DNA图谱 / 问答 / 问答详情

matlab 如何对图像进行9/7小波分解

2023-07-20 01:24:15
共1条回复
北有云溪
小波分解重构 V2.0 版程序存在的问题分析
http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2628911.aspx

小波图像分解 Matlab 程序 - V3.0版
http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2630153.aspx

小波图像重构 Matlab 程序 - V3.0版
http://blog.csdn.net/chenyusiyuan/archive/2008/07/09/2630365.aspx
%----------------------------------------------------------%

本文给出了小波图像分解程序的修正代码,并对一些细节问题进行了图示讨论。
修正前的小波图像分解与重构程序,请看如下文章:
相关的文章有:
1、自己动手编写小波信号分解与重构的Matlab程序
http://blog.csdn.net/chenyusiyuan/archive/2007/11/13/1881781.aspx
2、用自编的程序实现小波图像分解与重构
http://blog.csdn.net/chenyusiyuan/archive/2007/11/13/1881940.aspx
下面是针对上述文章中存在的问题而修改的小波图像分解程序。

function coef=mywavedec2(x,N,wname)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 函数 MYWAVEDEC2() 对输入矩阵 x 进行 dim 层分解,得到相应的分解系数矩阵 y
% 输入参数:x —— 输入矩阵
% N —— 分解级数
% wname —— 分解所用的小波函数
% 输出参数:coef —— 分解系数矩阵,其结构如下:
% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1}
% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10, modified: 2008-06-04
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 求出小波函数的滤波器组系数向量
[Lo_D,Hi_D] = wfilters(wname,"d");
% 画出原始图像
imshow(x);title("Original Image");
% 标明图像大小
[r,c]=size(x);
xlabel(["Size : ",num2str(r),"*",num2str(c)]);
% 将矩阵x的数据格式转换为适合数值处理的double格式
xd=double(x);

coef=[];
for i=1:N
[cA,cV,cH,cD]=mydwt2(xd,Lo_D,Hi_D);
% 第 i 级小波分解
xd=cA; % 将第 i 级分解得到的低频系数矩阵作为第 i+1 级分解的源矩阵
outmp={cV;cH;cD}; % 将第 i 级分解得到的高频系数矩阵cV,cH,cD存入细胞矩阵 outmp
% 注意细胞矩阵的赋值是用大括号“{}”的,而普通矩阵赋值是用方括号“[]”
% 细胞矩阵不要求其中的子矩阵的行列数都相同
coef=[outmp;coef]; % 将细胞矩阵 outmp 存入输出矩阵 coef,coef将由空矩阵变为细胞矩阵
% 注意这里的方括号不能用大括号取代
% 否则,使用大括号会将初始的coef空矩阵也作为细胞矩阵的子矩阵
% 而且,在迭代中 coef 将是一个不断嵌套的细胞矩阵,不便于后续处理和读取
% 上面这个语句是一种有效的在迭代过程中保存数据的方法
% 设待存数据为 data,可以是单个数、向量或矩阵
% 保存数据的矩阵为 mat,初始为空矩阵:mat=[]
% 则可按以下格式保存迭代过程产生的数据
% mat=[mat;data];
% 方括号内的分号“;”表示数据 data 是按“列”排序的方式存入矩阵 mat
% mat=[mat,data];
% 方括号内的逗号“,”表示数据 data 是按“行”排序的方式存入矩阵 mat
% data 也可以在 mat 前嵌入,即 mat=[data;mat] 或 mat=[data,mat]
end
% 迭代结束后,矩阵 coef 中保存的是各级分解中的高频系数矩阵
% 故需将迭代后得到的矩阵 cA,即第 dim 级低频矩阵存入矩阵 coef
coef=[cA;coef];
% 最后,小波系数矩阵 coef 的结构如下
% coef = {cA_N;cV_N;cH_N;cD_N;cV_N-1;cH_N-1;cD_N-1;……;cV_1;cH_1;cD_1}

% 画出各级低频、高频系数矩阵
% 首先建立一个名为“Wavelet Decomposition -- Wavelet Type: , Levels: ”的图像窗口
figure("Name",["Wavelet Decomposition -- Wavelet Type: ",wname," , Levels: ",num2str(N)]);
% 图像的第1行显示低频系数,置中,左右两个subplot为空
subplot(N+1,3,2);
yt=uint8(coef{1});
[yrow,ycol]=size(yt);
imshow(yt);
title( ["Approximation A",num2str(N)]);
xlabel(["Size : ",num2str(yrow),"*",num2str(ycol)]);
% 第2-(N+1)行显示各级高频系数
titllist={["Vertical Detail V"];["Horizontal Detail H"];["Diagonal Detail D"]};
pn=2; % pn 是子图的显示序号
for pr=1:N
for pc=1:3
subplot(N+1,3,pn+2);
yt=[]; % 为了使高频细节内容(轮廓、边缘)更清晰,将高频系数增加100灰度值
yt=uint8(coef{pn})+100;
[yrow,ycol]=size(yt);
imshow(yt);
title([ titllist{pc},num2str(N-pr+1)]);
xlabel(["Size : ",num2str(yrow),"*",num2str(ycol)]);
% 每行的第一个图像的Y轴,显示该行高频系数对应的分解级别
if mod(pn+2,3)==1
ylabel(["Level ",num2str(N-pr+1)]);
end
pn=pn+1;
end
end

function [cA,cV,cH,cD]=mydwt2(x,Lo_D,Hi_D)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 函数 MYDWT2() 对输入的r*c维矩阵 x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]
% 输入参数:x —— 输入矩阵,为r*c维矩阵。
% Lo_D,Hi_D —— 小波分解的滤波器组系数向量
% 输出参数:cA,cV,cH,cD —— 是小波分解系数矩阵的四个相等大小的子矩阵
% cA:低频部分分解系数; cV:垂直方向分解系数;
% cH:水平方向分解系数; cD:对角线方向分解系数。
% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10, modified: 2008-06-04
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[row,col]=size(x);
% 读取输入矩阵的大小
for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解
tmp1=x(j,:);
[ca1,cd1]=mydwt(tmp1,Lo_D,Hi_D,1);
% tmp1 长度为 row ,滤波器长度为 lnf ,则 [ca1,cd1] 的总长为 ( row + lnf -1 )
x1(j,:)=[ca1,cd1]; % 将分解系数序列存入缓存矩阵 x1 中
end

[row1,col1]=size(x1); % row1=row + lnf -1, col1=col+lnf-1
for k=1:col1 % 再对缓存矩阵 x1 的每一列序列进行一维离散小波分解
tmp2=x1(:,k);
[ca2,cd2]=mydwt(tmp2,Lo_D,Hi_D,1);
x2(:,k)=[ca2,cd2]" ; % 将分解所得系数存入缓存矩阵 x2 中
% 注意不要遗漏了上一行代码中的转置符号“ "”。 Matlab 6.5 及以下较低的版本不支
% 持行、列向量的相互赋值,故要把行向量[ca2,cd2]转置为列向量,再存入 x2 的相应列
end
[row2,col2]=size(x2);
cA=x2(1:row2/2,1:col2/2); % cA是矩阵x2的左上角部分
cV=x2(1:row2/2,col2/2+1:col2); % cV是矩阵x2的右上角部分
cH=x2(row2/2+1:row2,1:col2/2); % cH是矩阵x2的左下角部分
cD=x2(row2/2+1:row2,col2/2+1:col2); % cD是矩阵x2的右下角部分

function [cA,cD] = mydwt(x,lpd,hpd,dim)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 函数 [cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]
% 输入参数:x——输入序列;
% lpd——低通滤波器;
% hpd——高通滤波器;
% dim——小波分解层数。
% 输出参数:cA——平均部分的小波分解系数;
% cD——细节部分的小波分解系数。
% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cA=x; % 初始化cA,cD
cD=[];
for i=1:dim
cvl=conv(cA,lpd);
% 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()
dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数
cvh=conv(cA,hpd); % 高通滤波
dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数
cA=dnl; % 下抽样后的平均部分系数进入下一层分解
cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cD
end

function y=downspl(x)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 函数 Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列 Y。
% 下抽样是对输入序列取其偶数位,舍弃奇数位。例如 x=[x1,x2,x3,x4,x5],则 y=[x2,x4].
% Copyright by Zou Yuhua ( chenyusiyuan ), original : 2007-11-10
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=length(x); % 读取输入序列长度
M=floor(N/2); % 输出序列的长度是输入序列长度的一半(带小数时取整数部分)
i=1:M;
y(i)=x(2*i);

—— 图示讨论
1、小波分解的行、列变换过程(使用Haar小波)
% 行变换代码
[row,col]=size(x);
% 读取输入矩阵的大小
for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解
tmp1=x(j,:);
[ca1,cd1]=mydwt(tmp1,Lo_D,Hi_D,1);
% tmp1 长度为 row ,滤波器长度为 lnf ,则 [ca1,cd1] 的总长为 ( row + lnf -1 )
x1(j,:)=[ca1,cd1]; % 将分解系数序列存入缓存矩阵 x1 中
end

行变换的结果图示:
可见,行变换将图像矩阵分为左右两部分,左边是平均系数,右边是细节系数,并且由图可见细节系数是垂直性的,属于 vertical detail。
% 列变换代码
[row1,col1]=size(x1); % row1=row + lnf -1, col1=col+lnf-1
for k=1:col1 % 再对缓存矩阵 x1 的每一列序列进行一维离散小波分解
tmp2=x1(:,k);
[ca2,cd2]=mydwt(tmp2,Lo_D,Hi_D,1);
x2(:,k)=[ca2,cd2]"; % 将分解所得系数存入缓存矩阵 x2 中
end

列变换的结果图示:
列变换后,所得矩阵就是一级小波变换的结果,可分为4部分:左上角的平均系数 cA、右上角的垂直细节系数 cV、左下角的水平细节系数 cH、右下角的对角线细节系数 cD。则 mydwt2 的输出序列是 [cA,cV,cH,cD]。不过,我不大理解的是,一般教材和Matlab的说明文档都是把系数序列按这样的次序列出的:[cA,cH,cV,cD] ,即先水平后垂直,在显示时,水平细节在右上角,垂直细节在左下角。
2、小波分解的结果
(1)Haar 小波,2级分解
(2)Bior3.7 小波,2级分解

相关推荐

matlab图像小波分解,dwt2和wavedec2有什么区别

dwt2是单一尺度DWT,只能分解一层,wavedec2是多尺度DWT,可以分解多层。在matlab中的wavedec2函数是调用dwt2函数实现的,就是将dwt2分解的一层结果再用一次dwt2分解就得到了第二层的分解结果,以此类推得到wavedec2各层的分解结果。所以对于实际问题的处理通常使用wavedec2函数,dwt2函数可以认为只是作为wavedec2函数的子函数,其应用地并不多。
2023-07-19 21:29:011

matlab wavedec和wavedec2的区别

使用小波"wname"对信号X进行单层分解,求得的近似系数存放在数组cA中,细节系数存放在数组cD中 [cA,cD]=dwt(X,"wname")中返回的cA,cD分别存放是信号的近似和细节 [C,L]=wavedec(X,N,"wname") 利用小波"wname"对信号X进行多层分解 A=appcoef(C,L,"wname",N) 利用小波"wname"从分解系数[C,L]中提取第N层近似系数 [C,L]=wavedec(X,1,"wname")中返回的近似和细节都存放在C中,即C=[cA,cD],L存放是近似和各阶细节系数对应的长度 DWT2是二维单尺度小波变换,其可以通过指定小波或者分解滤波器进行二维单尺度小波分解 DWT2的一种语法格式是[cA,cH,cV,cD]=dwt2(X,"wname") WAVEDEC2是二维多尺度小波分解 WAVEDEC2的语法格式是[C,S]=wavedec2(X,N,"wname"),其中N为大于1的正整数 也就是说DWT2只能对某个输入矩阵X进行一层分解,而WAVEDEC2可以对输入矩阵X进行N层分解
2023-07-19 21:29:091

matlab图像小波分解,dwt2和wavedec2有什么区别

dwt2是单层DWT函数,能分解一层。wavedec2是多层DWT函数,用于多层分解,其函数其实是每次调用dwt2函数实现多层分解滴,所以也可将dwt2看作wavedec2函数滴子函数。
2023-07-19 21:29:161

如图,使用matlab编程实现小波变换对一幅图像进行处理,从而得出4个座标图。

A = imread("image.bmp");B = A(:,:,1);[lowf,highfH,highfV,highfD,C,S] = wavelet2D(double(B),"morlet",2);function[lowf,highH,highV,highD,C,S] = wavelet2D(signal,wavelet,level)[C,S]=wavedec2(signal,level,wavelet);lowf = appcoef2(C,S,wavelet,level);highH=detcoef2("h",C,S,level);highV=detcoef2("v",C,S,level);highD=detcoef2("d",C,S,level);A = wrcoef2("a",C,S,wavelet,level);Dh =wrcoef2("h",C,S,wavelet,level);Dv =wrcoef2("v",C,S,wavelet,level);Dd =wrcoef2("d",C,S,wavelet,level);subplot(2,2,1),image(A);subplot(2,2,2),imshow(Dh);subplot(2,2,3),imshow(Dv);subplot(2,2,4),imshow(Dd);
2023-07-19 21:29:242

小波分解是什么意思?分解后得到的是什么?小波分解后进行重构得到图形d1,d2,又是什么?

有一维和二维小波分解,MATLAB中的代码分别为wavedec和wavedec2。小波对图像进行分解时,会得到一个逼近子图像和三个不同方向(水平、垂直、对角线)的细节子图像,继续对子图像进行小波分解便得到图像的小波多尺度分解。对子图进行单支重构(wrcoef)并叠加就得到和原图像大小相同的图像了。建议你看看孙延奎写的小波方面的书籍,比较浅显易懂
2023-07-19 21:29:311

用小波分解图像之后,对分解系数进行了修改,但是最后重构的图像不对?

运行后是什么样的错误?没看到细节不好判断,但我怀疑有可能是数据类型不匹配一类。把具体的出错信息发上来看看吧。看到了,问题应该出在矩阵维度上,wavedec2做完小波分解后会返回两个变量,一个是小波系数,另一个是相当于索引的矩阵,文档中分别以C和S表示。在使用waverec2重构的时候,输入变量也应是一样的内容。按照你的思路,应该是cn为滤波后的小波系数,那么I应该就是wavedec2的第二个返回变量,如果cn没变,则I不应该变。滤波的时候最好不要打乱小波系数的顺序,否则重新组织起来很烦的。wavedec2生成的小波系数组织方式参见后面的参考资料。其实做图像处理还可以考虑用dwt2这个函数。近似图像特别亮?如果排除滤波的影响,我觉得haar小波应该不会出现这个现象。以上。专业路过的老狼
2023-07-19 21:29:381

matlab中 wavedec2(x,N,wname)使用的是什么样的算法,比如跟Mallat算法或多孔算法有什么联系和区别?

wavedec2是二维小波分解算法,Matlab小波算法的书很多,自己找本看看吧!
2023-07-19 21:29:451

如何用matlab进行离散小波分解

clear;clcload tire ;% 用小波函数db1对信号进行2尺度分解[c,s] = wavedec2(x,2,"db1");sizex = size(x)sizec = size(c)val_s = s % 提取尺度2的所有方向的高频系数[chd2,cvd2,cdd2] = detcoef2("all",c,s,2); sizecd2 = size(chd2)% 提取尺度1的所有方向的高频系数 [chd1,cvd1,cdd1] = detcoef2("all",c,s,1); sizecd1 = size(chd1)% 提取尺度2的低频系数ca2 = appcoef2(c,s,"db1",2); sizeca2 = size(ca2)% 提取尺度1的低频系数ca1 = appcoef2(c,s,"db1",1); sizeca1 = size(ca1)nbc = size(map,1);colormap(pink(nbc));figure(1);subplot(221);image(wcodemat(x,nbc));title("原始图像");subplot(223);image(wcodemat(ca2,nbc));title("尺度2的低频系数");subplot(224);image(wcodemat(ca1,nbc));title("尺度1的低频系数");figure(2);subplot(221);image(wcodemat(chd2,nbc));title("尺度2水平方向的高频系数");subplot(222);image(wcodemat(cvd2,nbc));title("尺度2垂直方向的高频系数");subplot(223);image(wcodemat(cdd2,nbc));title("尺度2斜线方向的高频系数");subplot(224);image(wcodemat(chd1,nbc));title("尺度1水平方向的高频系数");figure(3);subplot(121);image(wcodemat(cvd1,nbc));title("尺度1垂直方向的高频系数");subplot(122);image(wcodemat(cdd1,nbc));title("尺度1斜线方向的高频系数");
2023-07-19 21:29:541

matlab 小波

彩色图像是3维矩阵,二维小波当然会出错,每一层分开处理即可下面是例子:x=imread("liftingbody.png");imshow(x);%显示原图[c,s]=wavedec2(double(x),2,"db1");%分解y=waverec2(c,s,"db1");%重构figure;imshow(uint8(y))%显示
2023-07-19 21:30:091

matlab中swt2函数多尺度分解的图像怎么出现偏移

plot(t,T);tfit=0:24;A=polyfit(t,T,2);Tfit=polyval(A,tfit);hold onplot(tfit,Tfit);polyval(A,12.5)%
2023-07-19 21:30:282

function y=mywavedec2(x,dim)怎么执行

"f()中的x是传地址的 "所以本过程中的x=10,在y=f(x)后,x在f()里被改变成x=20并带回。 "y=f(x)即f(x)的返回值,f()返回值是f()中的x*y即20*2=40,因为f()中f=x*y
2023-07-19 21:30:341

求二值化后的图片用MATLAB去噪的程序

load wbarb; % 装载原始图像 subplot(221); % 新建窗口 image(X); % 显示图像 colormap(map); % 设置色彩索引图 title("原始图像"); % 设置图像标题 axis square; % 设置显示比例,生成含噪图像并图示 init=2055615866; % 初始值 randn("seed",init); % 随机值 XX=X+8*randn(size(X)); % 添加随机噪声 subplot(222); % 新建窗口 image(XX); % 显示图像 colormap(map); % 设置色彩索引图 title("含噪图像"); % 设置图像标题 axis square; %用小波函数coif2 对图像XX 进行2 层分解 [c,l]=wavedec2(XX,2,"coif2"); % 分解 n=[1,2]; % 设置尺度向量 p=[10.28,24.08]; % 设置阈值向量,对高频小波系数进行阈值处理 %nc=wthcoef2("h",c,l,n,p,"s"); %nc=wthcoef2("v",c,l,n,p,"s"); nc=wthcoef2("d",c,l,n,p,"s"); X1=waverec2(nc,l,"coif2"); % 图像的二维小波重构 subplot(223); % 新建窗口 image(X1); % 显示图像 colormap(map); %设置色彩索引图 title("第一次消噪后的图像"); % 设置图像标题 axis square; % 设置显示比例,再次对高频小波系数进行阈值处理 %mc=wthcoef2("h",nc,l,n,p,"s");mc=wthcoef2("v",nc,l,n,p,"s"); mc=wthcoef2("d",nc,l,n,p,"s"); X2=waverec2(mc,l,"coif2"); % 图像的二维小波重构 subplot(224); % 新建窗口 image(X2); % 显示图像 colormap(map); % 设置色彩索引图 title("第二次消噪后的图像"); % 设置图像标题 axis square; % 设置显示比例这个程序改一改吧
2023-07-19 21:30:441

求助:在MATLAB中 如何利用mallat算法 求得小波变换系数?

如果只要得到小波系数,可以1D直接使用wavedec (2D使用wavedec2)函数进行分解,得到分解结果的CL组构(2D得到CS组构),然后用appcoef和detcoef(2D使用appcoef2和detcoef2)函数提取细节和逼近小波系数,你可以直接参看matlab的帮助文档,非常简单。
2023-07-19 21:31:021

怎么用matlab把压缩成tiff

1.用matlab实现图像压缩时,如何将图片仿真 图像压缩是当今信息时代迫切需求的一门图像处理技术,它极大的减少了图像的数据量,为图像的存储,传输提供了方便。 小波变换,是一种广泛用于图像压缩的方法。它能让图像按不同的分辨率分析。 根据Mallat算法的思想,图像能分解成一个轮廓信号(低频子图)和水平,垂直,对角线三个方向上的细节信号(高频子图)。而轮廓信号又可以进一步分解。 而图像的主要能量部分是低频部分,而且人眼视觉系统对低频部分更为敏感,所以可以对低频部分采用较低压缩比;对高频部分采用较大压缩比来进行压缩。 本文提出的是一种结合小波变换,DCT变换和矢量量化的压缩方法。根据人眼的视觉特性,首先对图像进行小波分解,然后,对低频分量进行压缩比不大的DCT变换;对不同方向不同分辨率的高频分量进行不同码字大小的矢量量化编码,然后对反变换和解码后的系数进行小波重构。矢量量化过程中的码书设计采用的是LBG算法。 这样,根据对图像质量的不同要求,我们可以改变小波分解的层数,来得到不同压缩比的图像。本篇论文只对小波分解一层和两层后压缩进行了仿真和分析,表明该方案结合了各种压缩方法的优点,在满足图像质量的同时能得到较大的压缩比。 目前,在包装装潢设计中常用的图形处理软件有Pho-toshop,CorelDraw,AutoCAD等。但是这些软件中很少涉及到对图像进行压缩处理,以满足图像进行传输和储存的需要。 基于这一点考虑,在此尝试着用MATLAB编程来处理包装装潢图像的压缩,实现包装与计算机的紧密结合。 1 MATLAB MATLAB是MathWorks公司推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图像显示于一体,它附带的小波分析工具箱功能强大,可以完成小波分析的绝大部分工作。 MATLAB工具箱的出现避免了程序设计中的重复性劳动,缩短了开发周期,降低了成本,因而受到工科院校师生和研究人员的青睐。 在介绍利用MATLAB小波工具压缩图像的文献中,总是将真彩色RGB图像转换为灰度级索引图像进行处理.经过这种处理以后,图像的存储数据能得到一定的压缩,但由压缩后的数据难以恢复成理想的彩色图像。 文中用MATLAB中有关函数处理图像压缩,而且由压缩后的数据可以还原出图像.实验结果表明,还原出的图像效果是理想的。文中主要以lena图像的处理为例,对它进行二进小波多层分解后,将低频和高频近似的系数矩阵作相应的处理,来研究用MATLAB中的小波工具箱压缩图像的方法。 2 图像压缩方法 在实际应用中,首先需要从图像文件中读取图像数据.MATLAB使用imreed()函数完这一任务.例如,在电脑D盘中有一彩色图像文件picl.jps,则可由下述语句读取: X=imread(′D:picl.′); MATLAB图像处理工具箱支持4种基本图像类型:索引图像、灰度图像、二进制图像和RGB图像.MATLAB直接从图像文件中读取的图像为RGB图像.它存储在三维数组中。这个三维数组有3个面,依次对应子红(Red)、绿(Green)、蓝(Blue)3种颜色,而面中的数据则分别是这3种颜色的强度值,面中的元素对应于图像中的像素点。 索引图像数据包括图像矩阵X与颜色图数组map,其中颜色图map是按图像中颜色值进行排序后的数组。对于每个像素,图像矩阵X包含一个值,这个值就是颜色图数组map中的索引。 颜色图map为m*3双精度矩阵,各行分别指定红、绿、蓝(R、G、B)单色值,map=〔RGB〕,R、C、B为值域为〔0,1〕的实数值,m为索引图像包含的像素个数.然后可根据情况采用不同的小波函数,进行索引图像的分解压缩。这里对上面产生的索引图像X用dbl小波进行2层分解。 〔c,l〕=wavedec2(X,2,′dbl′)。 在这里,一个索引图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的.高分辨率(即高频细节)子图像上大部分点的数值接近于0,越是高频这种现象越明显.对一个图像来说,表现一个图像最主要的部分是低频(即近似)部分。 多层小波分解的所有成分系数均保存在向量c中,低频近似与高频细节的系数需从向量C中提取。MATLAB分别使用appcoet2()和detcoef2()函数来完成这一工作。 这种方法是对低频和高频部分进行处理,因而提取低频和高频近似系数。 cAl=appcoef2(c,1,′dbl,′1);cH1=detcoef2(′h′,c,1,1); cDl=detcoef2(′d′,c,l,1);cVl=detcoef2(′v′,c,l,1)。 matlab实现离散余弦变换压缩(JPEG压缩原理) JPEG图像压缩算法: 输入图像被分成8*8或16*16的小块,然后对每一小块进行二维DCT(离散余弦变换)变换,变换后的系数量化、编码并传输; JPEG文件解码量化了的DCT系数,对每一块计算二维逆DCT变换,最后把结果块拼接成一个完整的图像。在DCT变换后舍弃那些不严重影响图像重构的接近0的系数。 DCT变换的特点是变换后图像大部分能量集中在左上角,因为左上放映原图像低频部分数据,右下反映原图像高频部分数据。而图像的能量通常集中在低频部分。 实例程序: function Jpeg I=imread("D:MATLAB7 oolboximagesimdemoscameraman.tif"); %该图片在安装matlab的目录中找,原图为灰度图象 。 2.使用MATLAB图像压缩怎么做 I = imread("cameraman.tif"); % 输入图像 I = im2double(I); % 数据类型转换 T = dctmtx(8); % 计算二维离散DCT矩阵 dct = @(x)T * x * T"; % 设置函数句柄 B = blkproc(I,[8 8],dct); % 图像块处理 mask = [1 1 1 1 0 0 0 0 % 掩膜 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; B2 = blkproc(B,[8 8],@(x)mask.* x); % 图像块处理 invdct = @(x)T" * x * T; % 设置函数句柄 I2 = blkproc(B2,[8 8],invdct); % 图像块处理 imshow(I), figure, imshow(I2) % 显示原始图像和压缩重构图像 3.用matlab把11张tif图片做成一个连续动画 使用如下代码方式可以达到你想要的效果。 clear; clc; for i=2:50 c=strcat("a",num2str(i));%这里可以根据自己图片名字儿作相应的修改 c=strcat(c,".bmp"); I=imread(c); % I=rgb2gray(I) figure(1); imshow(I); end 图片的保存方式如:a21.bmp,这样可以实现你的汽车动画。如果想要使用你的汽车图片做的话,请把汽车图片发给我,我帮你看看。
2023-07-19 21:31:091

可以用appcoef2和detcoef2从[C,S]中提取出4种分量。现在我想让C中的LL和HL为0,然后重构回C。该如何重构

您好:I=imread("rice.png");[c,s]=wavedec2(I,2,"db1");a=appcoef2(c,s,"db1",1);%%%提取低频a=uint8(a);subplot(221)imshow(a)k=imnoise(a,"gaussian",0,0.02);%%对低频加噪声subplot(222)imshow(k)t=wrcoef2("a",c,s,"db1",2);%%由低频重构t=uint8(t);subplot(223)imshow(t)
2023-07-19 21:31:161

如何用C语言实现小波多层变换wavedec2

C语言标准库当中没有这种函数,去OpenCV库当中找找有没有类似函数,如果自己实现想是相当麻烦
2023-07-19 21:31:231

matlab中出现expected, ";" found.. 错误

最后一行的括号不匹配,imshow(uint8(imgResult));xlabel ("(c)小波融合图像"); 一般出现这种错误的情况有两种:1.你的该行代码中出现了中文的分号“;”,只要把他改为英文“;”的就行。2.该行的括号不匹配,少了或多了。解决的办法就是补齐。
2023-07-19 21:31:302

新手求助matlab图像去噪求峰值信噪比函数调用问题

去掉分号就哦了
2023-07-19 21:31:581

基于小波变换的图像压缩问题

matlab没怎么学。按错误提示:应该是wdencmp函数的参数不对。你搜下这个函数怎么用,小波变换这些,网上源程序也很多的
2023-07-19 21:32:052

matlab中怎样实现多层小波重构?

T=wpdec(y,5,"db40");%对信号y进行小波包分解,层数为5,得到的T为小波树,plot一下就可看到a10=wprcoef(T,[1,0]);%a10是对节点[1,0]进行重构后得到的信号。貌似没有对那一层重构这一说法吧,只能是对某层的某个节点进行重构。节点的编号你可以从小波树中看出来这是我的做法,不过用的是小波包分解。不知对你有没有用
2023-07-19 21:32:155

关于连续小波变换的几个问题,求教

首先应明白连续或不连续多指数学的概念而已,应用中的信号都是离散的,只是你的采样足够高就可认为是连续的,所以小波变换中关心的是点数问题,而不关心信号是否连续。对于CWT或DWT其连续与否不是指分析信号,而是你说的a或b的问题,但你仍可以借鉴上面对于信号连续的理解。CWT中a是连续的,b其实就是点数,也可认为是连续的。最早的DWT是没有mallat算法的,那时a是以2的幂次方变化离散,b却是连续变化的,即二进小波变换。这种变换很鸡肋,还不如直接做CWT。DWT的应用之所以远远多于CWT就是引入了mallat算法,好处是终于可以分解和重构信号了,这种方式对信号特征的研究非常有利。DWT的核心思想其实就是CWT引出的伸缩和平移的概念,a以2的幂次方变化实现了小波的伸缩,b通过下抽样实现了小波的平移。从实际应用中进行小波变换的目的和效果来看,cwt中2/4/8/16/32的小波系数结果应该对应DWT中的阶次(层数)1/2/3/4/5的小波细节系数(或更准确的是重构后的小波细节,因为cwt的系数个数是不变的等于原信号长度,但DWT细节系数是每层近似减半的,重构后才会等长,b也是姑且认为是减半的不连续吧)。再追问吧,第二问题可能更多,我尽量精简。哎,干嘛要把问题写在一起,这就是麻烦啊,你必须追问我才能再写!
2023-07-19 21:32:371

我用matlab写的函数用于处理图像,为什么C#调用不成功呢?总是出现错误?

你好呀,我对Matlab的混合编程也很感兴趣,我们可以交流一下,不过你的代码不全呀,MyFunctionCacu类具体是如何构造的
2023-07-19 21:32:441

急!!!在线等,求解答:一个小波去噪的matlab程序,高手进

供参考: lev=5; [c,l]=wavedec(x,lev,wname); sigma=wnoisest(c,l,1); alpha=2; thr1=wbmpen(c,l,sigma,alpha) [thr2,nkeep]=wdcbm(c,l,alpha) xd1=wdencmp("gbl",c,l,wname,lev,thr1,"s",1); [xd2,cxd,lxd,perf0,perfl2]=wdencmp("lvd",c,l,wname,lev,thr2,"h"); [thr,sorh,keepapp]=ddencmp("den","wv",x) xd3=wdencmp("gbl",c,l,wname,lev,thr,"s",1); subplot(411);plot(x);title("原始信号","fontsize",12); subplot(412);plot(xd1);title("使用penalty阈值降噪后信号","fontsize",12); subplot(413);plot(xd2);title("使用Birge-Massart阈值降噪后信号","fontsize",12); subplot(414);plot(xd3);title("使用缺省阈值降噪后信号","fontsize",12);s=[-1.58 0.42 0.46 0.78 -0.49 0.59 -1.3 -1.42 -0.16 -1.47 -1.35 0.36 -0.44 -0.14 1 -0.5 -0.2 -0.06 -0.6 0.42 -1.52 0.51 0.76 -1.5 0.16 -1.29 -0.65 -1.48 0.6 -1.65 -0.55]; [C,L]=wavedec(s,1,"db3"); ca1=wrcoef("a",C,L,"db3",1); x1=ca1 ;[C,L]=wavedec(s,2,"db3"); ca2=wrcoef("a",C,L,"db3",2); x2=ca2 ;[C,L]=wavedec(s,3,"db3"); ca3=wrcoef("a",C,L,"db3",3); x3=ca3 ;[C,L]=wavedec(s,4,"db3"); ca4=wrcoef("a",C,L,"db3",4); x4=ca4 ;cg = wrcoef("a",C,L,"sym5",1); x5=cg;p=1:31; subplot(6,1,1);plot(p,s);ylabel("s"); subplot(6,1,2);plot(p,x1);ylabel("ca1"); subplot(6,1,3);plot(p,x2);ylabel("ca2"); subplot(6,1,4);plot(p,x3);ylabel("ca3"); subplot(6,1,5);plot(p,x4);ylabel("ca4") subplot(6,1,6);plot(p,x5);ylabel("ca5") %加入的重构,是不是你要的?
2023-07-19 21:32:531

关于小波变换后的系数问题

离散小波变换变换采用普通二进小波变换系数都是减少一半的,没有见到哪个教材变换后,每一层的系数都是不变的。wavemenu小波工具箱进行变换在离散小波变换时,每一层的系数也是减少一半的,你看到是每一层变换后的小波系数重构的结果,其元素个数是和原数据大小相等的,其原因是重构过程进行了插值。除非采用离散平稳小波变换(SWT),那样变换后每一层的系数才是不变的。顺便说一句,小波变换的系数通常对分析信号没有意义,有时还是虚数,连图都成不了,只有通过重构(小波逆变换)才能变成有实际意义的结果。
2023-07-19 21:33:032

matlab去噪

l和1弄混了,改过来就好,如gb1
2023-07-19 21:33:422

图像的亚像素边缘检测 MATLAB代码

Press the "Start" button to see a demonstration of denoising tools in the Wavelet Toolbox. This demo uses Wavelet Toolbox functions. % Set signal to noise ratio and set rand seed. sqrt_snr = 3; init = 2055615866; % Generate original signal and a noisy version adding % a standard Gaussian white noise. [xref,x] = wnoise(3,11,sqrt_snr,init); % Denoise noisy signal using soft heuristic SURE thresholding % and scaled noise option, on detail coefficients obtained % from the decomposition of x, at level 5 by sym8 wavelet. % Generate original signal and a noisy version adding % a standard Gaussian white noise. lev = 5; xd = wden(x,"heursure","s","one",lev,"sym8"); % Denoise noisy signal using soft SURE thresholding. xd = wden(x,"rigrsure","s","one",lev,"sym8"); % Denoise noisy signal using fixed form threshold with % a single level estimation of noise standard deviation. xd = wden(x,"sqtwolog","s","sln",lev,"sym8"); % Denoise noisy signal using fixed minimax threshold with % a multiple level estimation of noise standard deviation. xd = wden(x,"minimaxi","s","sln",lev,"sym8"); % If many trials are necessary, it is better to perform % decomposition one time and threshold it many times : % decomposition. [c,l] = wavedec(x,lev,"sym8"); % threshold the decomposition structure [c,l]. xd = wden(c,l,"minimaxi","s","sln",lev,"sym8"); % Load electrical signal and select a part. load leleccum; indx = 2600:3100; x = leleccum(indx); % Use wdencmp for signal de-noising. % find default values (see ddencmp). [thr,sorh,keepapp] = ddencmp("den","wv",x); % denoise signal using global thresholding option. xd = wdencmp("gbl",x,"db3",2,thr,sorh,keepapp); % Some trial examples without commands counterpart. % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 5; % [xref,x] = wnoise(1,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 4; % [xref,x] = wnoise(2,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init); % Some trial examples without commands counterpart (more). % Rand initialization: init = 2055615866; % Square root of signal to noise ratio: sqrt_snr = 3; % [xref,x] = wnoise(3,11,sqrt_snr,init);
2023-07-19 21:33:491

怎样重构从第一层到第九层的高频细节信号

用MATLAB对一语音信号进行小波分解,然后对其各层系数进行处理以达到小波抑制的目的,重构处理后的信号,画出波形分析。%装载原始信号load sumsin;s=sumsin;%==============================%设置小波名并利用coif3小波进行4层分解w="coif3";maxlev=4;[c,l]=wavedec(s,maxlev,w);newc=c;%==============================%将分解后的第三、四层细节系数值为0newc=wthcoef("d",c,l,[3,4]);%==============================%在原始信号的时间区间[400,600]内将第一层细节系数值为0%并且将其他系数进行衰减,求出第一层系数起始点和终止点的%索引值k=maxlev+1;first=sum(l(1:k-1))+1;last=first+l(k-1);indd1=first:last;%==============================%将系数除以3,进行信号衰减newc(indd1)=c(indd1)/3;%==============================%在区间[400,600]上求出第一层系数索引indd1=(first+400/2):(first+600/2);%==============================%将该索引值置为0newc(indd1)=zeros(size(indd1));%==============================%将第二层中相应于原始信号t=500的时间点处的系数置为4k=maxlev;first=sum(l(1:k-1))+1;newc(first+500/2^2)=4;%==============================%综合修改后的分解结构synth=waverec(newc,l,w);%==============================%用图示出上述修改结果subplot(2,2,1);plot(s);title("原始信号");subplot(2,2,2);plot(c);title("coif3小波分解后的系数");subplot(2,2,3);plot(synth);title("小波抑制后的信号");subplot(2,2,4);plot(newc);title("修改后的小波分解系数");转自 http://captainandboat.spaces.live.com/blog/cns!9A3607F7808D2D0D!168.entry2. 用MATLAB实现对一特定信号用不同小波进行分解,提取各层的高低频系数,画出各系数波形,并重构。代码:t=0:1:100*pi;s=sin(3*t)+sin(0.3t)+sin(0.03t);subplot(6,2,1);plot(s);title("原始信号s");%====================================%对s进行小波分解:db3 5层[c,l]=wavedec(s,5,"db3");%====================================%提取小波分解的低频系数a5=appcoef(c,l,"db3",5);a4=appcoef(c,l,"db3",4);a3=appcoef(c,l,"db3",3);a2=appcoef(c,l,"db3",2);a1=appcoef(c,l,"db3",1);%====================================%提取小波分解的各层高频系数d5=detcoef(c,l,5);d4=detcoef(c,l,4);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1); %====================================%绘出各系数的图形subplot(6,2,3);plot(a5);Ylabel("a5");subplot(6,2,5);plot(a4);Ylabel("a4");subplot(6,2,7);plot(a3);Ylabel("a3");subplot(6,2,9);plot(a2);Ylabel("a2");subplot(6,2,11);plot(a1);Ylabel("a1");subplot(6,2,4);plot(d5);Ylabel("d5");subplot(6,2,6);plot(d4);Ylabel("d4");subplot(6,2,6);plot(d3);Ylabel("d3");subplot(6,2,8);plot(d2);Ylabel("d2");%====================================%重构信号ss1=waverec(c,l,"db1");subplot(5,2,9);plot(s1);Ylabel("s1");%====================================%下面用小波‘coif3"重复上述过程[c,l]=wavedec(s,3,"coif3");a3=appcoef(c,l,"coif3",3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);subplot(5,2,2);plot(a3);Ylabel("a3");subplot(5,2,4);plot(d3);Ylabel("d3");subplot(5,2,6);plot(d2);Ylabel("d2");subplot(5,2,8);plot(d1);Ylabel("d1");s2=waverec(c,l,"coif3");subplot(5,2,10);plot(s2);Ylabel("s2");
2023-07-19 21:33:571

morlet小波函数进行4层分解,在运行时出现错误,到底哪里出错了,应该怎么修改呢。

没细看,不过最明显的错误是wavedec函数是做DWT的,而Morlet小波是不具有有限冲激响应滤波器和尺度方程的小波,它是没法做DWT的,它只能做CWT或是用它的复数形式CMorlet小波做CCWT,所以是wavedec函数不能使用"morl"小波基的问题,换其它7种能做DWT的小波基试试吧!另外,你那语句是做3层分解的,不是4层。
2023-07-19 21:34:041

matlab小波分析

相关工具包没有安装,我的就没啥事可以得到以下WAVEDEC Multi-level 1-D wavelet decomposition. WAVEDEC performs a multilevel 1-D wavelet analysis using either a specific wavelet "wname" or a specific set of wavelet decomposition filters (see WFILTERS). [C,L] = WAVEDEC(X,N,"wname") returns the wavelet decomposition of the signal X at level N, using "wname". N must be a strictly positive integer (see WMAXLEV). The output decomposition structure contains the wavelet decomposition vector C and the bookkeeping vector L. For [C,L] = WAVEDEC(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and Hi_D is the decomposition high-pass filter. The structure is organized as: C = [app. coef.(N)|det. coef.(N)|... |det. coef.(1)] L(1) = length of app. coef.(N) L(i) = length of det. coef.(N-i+2) for i = 2,...,N+1 L(N+2) = length(X). See also dwt, waveinfo, waverec, wfilters, wmaxlev. Reference page in Help browser doc wavedec你可以重装的全的或者下个小波的工具包set path设置下路径就行了
2023-07-19 21:34:114

求一个关于matlab的基于小波变换的图像增强代码

以下是一个基于小波变换的 MATLAB 图像增强代码示例:% 读入原始图像I = imread("lena.png");% 将图像转换为灰度图像if size(I, 3) == 3I = rgb2gray(I);end% 对图像进行小波变换[C, S] = wavedec2(I, 2, "db4");% 提取小波系数H = wrcoef2("h", C, S, "db4", 1);V = wrcoef2("v", C, S, "db4", 1);D = wrcoef2("d", C, S, "db4", 1);% 将水平、垂直、对角小波系数合并W = cat(3, H, V, D);% 对小波系数进行增强for i = 1:3W(:, :, i) = adapthisteq(W(:, :, i), "NumTiles", [8 8], "ClipLimit", 0.005);end% 将增强后的小波系数合并I_enhanced = waverec2(W, S, "db4");% 显示原始图像和增强后的图像subplot(1, 2, 1); imshow(I); title("原始图像");subplot(1, 2, 2); imshow(I_enhanced); title("增强后的图像");这段代码读入一个图像,将其转换为灰度图像,进行小波变换,并提取出水平、垂直和对角小波系数。然后,对这些小波系数进行直方图均衡化增强,并将增强后的小波系数合并。最后,使用小波反变换将增强后的小波系数合成为增强后的图像,并将原始图像和增强后的图像显示在同一窗口中。注意,这只是一个基本示例,可以根据需要进行修改和调整。
2023-07-19 21:34:192

matlab问题

【原始代码】[c, s] = wavedec(x, lev, wname);【修改为】[c, s] = wavedec2(x, lev, wname);【原因】你用1维小波还是2维小波?因为是图片,所以应该用2维。就这么简单。qihongshao@163.com免费解答。
2023-07-19 21:34:341

小波变换图像处理

生活中需要对一些图像进行处理,比如压缩,去噪,图像增强,图像锐化与钝化,图像融合,图像的分解等,以便对于图像的成分,边缘等细节信息有更加深刻的认识,小波分析由于其固有的时频特性,既可以对图像进行时域分析,也可以对图像进行频率分析,这使得小波分析在图像处理中得到了广泛的应用,本节对其中一些图像处理功能及函数进行讲解:wavedec2函数用于对图像进行二维小波分解,其函数调用格式如下:[c,l]=wavedec2(X,n,"wname");其中,X表示原始图像,n表示分解层数,wname表示小波函数,c表示各层系数,l表示各层系数对应的长度ddencmp用于得到全局阀值,其调用格式如下:[thr,sorh,keepapp]=ddencmp(‘cmp","wp",X);[thr,sorh,keepapp]=ddencmp(‘cmp","wv",X);其中cmp表示压缩,wp表示小波包,wv表示小波,X表示原始信号,thr表示阀值,sorh表示阀值类型,s表示软阀值,h表示硬阀值,keepapp=1表示保持近似系数不变wdencmp用于对数据或图像进行阀值去噪或压缩,其调用格式如下:[xcomp,c1,l1,perf0,perfl2]=wdencmp(‘gbl",c,l,"wname",n,thr,sorh,keepapp);glb表示利用全局阀值,perf0表示恢复比,perfl2表示压缩比示例:利用二维小波对图像进行压缩编写对应的m文件如下: clc; load woman; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"sym4");%%获取全局阀值%% [thr,sorh,keepapp]=ddencmp("cmp","wp",X); [xcmp,c1,l1,perf0,perfl2]=wdencmp("gbl",c,l,"sym4",3,thr,sorh,keepapp); subplot(1,2,2) imshow(xcmp,map); title("压缩后图片");程序运行结果如下图:小波变换用与图像去噪,噪声会影响图像处理的输入,采集,处理的各个环节及输出结果等全过程,因此对于图像的噪声处理是一个不可忽略的重要的问题,去噪已经成为图像处理中不可或缺的一部分示例:对图像进行二维小波去噪编写对应的m文件如下: load julia;%%产生噪声信号%% init=3718025452; rand("seed",init); xnoise=X+8*rand(size(X)); colormap(map); subplot(1,3,1) imshow(X,map); title("原始信号") subplot(1,3,2) imshow(xnoise,map); title("含有噪声的信号");%%获取全局阀值%% [thr,sorh,keepapp]=ddencmp("den","wp",xnoise); [xden,c1,l1]=wdencmp("gbl",xnoise,"sym4",3,thr,sorh,keepapp); subplot(1,3,3) imshow(xden,map); title("去除噪声后信号");程序运行结果如下图:小波分析用于图像增强,图像增强是对图像进行一定处理,使图像比原图更加清晰,视觉效果更好。示例:利用小波分析对图像进行增强编写对应的m文件如下: clc; load facets; subplot(1,2,1) imshow(X,map); title("原始信号"); [c,l]=wavedec2(X,3,"sym4"); sizec=size(c); fori=1:sizec(2) if(c(i)>250) c(i)=2*c(i); else c(i)=0.5*c(i); end end y=waverec2(c,l,"sym4"); subplot(1,2,2) imshow(y,map); title("增强图像");程序运行结果如下图:图像钝化图像的钝化可以在时域中,也可以在频域中,在时域中处理较为简单,只需要加一个平滑滤波器,使图像中每个点与其邻点做平滑处理即可,在此主要说明图像钝化在频域中的处理。图像钝化是为了突出低频信息,弱化高频信息。示例:对图像进行频域钝化处理,编写对应的m文件如下: load chess; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"db4"); sizec=size(c); fori=1:sizec(2) if(c(i)>280) c(i)=c(i)*2; else c(i)=c(i)*0.5; end end y=waverec2(c,l,"db4"); subplot(1,2,2) imshow(y,map); title("采用小波方法钝化图像");程序运行结果如下图:图像锐化,与图像钝化刚好相反,是为了突出高频信息,弱化低频信息,从快速变化的成分中分离出系统边界成分,以便进一步识别或者分割等操作。示例:对图像进行锐化处理编写对应的m文件如下: load chess; subplot(1,2,1) imshow(X,map); title("原始图像"); [c,l]=wavedec2(X,3,"db5"); sizec=size(c);%%突出高频信息,弱化低频信息%% fori=1:sizec(2) if(abs(c(i))<280) c(i)=c(i)*2; else c(i)=c(i)*0.5; end end y=waverec2(c,l,"db5"); subplot(1,2,2) imshow(y,map); title("采用小波方法锐化图像");程序运行结果如下图:小波分析用于图像融合图像融合是将同一图像的两个部分或者不同图像合成一张图,以便合成之后的图形比原来更容易理解。示例:利用二维小波变换将两幅图像融合在一起编写对应的m文件如下: clear all; load bust; X1=X; map1=map; load woman; X2=X; map2=map; subplot(1,3,1) imshow(X1,map1); title("第一幅图像"); subplot(1,3,2) imshow(X2,map2); title("第二幅图像");%%对第二幅图形低频部分和高频部分进行处理%% fori=1:256 forj=1:256 if(X2(i,j)>120) X2(i,j)=X2(i,j)*2; else X2(i,j)=X2(i,j)*0.5; end end end [c1,l1]=wavedec2(X1,3,"sym4"); [c2,l2]=wavedec2(X2,3,"sym4");%%对图像进行融合%% c=c1+c2;%%减少图像的亮度%% c=c*0.5; y=waverec2(c,l1,"sym4"); subplot(1,3,3) imshow(y,map2); title("融合后图像");程序运行结果如下图:小波分析用于图像分解对图像分解的目地在于可以更好的观察图像的细节,对图像做出更好的判断,swt2函数用于对图像进行分解,其调用格式如下:[sa,sh,sv,sd]=swt2(X,N,"wname");其中sa,sh,sv,sd分别表示近似系数,水平系数,竖直系数,对角系数,x分解图像,N分解的层数,wname表示小波基名称示例:对图像进行分解编写对应的m文件如下: clear all; load woman; [sa,sh,sv,sd]=swt2(X,3,"db3"); s=1; fori=1:3 subplot(3,4,s) image(wcodemat(sa(:,:,i),192)); title(["第",num2str(i),"层近似系数"]); subplot(3,4,s+1) image(wcodemat(sh(:,:,i),192)); title(["第",num2str(i),"层水平系数"]); subplot(3,4,s+2) image(wcodemat(sv(:,:,i),192)); title(["第",num2str(i),"层竖直系数"]); subplot(3,4,s+3) image(wcodemat(sd(:,:,i),192)); title(["第",num2str(i),"层对角系数"]); s=s+4; end程序运行结果如下图:
2023-07-19 21:34:491

matlab 波形如何去噪

根据噪音的特征,有两种主要的滤噪信号处理技术:频率域和时空域(time-space domain methods)。如果噪音和有效信号在频率域上具有不同的区域,那么通常使用频率域滤噪方法,比如低通滤波、带通滤波等等。另外一种,如果噪音分布在整个频率域范围内,那么通过常规的选择频率带宽的方法就不能有效的过滤噪音,instead,一种基于噪音统计特征的状态空间方法被使用,这种在时间域上的过滤设计的例子有:Wiener filter, Kalman filter, Savitzky-Golay filter等等。[c,l]=wavedec(s,3,"db1");[thr,sorh,keepapp]=ddencmp("den","wv",s);s2=wdencmp("gbl",c,l,"db1",3,thr,sorh,keepapp);%默认阈值去噪 db1,是yi,不是L;gbl,是L,不是yi[c,l]=wavedec(s,3,"db1");ca3=appcoef(c,l,"db1",3);cd3=detcoef(c,l,3);cd2=detcoef(c,l,2);cd1=detcoef(c,l,1);cdd3=zeros(1,length(cd3));cdd2=zeros(1,length(cd2));cdd1=zeros(1,length(cd1));c1=[ca3 cdd3 cdd2 cdd1];s1=waverec(c1,l,"db1");
2023-07-19 21:34:582

可以分享一下基于emd的小波去噪程序吗?谢谢啦。

供参考: lev=5; [c,l]=wavedec(x,lev,wname); sigma=wnoisest(c,l,1); alpha=2; thr1=wbmpen(c,l,sigma,alpha) [thr2,nkeep]=wdcbm(c,l,alpha) xd1=wdencmp("gbl",c,l,wname,lev,thr1,"s",1); [xd2,cxd,lxd,perf0,perfl2]=wdencmp("lvd",c,l,wname,lev,thr2,"h"); [thr,sorh,keepapp]=ddencmp("den","wv",x) xd3=wdencmp("gbl",c,l,wname,lev,thr,"s",1); subplot(411);plot(x);title("原始信号","fontsize",12); subplot(412);plot(xd1);title("使用penalty阈值降噪后信号","fontsize",12); subplot(413);plot(xd2);title("使用Birge-Massart阈值降噪后信号","fontsize",12); subplot(414);plot(xd3);title("使用缺省阈值降噪后信号","fontsize",12);s=[-1.58 0.42 0.46 0.78 -0.49 0.59 -1.3 -1.42 -0.16 -1.47 -1.35 0.36 -0.44 -0.14 1 -0.5 -0.2 -0.06 -0.6 0.42 -1.52 0.51 0.76 -1.5 0.16 -1.29 -0.65 -1.48 0.6 -1.65 -0.55]; [C,L]=wavedec(s,1,"db3"); ca1=wrcoef("a",C,L,"db3",1); x1=ca1 ;[C,L]=wavedec(s,2,"db3"); ca2=wrcoef("a",C,L,"db3",2); x2=ca2 ;[C,L]=wavedec(s,3,"db3"); ca3=wrcoef("a",C,L,"db3",3); x3=ca3 ;[C,L]=wavedec(s,4,"db3"); ca4=wrcoef("a",C,L,"db3",4); x4=ca4 ;cg = wrcoef("a",C,L,"sym5",1); x5=cg;p=1:31; subplot(6,1,1);plot(p,s);ylabel("s"); subplot(6,1,2);plot(p,x1);ylabel("ca1"); subplot(6,1,3);plot(p,x2);ylabel("ca2"); subplot(6,1,4);plot(p,x3);ylabel("ca3"); subplot(6,1,5);plot(p,x4);ylabel("ca4") subplot(6,1,6);plot(p,x5);ylabel("ca5") %加入的重构,是不是你要的?
2023-07-19 21:35:051

请问,磁生电有多少种方式??

磁生电就两种方式:感生和动生。变化的磁场产生电场,使闭合电路产生感应电流,是感生;闭合电路部分导体切割磁感线产生感应电流,是动生。产生感应电流的条件是:①一部分导体在磁场中做切割磁感线运动.即导体在磁场中的运动方向和磁感线的方向不平行;②电路闭合.在磁场中做切割磁感线运动的导体两端产生感应电压,是一个电源.若电路闭合,电路中就会产生感应电流.若电路不闭合,电路两端有感应电压,但电路中没有感应电流。扩展资料:把线圈的两端接在电流表上,组成闭合电路.当向线圈中插入或拔出磁铁时,电流表的指针偏转,表明电路中产生了感应电流。这是因为向线圈中插入磁铁时,穿过线圈的磁通量增大,从线圈中拔出磁铁时,穿过线圈的磁通量减小。穿过线圈的磁通量发生了变化,因而产生了感应电流。向线圈中插入或拔出磁铁的过程可以等效为导体切割磁力线的过程。磁通量的变化只是产生感应电流的表层的原因,真正的原因还是线圈中的电荷受洛仑兹力运动。参考资料来源:百度百科-磁生电
2023-07-19 21:32:301

东方电子商务园是市级孵化器吗

东方电子商务园不是市级孵化器。根据查阅相关资料信息,截至2022年11月5日,东方电子商务园还没有升级为市级孵化器。
2023-07-19 21:32:341

怎么吐烟圈

吐烟圈的方法如下:首先不完全吸入烟,让烟停在自己的咽喉处,而不仅仅是在嘴里。闭上嘴,卷起舌头,使舌头在嘴里尽量靠近底部,这样可以方便烟从双唇间吐出。把嘴唇鼓起来,呈“O”型,就像发“呜”的音。口型的大小,自己感觉舒服就行。喉咙缩紧,把空气挤出来,这样就可以吐出烟圈。单手推烟圈有些玩家在练习的时候,手切入速度特别慢,可能是因为害怕将烟圈撞散,导致烟圈运行的速度不够。还有些就是速度过快,导致一出手就将烟圈推散,在练的时候,可以先慢慢的推,感受手切入的速度。同时注意与烟圈保持5CM的距离,一旦这种推圈的感觉对了,就可以稍稍加快手切入的速度,最后做到咳圈推圈,而不是见圈推圈。
2023-07-19 21:32:351

阴阳人与正常人有什么区别

1具备男女性生殖器而不完全发育的人为阴阳人。 对于真、假两种阴阳人都可以医治,但是应该及早发现和治疗。特别是真阴阳人,及早发现后,医生可以根据其生理情况,选择一种发育较好的生理功能进行治疗,将其多余的器官去掉,或将其不完备的器官进行修复。这样,有利于他(她)的发育和成长,让其享受一个正常人的生活和权利。 2人妖,主要指的是专事表演的从小服用雌性激素而发育的男性。 其中部分是变性人(外生殖器做了手术),而大部分仍然是“男人”,只是胸部隆起,腰肢纤细,完全丧失了生育能力(仍然能够射精),大多人妖都很漂亮,唯一外表上和女性区别是通常手脚较大,并可通过声音鉴别。这一类人多集中在泰国,我们称之为“人妖”。
2023-07-19 21:32:362

ui设计是什么?

  1.什么是UI设计?  《百度百科》中对UI设计作了这样的定义:“UI即User Interface(用户界面)的简称,UI设计是指对软件的人机交互、操作逻辑、界面美观的整体设计。”  用户界面(User interface) ,用户界面是一个比较广泛的概念,指人和机器互动过程中的界面,以手机为例,手机上的界面都属于用户界面。我们通过这个界面向手机发出指令,手机根据指令产生相应的反馈。设计这套界面视觉的人称呼为UI设计师。    我们一般所说的UI设计多指UI视觉设计,主要负责APP、Web、H5等页面的色彩、布局、icon、字体方面的设计工作。但随着互联网的不断发展,纯视觉的工作已经开始日益减少,行业要求UI设计师也要懂点交互设计和产品方面的知识,即懂用户体验设计(User experience),国内称UE,国外叫UX(全栈设计师甚至要懂代码)。UI设计最后产出物是高保真视觉稿+页面标注+切图。  出于成本考虑,有的中小型公司和初创型公司也会让UI设计师负责一些平面类的设计,如:海报、宣传册、LOGO等。所以,UI设计师如果会平面设计或手绘则是加分项,但不是必须项,不会也不用担心。  UI设计是近年来关注度非常高的一个行业,UI设计师也是引发了很多人的关注。UI设计主要是图形设计和交互设计。图形设计就是传统意义上的美工,以前UI设计不受重视,所以美工地位不高,现在随着UI设计的兴起,美工也被称为UI设计师。其实UI设计师不是单纯意义的美术工人,而是软件产品的“外形”设计师。交互设计主要设计软件的操作流程、树状结构、操作规范等。  在这个颜值当道的年代,UI设计师的水平高低直接决定了互联网产品(不伦手机还是PC)的颜值。撇开产品的质量,用户接触产品的第一印象,就是UI设计师的杰作,对于很多受众来说,一旦产品的颜值/第一印象达不到标准/审美,那下一步就是直接拜拜了。  一个好的UI设计师,能给予产品一张标致的脸,能赋予有趣的灵魂新的价值,所以说UI设计绝不是打杂美工。    2.UI设计师的分类:  在PC端从事网页设计,我们称呼WUI(Web User Interface)设计师或者网页设计师。PC端UI设计,也就是电脑用户,界面指的就是电脑上的操作界面。像电脑版的QQ,微信,PS等软件和网页的一些按钮图标等,都属于PC端UI设计。    在移动端,从事移动设计的称呼为GUI(Graphics User Interface)设计师,因为移动端会有大量图形用户界面设计。也就是说手机上的所有界面都是移动端UI设计。比如微信聊天界面,QQ聊天界面,手机桌面,手机上看到的所有图标界面点了后会有反应都可以理解成移动端UI设计。    另外还有游戏UI,和其它UI ,比如像VR界面、AR界面、ATM界面、一些智能设备的界面,比如智能电视、车载系统等等,用户较少,但又需要,未来有可能很火,有可能保持现状。    3.学习UI设计需要学习哪些软件?  软件的掌握是一种硬技能,不管我们有多好的想法,都需要好的软件掌握来实现。我们需要掌握软件的基础操作,例如Photoshop中的形状工具、钢笔工具、文字工具、图层样式 。也需要了解曲线、色阶这部分图像调整功能。下面介绍一些在UI设计中常见的软件。  Photoshop:是一款老牌像素处理软件。主要处理以像素所构成的数字图像。在图像、图形、文字、视频、出版等各方面都有涉及。各种设计行业图形处理都会用到Photoshop,可以满足UI界面设计的日常需要。    Illustrator :是矢量软件,广泛应用于印刷出版、海报书籍排版、专业插画、多媒体图像处理和互联网页面的制作等。在处理一些及其复杂的图形路径时候,可以考虑使用Illustrator ,也有设计师所有的图标在Illustrator 中完成,然后连接嵌入到Photoshop。    After Effects:现在扁平化设计成为主流,所以动效设计成为不可或缺的一部分。可通过这个软件设计动效平滑切换界面。    Axure RP:是一个专业的快速原型设计工具。让负责定义需求和规格、设计功能和界面的专家能够快速创建应用软件或Web网站的线框图、流程图、原型和规格说明文档。
2023-07-19 21:32:378

现我持有2000年10月31号的清远市金泰化纤股权证股票存折,如何办理相关的手续。

你应该去证券交易所了解锦龙股份公司当年是怎么样收购金泰的,看看股权当年过户有什么限止,比如:时间,股份等换比率..等等.股权是没有过期的,如果没有过户时间规定,估计是按现在锦龙股份的价格换现的.
2023-07-19 21:32:372

杭州九堡东方电子商务园几号放假

21号。杭州九堡东方电子商务园会根据国务院假日办规定结合公司实际情况放假的,预计2023年1月21号放假,另外东方电子商务园位于杭州江干科技经济园内,2010年11月被市委、市政府认定为杭州市文化创意产业园。
2023-07-19 21:32:411

天生的阴阳人是什么意思。。。据说在古代印度的

就是天生有男女两套生殖系统,但只有一种具有生殖能力。这是一种生殖系统畸形。
2023-07-19 21:32:441

深圳市钻通工程机械股份有限公司怎么样?

深圳市钻通工程机械股份有限公司是2007-12-08在广东省深圳市宝安区注册成立的股份有限公司(非上市),注册地址位于深圳市坪山区坪山街道锦龙大道9号。深圳市钻通工程机械股份有限公司的统一社会信用代码/注册号是914403006700487240,企业法人王鹏,目前企业处于开业状态。深圳市钻通工程机械股份有限公司的经营范围是:非开挖工程机械、导向钻机、导向仪器、钻具及管线设备的制造、销售,非开挖铺管技术开发、非开挖铺管技术咨询;经营进出口业务(法律、行政法规、国务院决定禁止的项目除外,限制的项目须取得许可后方可经营)。^。在广东省,相近经营范围的公司总注册资本为6321288万元,主要资本集中在5000万以上和1000-5000万规模的企业中,共2142家。本省范围内,当前企业的注册资本属于优秀。深圳市钻通工程机械股份有限公司对外投资2家公司,具有0处分支机构。通过百度企业信用查看深圳市钻通工程机械股份有限公司更多信息和资讯。
2023-07-19 21:32:292

东方电子商务园属于什么社区

东方电子商务园不属于社区。根据查询网上相关公开信息显示东方电子商务园东至九盛路、南至九和路、西至规划河道、北至德胜快速干道,是杭州江干科技经济园区的园中园,不属于社区,是杭城东部的新门户。东方电子商务园是以电子商务为发展主线,重点构建以B2B、B2C为核心的电子商务交易技术平台。
2023-07-19 21:32:281

通常男人说女人是阴阳人是什么意思?

就是讽刺这个女的太男性化,不男不女的。阴阳人其实是太监的另一种叫法
2023-07-19 21:32:283

ui设计是什么

UI 设计(或称界面设计)是指对软件的人机交互、操作逻辑、界面美观的整体设计,也叫界面设计。UI 设计分为实体 UI 和虚拟UI,互联网说的 UI 设计是虚拟 UI, UI 即User Interface(用户界面)的简称。UI 设计师的职能大体包括三方面:一是图形设计,软件产品的产品“外形”设计。二是交互设计,主要在于设计软件的操作流程、树状结构、操作规范等。三是用户测试/研究,这里所谓的“测试”,其目标恰在于测试交互设计的合理性及图形设计的美观性,主要通过以目标用户问卷的形式衡量 UI 设计的合理性。UI设计目前的前景还是很不错的,很多企业都缺少 UI 设计师。而且可以看到的是,现在社会的发展,更多的智能机和智能机器人研发出现,这些都离不开UI 设计师。所以说 UI 设计的是很有前途的,是不会失业的。而且 UI 设计门槛不高,要入门也不难的。从工作内容来说,UI设计在当前的互联网领域、科技领域可以说无处不在,好的 UI 设计能够明显提升用户的使用体验,从而给产品带来更多的附加值,所以UI 设计对于互联网产品是非常重要的。目前 UI 设计通常分为两个大的工作方向,一个是交互设计,另一个是视觉设计。总的来说,UI 设计相比较于编程而言,还是非常适合大众学的并且就业前景很广阔。学完 UI 设计,能获得一份稳定而又不失乐趣的工作,同时有利于追求更高品质的生活,在艺术领域可以获得更多的启迪。
2023-07-19 21:32:271

什么是磁生电

磁生电是法拉第发现的。原理:闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。导体的两端接在电流表的两个接线柱上,组成闭合电路,当导体在磁场中向左或向右运动,切割磁力线时,电流表的指针就发生偏转,表明电路中产生了电流.这样产生的电流叫感应电流。我们知道,穿过某一面积的磁力线条数,叫做穿过这个面积的磁通量。当导体向左或向右做切割磁力线的运动时,闭合电路所包围的面积发生变化,因而穿过这个面积的磁通量也发生了变化。导体中产生感应电流的原因,可以归结为穿过闭合电路的磁通量发生了变化。可见,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。这就是产生感应电流的条件。感应电流的方向:导体向左或向右运动时,电流表指针的偏转方向不同,这表明感应电流的方向跟导体运动的方向有关系。如果保持导体运动的方向不变,而把两个磁极对调过来,即改变磁力线的方向,可以看到,感应电流的方向也改变。可见,感应电流的方向跟导体运动的方向和磁力线的方向都有关系.感应电流的方向可以用右手定则来判定:伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁力线垂直穿入手心,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向
2023-07-19 21:32:231

杭州上城九堡东方电子商务园怎么样

杭州上城九堡东方电子商务园好。根据查询相关公开信息显示:杭州上城九堡东方电子商务园属于九堡电商直播聚集之地,房型方正,精装修,朝向好,交通便利,地铁1号线直通,多条公交路线,周边配套设施完善,物业管理良好,园区环境优美,故杭州上城九堡东方电子商务园好。
2023-07-19 21:32:211

什么样子才算是阴阳人

人类雌性同体又称阴阳人,俗称二椅子,表明面上你还真不一定看得出来,必须验明正身甚至查验DNA。无论是反串的演员,还是异性化的人都不一定就是阴阳人。而且这种可能性很小,因为人必定不是雌雄同体的动物,阴阳人是一种变异的个例,只有几百万分之一的几率,阴阳人正常的几率也很小,虽然长有两性器官,但是可能一个完全一个不完全,或者两个都不完全,也可能内外不符,还可能表现出病理特征。而健康的拥有完全的两性器官的人,全世界只发现了几例,当然由于今天医学发达,不排除人原因制造的可能,而这也不稀奇,比如泰国人妖自古有之。建议你去泰国见识见识。
2023-07-19 21:32:191

尾号12的股票代号的公司哪些是重组过的?

000012,南玻A,无重组000612,焦作万方,无重组000712,锦龙股份,无重组000812,陕西金叶,无重组000912,泸天化,无重组002012,凯恩股份,无重组002112,三变科技,无重组002212,南阳股份,无重组600012,皖通高速,无重组600112,长征电气,无重组600212,*ST江泉,无重组600312,平高电气,无重组600512,腾达建设,无重组600612,中国铅笔,无重组600712,南宁百货,重组失败600812,华北制药,无重组
2023-07-19 21:32:183