民生银行000623 吉林敖东600269 赣粤高速600195 中牧股份000652 泰达股份600191 华资实业600676 交运股份600713 南京医药600755 厦门国贸600177 雅戈尔000748 长城信息600615 丰华股份600530 交大昂立000031 中粮地产000900 现代投资600815 厦工股份600754 锦江股份600005 武钢股份000615 湖北金环000027 深圳能源600611 大众交通000897 津滨发展600642 申能股份600106 重庆路桥000736 中房地产600851 海欣股份600261 阳光照明600616 金枫酒业600336 澳柯玛000821 京山轻机600826 兰生股份600064 南京高科600287 江苏舜天600054 黄山旅游600621 华鑫股份000702 正虹科技000953 河池化工000039 中集集团600063 皖维高新000756 新华制药000543 皖能电力600643 爱建股份600278 东方创业000877 天山股份600122 宏图高科600108 亚盛集团600811 东方集团600056 中国医药600881 亚泰集团600249 两面针600884 杉杉股份600839 四川长虹000850 华茂股份600120 浙江东方600121 郑州煤电000596 古井贡酒600739 辽宁成大600266 北京城建600635 大众公用600156 华升股份000712 锦龙股份600292 中电远达
2023-07-19 21:29:452

言有尽而意无穷 言有穷而情不可终 这句话是什麼意思?

1,言有尽而意无穷意思是:话可以说到头,但是所表达的意思无穷无尽,从而让你得到很大的享受。指诗文含义深刻,令人品味不尽。—出自严羽《沧浪诗话》原句:故其妙处透彻玲珑不可凑泊,如空中之音、相中之色、水中之月、镜中之象,言有尽而意无穷。译文:所以他们诗歌的高妙处透彻玲珑,难以直接把握,好象空中的音响,形貌的色采,水中的月亮,镜中的形象,言有尽而意无穷。2,言有穷而情不可终意思是:话有说完的时候,而哀痛之情却不能终止。—出自《祭十二郎文》原句:呜呼,言有穷而情不可终,汝其知也邪?译文:唉!话有说完的时候,而哀痛之情却不能终止,你知道呢?扩展资料:《沧浪诗话》赏析《沧浪诗话》共分“诗辨”“诗体”“诗法”“诗评”和“考证”五章,合为一卷。“诗辨”阐述理论观点,是整个《诗话》的总纲。“诗体”探讨诗歌的体制、风格和流派;“诗法”研究诗歌的写作方法,“诗评”评论历代诗人诗作,从各个方面展开了基本观点。“考证”对一些诗篇的文字、篇章、写作年代和撰人进行考辨,比较琐碎,偶尔也反映了作者的文学思想。五个部分互有联系,合成一部体系严整的诗歌理论著作,在诗话发展史上是空前的。正由于此,它受到世人的普遍重视。《祭十二郎文》创作背景《祭十二郎文》写于贞元十九年(按《文苑英华》说是写于五月二十六日,应是笔误,因是年六月下旬十二郎还写过信),文章的十二郎是指韩愈的侄子韩老成,“八仙”中著名的韩湘子即是老成之长子。韩愈幼年丧父,靠兄嫂抚养成人。韩愈与其侄十二郎自幼相守,历经患难,感情特别深厚。但成年以后,韩愈四处飘泊,与十二郎很少见面。正当韩愈官运好转,有可能与十二郎相聚的时候,突然传来十二郎去世的噩耗。韩愈尤为悲痛,写下这篇祭文。参考资料:百度百科—《沧浪诗话》百度百科—《祭十二郎文》
2023-07-19 21:29:452

UI设计是什么?

UI 设计(或称界面设计)是指对软件的人机交互、操作逻辑、界面美观的整体设计,也叫界面设计。UI 设计分为实体 UI 和虚拟UI,互联网说的 UI 设计是虚拟 UI, UI 即User Interface(用户界面)的简称。UI 设计师的职能大体包括三方面:一是图形设计,软件产品的产品“外形”设计。二是交互设计,主要在于设计软件的操作流程、树状结构、操作规范等。三是用户测试/研究,这里所谓的“测试”,其目标恰在于测试交互设计的合理性及图形设计的美观性,主要通过以目标用户问卷的形式衡量 UI 设计的合理性。UI设计目前的前景还是很不错的,很多企业都缺少 UI设计师。而且可以看到的是,现在社会的发展,更多的智能机和智能机器人研发出现,这些都离不开UI 设计师。所以说 UI 设计的是很有前途的,是不会失业的。而且 UI 设计门槛不高,要入门也不难的。从工作内容来说,UI 设计在当前的互联网领域、科技领域可以说无处不在,好的 UI 设计能够明显提升用户的使用体验,从而给产品带来更多的附加值,所以UI 设计对于互联网产品是非常重要的。目前 UT 设计通常分为两个大的工作方向,一个是交互设计,另一个是视觉设计。总的来说,UI 设计相比较于编程而言,还是非常适合大众学的并且就业前景很广阔。学完 UI 设计,能获得一份稳定而又不失乐趣的工作,同时有利于追求更高品质的生活,在艺术领域可以获得更多的启迪。
2023-07-19 21:29:443

磁生电原理是什么?

原理是闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。发电机便是依据此原理制成。导体的两端接在电流表的两个接线柱上,组成闭合电路,当导体在磁场中向左或向右运动,切割磁力线时,电流表的指针就发生偏转,表明电路中产生了电流。这样产生的电流叫感应电流。发现过程:1831年电学大师法拉第发现了磁能够生电。他找来两根长约62米的铜导线和一根粗长木棍,分别把两根铜导线缠绕在木棍上,铜导线的两端分别与电流计电源相联。然后他把电源开关合上,这时,他似乎感到电流计指针跳动了一下,然后指又回到0点,难道在开关合的瞬时产生了感应电流?法拉第把开关拉掉,准备重复合后再看一次,当开关刚拉开时,他又看到指针跳荡了一下,然后回到0点。他反复把开关拉开、合上,都发现了相同的结果。
2023-07-19 21:29:421

阴阳人是什么意思

阴阳人的解释[hermaphrodite] 两性人 详细解释 (1).即 阴阳生 。 《旧唐书·德宗纪下》 :“四月丁丑,以久旱,令阴阳人法术祈雨。” 宋 孟元老 《东京梦华录·娶妇》 :“新妇 下车 子,有阴阳人执斗,内盛谷豆钱菓草节等,咒祝望门而撒。” 《元史·选举志一》 :“ 延祐 初,令阴阳人依儒、医例,於路府州设 教授 员,凡阴阳人皆管辖之,而上属於太史焉。” 参见 “ 阴阳生 ”。 (2).又叫两性人。由于胚胎的畸形发育而形成的具有男性和女性两种 * 官的人。通称二性子。 词语分解 阴的解释 阴 (阴) ī 中国 古代哲学认为宇宙中通贯所有 物质 的两大 对立 面诸一,与“阳” 相对 :阴阳。一阴一阳谓之道。阴差阳错。阴盛阳衰。阴虚生热。 指“ 月亮 ”:太阴(月亮)。阴历。 带负电的:阴电。阴极。阴离子。 阳人的解释 活着的人,阳世的人。《初刻拍案惊奇》卷 十七 :“那 儿子 但听说‘召魂",便道:‘要见爹爹。"只哄他道:‘你是阳人,见不得的。"儿子只得 也罢 了。” 明 屠隆 《修文记·流谤》:“朝报都在乡里抄, 阎罗 也是 阳
2023-07-19 21:29:361

这句话有很多版本,如:“法乎其上,则得其中,法乎其中,则得其下。” 《孙子兵法》也云:“求其上,得其中;求其中,得其下,求其下,必败。” 语出唐太宗《帝范》卷四:“取法于上,仅得为中,取法于中,故为其下。” 孔子教育学生的话:“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣”。 宋末元初时期的诗词评论家严羽在其《沧浪诗话》中曰:“学其上,仅得其中;学其中,斯为下矣。” 由于自古流传下来的有众多版本,所以具体出处不易考证。如果单从学习求知的角度来分析,“学其上者,得其中,学其中者,得其下”这句话说尽了学习之道,也就是说读书学习不能“死”学,如果生搬硬套的话,最多得其形而未得其神,那么即使你读了一部好书,又怎能完全领会其中的精髓呢,就更谈不上把学来的知识灵活应用变成自己的东西了。有句古话说:“尽信书不如无书”,说的也是同样的道理。所以我们学习要辨证地去学,同时更要学会创新,这样社会才能不断发展前进。
2023-07-19 21:29:341

阴阳人是什么人

阴阳家是指说话方式奇怪的人。阴阳家是指说话方式奇怪,不轻易说话,没事就爱讽刺别人的人。也指说话做事没有规矩,立场不明或者根本没有立场,要面对的事情一套,背后的事情一套,人一说话就胡说八道,阴阳转换自如的人或机构。游戏炉石里有一个叫鲍勃的NPC,总是在不合适的时候说些香喷喷的话。因为他的话太阴阳,而包是阴,鲍勃是阳,鲍勃叫阴阳,意思是说他讲阴阳。
2023-07-19 21:29:302

《沧浪诗话》提出了什么理论?

作者严羽,字仪卿,丹邱、号沧浪逋客,邵武(今福建)人,南宋文学批评家。此书分五类:诗辨、诗体、诗法、诗评、诗证。提出比较系统的诗歌理论,论诗推崇?(绢:?),主张诗的别材、别趣之说,重视诗歌的艺术特点,批评当时诗歌的散文化、议论化。强调“妙悟”和“兴趣”需靠个人心领神会,有脱离现实的倾向。
2023-07-19 21:29:271