- 陶小凡
-
牛顿迭代法计算矩阵近似逆
一 问题
设A为主对角占优矩阵,用牛顿迭代法求矩阵A的近似逆。
二 实验目的:
熟悉MATLAB的编程环境,掌握MATLAB的程序设计方法,会运用数值分析课程中的牛顿迭代法求解矩阵的近似逆。
三 实验原理:
迭代公式为:Xn+1 = Xn(2I – AXn ),迭代计算的收敛要求为:||I –AX0|| < 1。本次实验中的对角占优矩阵A= ,根据迭代收敛的条件,取A的对角元组成的矩阵X0=diag([1/10,1/20,1/30,1/40,1/50]),可以保证迭代收敛。采用循环语句实现迭代过程。
四 MATLAB程序及注释:
A=[10,1,2,0,1;2,20,1,0,1;1,3,30,2,0;2,3,0,40,1;5,6,1,0,50];%输入 主对角占优的五阶矩阵
X0=diag([1/10,1/20,1/30,1/40,1/50]); %用对角元构造近似逆
E=eye(5); %生成5*5阶单位矩阵
format short e; %五位浮点数表示
for k=1:6
Xn=X0*(2*E-A*X0);
er=norm(E-A*X0,inf)
X0=Xn; %牛顿迭代计算
end
format %五位定点数表示
Xn %显示A的近似逆
Y=inv(A) %显示A的逆矩阵
五 实验数据结果及分析:
程序运行后,显示如下:
er =
0.8333
er =
0.1543
er =
0.0104
er =
3.9879e-005
er =
5.8016e-010
er =
2.2833e-016
Xn =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
Y =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
观察实验数据,A矩阵的近似逆在经过六次的迭代后求得的近似逆与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全一致。
六 实验结论:
实验数据的有效数位增长很快,经过六次迭代误差的数量级就达到10-16,收敛速度很快,第四次与第五次迭代符合二阶收敛速度。本实验中计算出的矩阵近似逆与与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全相同的原因估计是①A矩阵是严格主对角占优矩阵;②MATLAB中inv(A)就是运用的牛顿迭代法。
七 标记:
①迭代解法用于解大型稀疏(此矩阵中0元素较多)方程组或矩阵。②A矩阵主对角元均不为0,且主对角元的值大于该行其他所有元素的绝对值之和.
牛顿迭代法计算矩阵近似逆
一 问题
设A为主对角占优矩阵,用牛顿迭代法求矩阵A的近似逆。
二 实验目的:
熟悉MATLAB的编程环境,掌握MATLAB的程序设计方法,会运用数值分析课程中的牛顿迭代法求解矩阵的近似逆。
三 实验原理:
迭代公式为:Xn+1 = Xn(2I – AXn ),迭代计算的收敛要求为:||I –AX0|| < 1。本次实验中的对角占优矩阵A= ,根据迭代收敛的条件,取A的对角元组成的矩阵X0=diag([1/10,1/20,1/30,1/40,1/50]),可以保证迭代收敛。采用循环语句实现迭代过程。
四 MATLAB程序及注释:
A=[10,1,2,0,1;2,20,1,0,1;1,3,30,2,0;2,3,0,40,1;5,6,1,0,50];%输入 主对角占优的五阶矩阵
X0=diag([1/10,1/20,1/30,1/40,1/50]); %用对角元构造近似逆
E=eye(5); %生成5*5阶单位矩阵
format short e; %五位浮点数表示
for k=1:6
Xn=X0*(2*E-A*X0);
er=norm(E-A*X0,inf)
X0=Xn; %牛顿迭代计算
end
format %五位定点数表示
Xn %显示A的近似逆
Y=inv(A) %显示A的逆矩阵
五 实验数据结果及分析:
程序运行后,显示如下:
er =
0.8333
er =
0.1543
er =
0.0104
er =
3.9879e-005
er =
5.8016e-010
er =
2.2833e-016
Xn =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
Y =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
观察实验数据,A矩阵的近似逆在经过六次的迭代后求得的近似逆与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全一致。
六 实验结论:
实验数据的有效数位增长很快,经过六次迭代误差的数量级就达到10-16,收敛速度很快,第四次与第五次迭代符合二阶收敛速度。本实验中计算出的矩阵近似逆与与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全相同的原因估计是①A矩阵是严格主对角占优矩阵;②MATLAB中inv(A)就是运用的牛顿迭代法。
七 标记:
①迭代解法用于解大型稀疏(此矩阵中0元素较多)方程组或矩阵。②A矩阵主对角元均不为0,且主对角元的值大于该行其他所有元素的绝对值之和。
- 小菜G的建站之路
-
牛顿迭代法计算矩阵近似逆
一 问题
设A为主对角占优矩阵,用牛顿迭代法求矩阵A的近似逆。
二 实验目的:
熟悉MATLAB的编程环境,掌握MATLAB的程序设计方法,会运用数值分析课程中的牛顿迭代法求解矩阵的近似逆。
三 实验原理:
迭代公式为:Xn+1 = Xn(2I – AXn ),迭代计算的收敛要求为:||I –AX0|| < 1。本次实验中的对角占优矩阵A= ,根据迭代收敛的条件,取A的对角元组成的矩阵X0=diag([1/10,1/20,1/30,1/40,1/50]),可以保证迭代收敛。采用循环语句实现迭代过程。
四 MATLAB程序及注释:
A=[10,1,2,0,1;2,20,1,0,1;1,3,30,2,0;2,3,0,40,1;5,6,1,0,50];%输入 主对角占优的五阶矩阵
X0=diag([1/10,1/20,1/30,1/40,1/50]); %用对角元构造近似逆
E=eye(5); %生成5*5阶单位矩阵
format short e; %五位浮点数表示
for k=1:6
Xn=X0*(2*E-A*X0);
er=norm(E-A*X0,inf)
X0=Xn; %牛顿迭代计算
end
format %五位定点数表示
Xn %显示A的近似逆
Y=inv(A) %显示A的逆矩阵
五 实验数据结果及分析:
程序运行后,显示如下:
er =
0.8333
er =
0.1543
er =
0.0104
er =
3.9879e-005
er =
5.8016e-010
er =
2.2833e-016
Xn =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
Y =
0.1023 -0.0036 -0.0066 0.0003 -0.0020
-0.0097 0.0509 -0.0010 0.0001 -0.0008
-0.0022 -0.0047 0.0336 -0.0017 0.0002
-0.0042 -0.0035 0.0004 0.0250 -0.0003
-0.0090 -0.0057 0.0001 -0.0000 0.0203
观察实验数据,A矩阵的近似逆在经过六次的迭代后求得的近似逆与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全一致。
六 实验结论:
实验数据的有效数位增长很快,经过六次迭代误差的数量级就达到10-16,收敛速度很快,第四次与第五次迭代符合二阶收敛速度。本实验中计算出的矩阵近似逆与与MATLAB中的inv(A)所求得的逆矩阵在四位有效数字时完全相同的原因估计是①A矩阵是严格主对角占优矩阵;②MATLAB中inv(A)就是运用的牛顿迭代法。
七 标记:
①迭代解法用于解大型稀疏(此矩阵中0元素较多)方程组或矩阵。②A矩阵主对角元均不为0,且主对角元的值大于该行其他所有元素的绝对值之和。
- 寸头二姐
-
这是个复杂的问题