- ardim
-
数学上代表图像与x轴所围成的面积是1,
概率上是代表气体的速率在0~正无穷之间的概率是100%。
满意么?不满意的话 再问
- 血莲丿红尘
-
从V1到V2速率区间的分子数占总分子数的百分比
相关推荐
麦克斯韦速率分布
麦克斯韦速率分布如下:在某一时刻,某一特定分子的速度大小是不可预知的,且运动方向也是随机的。但在一定的宏观条件下,对大量气体分子而言,它们的速度分布却遵从一定的统计规律。麦克斯韦在1859年用概率论证明了在平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速率分布律,并给出了它的分布函数表达式。定义:分子动理论认为,气体系统内大量分子无规则热运动导致分子之间频繁地相互碰撞,分子以大小不同的速率向各个方向运动,在频繁的碰撞过程中,分子间不断交换动量和能量,使每一分子的速度不断变化。处于平衡态的气体,每个分子瞬时速度的大小、方向都在随机地变化,但就大量分子的整体来看,在一定的条件下,气体分子的速度分布也遵从一定的统计规律。这个规律也叫麦克斯韦速率分布律。速率分布函数:按统计假设,各种速率下的分子都存在,可以用某一速率区间内分子数占总分子数的百分比来表示分子按速率的分布规律。1.将速率从0→∞分割成很多相等的速率区间。例如速率间隔取100m/s ,整个速率分为0—100;100—200;…等区间。2.总分子数为N,在v→v+△v区间内的分子数为△N在v→v+△v区间内的概率为△Ni/N。则可了解分子按速率分布的情况。2023-07-24 06:45:481
麦克斯韦速度分布律推导过程
麦克斯韦速度分布律推导过程是在平衡状态下,当分子的相互作用可以忽略时,分布在任一速率区间v—v+v间的分子数dn占总分子数n的比率(或百分比)为dn / n 。麦克斯韦—玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦—玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。克斯韦—玻尔兹曼分布的物理应用:麦克斯韦—玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。麦克斯韦—玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。麦克斯韦—玻尔兹曼分布可以用统计力学来推导(参见麦克斯韦—玻尔兹曼统计)。它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦—玻尔兹曼分布提供了气体状态的非常好的近似。2023-07-24 06:46:031
麦克斯韦分布率是什么?
指平衡状态下理想气体分子速度分布的统计规律。1859年,J.C.麦克斯韦首先获得气体分子速度的分布规律,尔后,又为L.玻耳兹曼由碰撞理论严格导出。处于平衡状态下的理想气体分子以不同的速度运动,由于碰撞,每个分子的速度都不断地改变,使分子具有各种速度。因为分子数目很大,分子速度的大小和方向是无规的,所以无法知道具有确定速度υ的分子数是多少,但可知道速度在υ1与υ2之间的分子数是多少。麦克斯韦首先得到,在平衡状态下,当气体分子间相互作用可以忽略时,分布在任一速率区间υ~υ+dυ内的分子数与总分子数的比率为即速率分布函数为式中T是气体的温度,m是分子的质量,k是玻耳兹曼常数2023-07-24 06:46:381
大学物理,麦克斯韦速率分布率
速率分布函数 f(v) = dN / (N dv),是分布在速率 v 附近单位速率区间的分子数占总分子数的百分比。(1) f(v) dv = dN / N,是分布在速率 v 附近 dv 速率区间的分子数占总分子数的百分比。(2)N f(v) dv = dN, 是分布在速率 v 附近 dv 速率区间的分子数。(3)是分布在速率 v1 到 v1 速率区间的分子数占总分子数的百分比。(4)是速率 v1 到 v1 速率区间的分子的平均速率。(5)是 1/v 的平均值(一般涉及不到求这个值)。附注:我的回答常常被“百度知道”判定为违反“回答规范”,但是我一直不知道哪里违规,也不知道对此问题的回答是否违规。2023-07-24 06:46:471
麦克斯韦分布的概率密度
概率密度fM(v)等于f(vx)乘以f(vy)乘以f(vz)。分子运动速度的绝对值服从麦克斯韦分布。麦克斯韦磁通量单位。为纪念英国物理学家麦克斯韦(JamesClerkMaxwell)而命名。磁场的磁感应强度为1高斯时,垂直于磁力线方向的平面上每平方厘米通过的磁通量就是1麦克斯韦。简称麦。2023-07-24 06:46:541
麦克斯韦速率分布中位数怎么求公式
麦克斯韦速率分布中位数根据最概然速率、平均速率公式进行求解。麦克斯韦速率方程指的是理想气体分子速度遵循麦克斯韦速率分布律所得到的方程,平衡态下,理想气体分子速度分布是有规律的,这个规律叫麦克斯韦速度分布律。不考虑分子速度的方向,则叫麦克斯韦速率分布律,所得的方程即为麦克斯韦速率方程。2023-07-24 06:47:011
麦克斯韦速度分布律的正文
1920年O.斯特恩最先用原子束(分子束)实验直接验证了麦克斯韦速率分布律的正确性。从麦克斯韦速率分布函数出发,可以求出气体分子的最可几速率、均方根速率和平均速率。 最概然速率 ,是系统中任何分子最有可能具有的速率,对应于的最大值或众数。要把它求出来,我们计算,设它为零,然后对求解: 得出:其中R是气体常数,M=NAm是物质的摩尔质量。对于室温(300K)下的氮气(空气的主要成分),可得 =422m/s。 平均速率 平均速率是速率分布的数学期望值: 均方根速率 均方根速率vrms是速率的平方的平均值的平方根: 三种典型速率的关系 它们具有以下的关系: 1872年,玻耳兹曼创立了系统的气体输运理论,从研究非平衡态分布函数着手,建立了H定理(见统计物理学)。玻耳兹曼根据H定理证明,在达到平衡状态时,气体分子的速度分布趋于麦克斯韦分布。2023-07-24 06:47:081
麦克斯韦速度分布与速率分布分别表示分子处于速度空间中的什么范围内的概率
在平衡状态下,当分子的相互作用可以忽略时,分布在任一速率区间v~v+△v间的分子数dN占总分子数N的比率(或百分比)为dN / N 。 dN / N是v 的函数,在不同速率附近取相等的区间,此比率一般不相等。当速率区间足够小时(宏观小,微观大),dN / N 还应与区间大小成正比: 其中f(v)是气体分子的速率分布函数。分布函数f(v)的物理意义是:速率在 v 附近,单位速率区间的分子数占总分子数的比率。 分布函数f(v)满足归一化条件: 大量分子的系统处于平衡态时,可以得到速率分布函数的具体形式: 式中T是热力学温度,m为分子质量,k为玻尔兹曼常数。上式就是麦克斯韦速率分布律。 麦克斯韦速率分布是大量分子处于平衡态时的统计分布,也是它的最概然分布。大量分子的集合从任意非平衡态趋于平衡态,其分子速率分布则趋于麦克斯韦速率分布,其根源在于分子间的频繁碰撞。 上图是麦克斯韦速率分布函数f(v)示意图,曲线下面宽度为 dv 的小窄条面积等于分布在此速率区间内的分子数占总分子数的比率dN/N 。 我们可以看到:同一种理想气体在平衡状态下,温度升高时速率分布曲线变宽、变平坦,但曲线下的总面积不变。随着温度的升高,速率较大的分子在分子总数中的比率增大。同一温度下,分子质量m越小,曲线越宽越平坦,在分子总数中速率较大的分子所占比率越高。2023-07-24 06:47:301
二维平面的麦克斯韦速率分布
二维平面的麦克斯韦速率分布是由麦克斯韦从理论推出其公式,气体分子速率分布定律的公式。根据查询相关公开信息显示1859年JC麦克斯韦首先获得气体分子速度的分布规律,又为L.玻耳兹曼由碰撞理论严格导出,处于平衡状态下的理想气体分子以不同的速度运动,由于碰撞,每个分子的速度都不断地改变,使分子具有各种速度。2023-07-24 06:47:361
麦克斯韦分布曲线纵坐标是啥
纵轴表示的物理量是单位速率的分子数占总分子数的百分比。麦克斯韦速率分布曲线的横轴表示的物理量是速率,纵轴表示的物理量是单位速率的分子数占总分子数的百分比,两者的乘积是一个无量纲的量,从麦克斯韦速率分布曲线的面积的意义,就是将每个单位速率的分子数占总分子数的百分比进行累加,累加的结果显然是1。2023-07-24 06:47:561
玻尔兹曼分布和麦克斯韦速率分布有什么区别,相同点又是什么
麦克斯韦最初的推导假设了三个方向上的表现都相同,但后来在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设,即玻耳兹曼将麦克斯韦分布律推广到有外力场作用的情况。麦克斯韦-玻尔兹曼分布是一个概率分布,经常应用在统计力学中。维基中的描述为:任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。2023-07-24 06:48:041
麦克斯韦-玻尔兹曼分布的麦克斯韦-玻尔兹曼分布的物理应用
麦克斯韦-玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。麦克斯韦-玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。 麦克斯韦-玻尔兹曼分布可以用统计力学来推导(参见麦克斯韦-玻尔兹曼统计)。它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦-玻尔兹曼分布提供了气体状态的非常好的近似。在许多情况下(例如非弹性碰撞),这些条件不适用。例如,在电离层和空间等离子体的物理学中,特别对电子而言,重组和碰撞激发(也就是辐射过程)是重要的。如果在这个情况下应用麦克斯韦-玻尔兹曼分布,就会得到错误的结果。另外一个不适用麦克斯韦-玻尔兹曼分布的情况,就是当气体的量子热波长与粒子之间的距离相比不够小时,由于有显著的量子效应也不能使用麦克斯韦-玻尔兹曼分布。另外,由于它是基于非相对论的假设,因此麦克斯韦-玻尔兹曼分布不能做出分子的速度大于光速的概率为零的预言。2023-07-24 06:48:111
麦克斯韦速率分布方程从最概然速率到平均速率的定积分(具体过程)
我用MathType写的:2023-07-24 06:48:261
如何由麦克斯韦速度分布率导出速率分布率
麦克斯韦分布是速度分布,考虑到空间各项同性,将坐标换成球坐标,把相应角度积分掉,剩下的就是速率分布,形式上在原来的高斯函数前面再乘上4pi v^2即可。2023-07-24 06:48:401
求麦克斯韦速度分布中速度分量vx大于2vp的分子数占总分子数的比率.
【答案】:0.00235.现在erf(ux)=erf(2)=0.9953.2023-07-24 06:48:531
麦克斯韦速率分布函数的归一化条件
∫ f(v)dv = 12023-07-24 06:49:121
了解麦克斯韦分布律的进~~
在《热学》中,为了验证气体处于平衡态时所遵循的麦克斯韦速率分布律,历史上曾做过一些著名的实验,如葛正权实验、密勒和库士实验[1]。这些实验都是“小孔泻流实验”,即在蒸气源上开一上孔(或狭缝),泻出分子束,直接测量分子中的分子速率分布律,而不是直接测量蒸气源中气体分子是否满足麦克斯韦速率分布律。这两个速率分布律之间有密切联系,但又有根本不同。2023-07-24 06:49:191
麦克斯韦—波尔兹曼分布
麦克斯韦-波尔兹曼统计是描述独立定域粒子体系分布状况的统计规律。 所谓独立定域粒子体系指的是这样一个体系:粒子间相互没有任何作用,互不影响,并且各个不同的粒子之间都是可以互相区别的,在量子力学背景下只有定域分布粒子体系中的粒子是可以相互区分的,因此这种体系被称为独立定域粒子体系。而在经典力学背景下,任何一个粒子的运动都是严格符合力学规律的,有着可确定的运动轨迹可以相互区分,因此所有经典粒子体系都是定域粒子体系,在近独立假设下,都符合麦克斯韦-波尔兹曼统计。 有公式。有图像具体你可以查阅一下大学物理课本2023-07-24 06:49:261
简述麦克斯韦速率分布律
由英国的物理学家麦克斯韦利用概率论在1959年提出的气体分子在理想状况下(平衡[1]状态且不考虑重力等外力的情况下),拥有不同速率的气体分子在总分子数中所占的百分比,具体数学表示形式如图 麦克斯韦速率分布律只适用于由大量分子组成的处于平衡态的气体2023-07-24 06:49:342
概率论中的分布律是怎么回事?
分布律的表达形式是:对一个离散型随机变量X,其取值为k的概率为pk。分布律的介绍:分布律全称麦克斯韦速率分布律,在某一时刻,某一特定分子的速度大小是不可预知的,且运动方向也是随机的。但在一定的宏观条件下,对大量气体分子而言,它们的速度分布却遵从一定的统计规律。麦克斯韦在1859年用概率论证明了在平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速率分布律,并给出了它的分布函数表达式。1859年,麦克斯韦首先获得气体分子速度的分布规律,尔后,又为L.玻耳兹曼由碰撞理论严格导出。因此,它也以詹姆斯.麦克斯韦和路德维希.玻尔兹曼命名。处于平衡状态下的理想气体分子以不同的速度运动,由于碰撞,每个分子的速度都不断地改变,使分子具有各种速度。因为分子数目很大,分子速度的大小和方向是无规的,所以无法知道具有确定速度υ的分子数是多少,但可知道速度在υ1与υ2之间的分子数是多少。麦克斯韦首先得到,在平衡状态下,气体分子间相互作用可以忽略时,分布在任一速率区间υ~υ+dυ内的分子数与总分子数的比率。2023-07-24 06:49:411
麦克斯韦-玻尔兹曼分布的推导
麦克斯韦的推导假设了三个方向上的表现都相同,但在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设。麦克斯韦-玻尔兹曼分布可以轻易地从能量的玻尔兹曼分布推出: 其中是平衡温度T时,处于状态i的粒子数目,具有能量和简并度,N是系统中的总粒子数目,k是玻尔兹曼常数。(注意有时在上面的方程中不写出简并度。在这个情况下,指标i将指定了一个单态,而不是具有相同能量的的多重态。)由于速度和速率与能量有关,因此方程1可以用来推出气体的温度和分子的速度之间的关系。这个方程中的分母称为正则配分函数。2023-07-24 06:50:051
最概然速率的推导过程(依据麦克斯韦速率定理)
速率分布曲线从坐标原点出发,经过一极大值后,随速率的增大而趋近于横坐标轴。这说明气体分子的速率可以取0到∞之间的一切数值;速率很大和很小的分子所占的比率都很小,而具有中等速率的分子所占的比率却很大。由速率分布函数的定义式f(v)=dN/Ndv。可知,任一速率间隔v~v+dv内曲线下的狭条面积等于f(v)dv=dN/N,它表示分布在这个速率间隔内的分子数占总分子数的比率。而任一有限区间v1~v2内曲线下的面积等于表示分布在这个速率区间内分子数的比率。现在进一步考虑速率分布曲线下的总面积等于多少。由以上讨论可知,曲线下的总面积为它表示速率分布在0到∞整个速率范围r内的分子数占总分子数的比率,它显然应等于1。即这个结论是由速率分布函数的物理意义所决定的,它是速率分布函数所必须满足的条件。扩展资料1859年,J.C.麦克斯韦首先获得气体分子速度的分布规律,尔后,又为L玻耳兹曼由碰撞理论严格导出。处于平衡状态下的理想气体分子以不同的速度运动,由于碰撞,每个分子的速度都不断地改变,使分子具有各种速度。因为分子数目很大,分子速度的大小和方向是无规的,所以无法知道具有确定速度U的分子数是多少,但可知道速度在U1与U2之间的分子数是多少。表明:气体在宏观上达到平衡时,虽然个别分子的速度一般都不相同,并且由于相互碰撞而不断发生变化,但平均来说,速度在某一范围内的分子数在总分子数中所占的百分比总是一定的;该比值只与气体的种类及温度有关。参考资料来源:百度百科-麦克斯韦速度分布定律参考资料来源:百度百科-最概然速率2023-07-24 06:50:315
4.8试证:最概然速率v与它所对应的麦克斯韦分布函数值f(vn)成反比?
麦克斯韦-玻尔兹曼分布定律,理想气体中分子速度 v 的概率分布函数为:f(v) = (m / 2πkT)^(3/2) * 4πv^2 * exp(-mv^2 / 2kT)其中,m 为分子质量,k 为玻尔兹曼常数,T 为气体的绝对温度。最大值出现在 v = sqrt(2kT / m) 时,称为最概然速率 vl。对分布函数取对数,得到:ln(f(v)) = -3/2 ln(m/2πkT) + ln(4πv^2) - mv^2 / 2kT对 ln(f(v)) 在 v = vl 处进行泰勒展开,可得到:ln(f(v)) = ln(f(vl)) - [(v - vl)^2 / σ^2]其中,σ^2 = kT / m。最后一个式子表示,ln(f(v)) 的变化随着 v - vl 的平方成反比例关系。由于 ln(f(v)) 取对数,要使 f(v) 变小,也就是使其和最大值之间的差距变大,需要让 ln(f(v)) 变小。因此,v 距离 vl 越远,他们之间的 f(v) 值就会变得越小,成反比例关系。因此,最概然速率 vl 与对应的麦克斯韦分布函数值 f(vl) 成正比,而其他速率 v 与对应的麦克斯韦分布函数值 f(v) 成反比。2023-07-24 06:51:531
关于麦克斯韦速度分布律
由麦克斯韦速度分布律知道,在相等的dv间隔内,v越小的分子所占比例越大,在v=0的附近概率最大。----这应该理解为一个统计规律,否则,“速度为0的分子数最多”是无法理解的。但是根据速率分布律,速率为0时,速率分布函数的值为零------考虑速率就不同了,v-->v+dv内的分子数正比于这个球壳的体积,要乘4*pi*v^2因子,它起一个调制作用,在最可几速率处形成了一个峰。2023-07-24 06:52:012
麦克斯韦速率分布曲线左右面积相等的点
从0至正无穷f(v)对v的积分为1. 即整体的面积为1. 你若求左右面积相等的点,则设v0处左右面积相等,将f(v)从0至v0求定积分,积分值为0.5,解出v0就行了,可以用matlab算一下.2023-07-24 06:52:091
分子热运动不满足麦克斯韦速度分布规律吗?
实际上,分子热运动符合麦克斯韦速度分布规律,也被称为麦克斯韦-波尔兹曼分布。麦克斯韦速度分布规律描述了在一定温度下,气体分子速度的分布情况。根据麦克斯韦速度分布规律,对于一个气体系统,气体分子的速度服从高斯分布,也称为正态分布。该分布的形状取决于温度和气体分子的质量。具体来说,麦克斯韦速度分布规律表明:高速分子数量较少:随着速度的增加,高速分子的数量逐渐减少。速度最概然值:在麦克斯韦速度分布曲线上,速度最概然值对应的是速度的峰值,表示在给定温度下最可能的分子速度。平均速度:通过对速度分布进行统计平均,可以得到平均速度,它对应于速度分布的均值。然而,需要注意的是,麦克斯韦速度分布规律是在经典力学和理想气体的假设下推导出来的。在某些特殊情况下,如极低温度下或在非经典气体系统中,麦克斯韦速度分布规律可能不完全适用。在这些情况下,需要使用更加复杂的统计力学方法来描述分子热运动的速度分布。2023-07-24 06:52:172
大学物理,麦克斯韦分子速率分布律
它现在问的是v1到v2的平均速率。所以要用v乘以对应的权重。而现在的问题是,f(v)说的是在整一个0到∞速率的分布下的权重,而不是v1到v2的。∫f(v)dv从v1积到v2的值不是1,只有0到+∞才是1。所以,这里需要把权重做一个修饰,就是概率里面常做的,除以整体,f(v)/∫f(v)dv。这个函数再从v1积分到v2,得到的值就是1了。这个才是权重。所以答案就是下面发的那个图片的形式,∫vf(v)dv/∫f(v)dv。2023-07-24 06:52:262
最可几速率是在麦克斯韦速率分布函数
由英国物理学家、数学家麦克斯韦速率分布规律导出的气体分子三种特征速率之一 (另外两个特征速率为方均根速率和平均速率)。最可几速率是由麦克斯韦速率分布规律导出的气体分子三种特征速率之一 (另外两个特征速率为方均根速率和平均速率)计算公式为:麦克斯韦速率分布为f(v),对F(v) = 4πv*v*f(v)求导,令F(v)导数为零,此时对应的速率为最可几速率它的物理意义是:若把整个速率范围分成许多相等的小区间,则Vp所在的区间内的分子数占分子总数的百分比最大,又称为最概然速率。过程是分别对速率以及速度方加权积分,权值即为速率分布里的△N/N的表达式,结果是本教材都会有2023-07-24 06:52:341
麦克斯韦-玻尔兹曼分布的介绍
麦克斯韦-玻尔兹曼分布是一个概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。1这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼命名。2023-07-24 06:53:111
麦克斯韦速率分布函数是什么?
麦克斯韦速率分布函数是:在某一时刻,某一特定分子的速度大小是不可预知的,且运动方向也是随机的。但在一定的宏观条件下,对大量气体分子而言,它们的速度分布却遵从一定的统计规律。麦克斯韦在1859年用概率论证明了在平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速率分布律,并给出了它的分布函数表达式。麦克斯韦关系式麦克斯韦关系式一般指基本热力学关系。常应用的八个热力学函数--p、V、T、U、H、S、A、G。其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。而 U、H、A、G 为具有能量量纲的函数。这些热力学函数间通过一定关系式相互联系着。2023-07-24 06:53:261
麦克斯韦速率分布函数的归一化条件
u222b f(v)dv = 12023-07-24 06:54:131
请用简明的语言叙述什么是波尔兹曼分布 和麦克斯韦分布以及他们之间的联系和区别。
简单来说,这三个东西就是一个东西,只是条件不同。麦克斯韦最初的推导假设了三个方向上的表现都相同,但后来在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设,即玻耳兹曼将麦克斯韦分布律推广到有外力场作用的情况。麦克斯韦-玻尔兹曼分布是一个概率分布,经常应用在统计力学中。维基中的描述为:任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。2023-07-24 06:54:211
麦克斯韦分子速率分布律中最概然速率不是指气体中大部分分子所具有的速率?
最概然速率是概率最大的速率,但要说速度正好是它的概率是0。这个分布函数一般是带dv积分用的,要非要给个形象定义就是图像最高点,这个就需要对概率的理解了。应该说所有的v dv区间里最概然速率附近的最多。其实最概然速率平时用到不多。我大概是这么理解的,自己都学的不明白,语无伦次,对付看吧,多包涵。2023-07-24 06:54:311
麦克斯韦速率分布中最概然速率的概念
麦克斯韦的解释 磁通量单位。为 纪念 英国 物理学家 麦克斯韦 (JamesClerkMaxwell)而命名。磁场的磁感应强度为1高斯时,垂直于磁力线方向的平面上每平方厘米通过的磁通量就是1麦克斯韦。简称麦。 词语分解 麦克的解释 方言。 形容 数量多 用于 重迭式。 聂绀弩 《辈分,寿命,体格》:“ 当然 ,口袋里麦克麦克,靠山又稳,拥护的又多,还有什么不放心的呢?” 韦的解释 韦 (韦) é 经去毛加工制成的柔皮:韦编 三绝 (喻读书刻苦)。 〔韦伯〕磁通量实用单位,一韦伯等于麦克斯韦。 姓。 部首 :韦。2023-07-24 06:54:471
如何由麦克斯韦速度分布率导出速率分布率
麦克斯韦分布是速度分布,考虑到空间各项同性,将坐标换成球坐标,把相应角度积分掉,剩下的就是速率分布,形式上在原来的高斯函数前面再乘上4piv^2即可。2023-07-24 06:54:551
分子运动速度的绝对值服从麦克斯韦分布,其概率密度为 f(x)=Ax^2*e^(-x^2/b) x>0 0 其他
A=4B(M/2BKT) B为园周率 M为质量 K为玻耳兹曼常数 T为绝对温度2023-07-24 06:55:071
分子平均速率与什么有关
分子平均速率就是就是无数个分子的平均速率大小。分子平均速率跟分子的摩尔质量以及温度有关。若温度相同,则质量小的物质分子平均速率大,质量大的物质分子平均速率小。在某一时刻,某一特定分子的速度大小是不可预知的,且运动方向也是随机的。但在一定的宏观条件下,对大量气体分子而言,它们的速度分布却遵从一定的统计规律。麦克斯韦在1859年用概率论证明了在平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速率分布律,并给出了它的分布函数表达式。 在平衡态下,当气体分子间的相互作用可以忽略时,分布在任一速率区间v~v+dv的分子数占总分子数的比率为:麦克斯韦速率分布函数:其中m为一个气体分子的质量,k为玻尔兹曼常量,T为系统的热力学温度,e为自然对数的底。 麦克斯韦速率分布律形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。麦克斯韦速率分布律通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。2023-07-24 06:55:161
在麦克斯韦速率分布律中,速率分布函数f(v)的意义可理解为:
【答案】:D概念题,知识点见下所处的v有关,当△V→0时的极限就成为v的一个连续函数,这个函数叫做气体速率分布函数,用f(v)表示,即f(v)表示在v附近单位速率区间内的分子数占总分子数的百分比,如果从概率来考虑,f(v)就是一个分子出现在v附近单位速率区间的概率,即概率密度。2023-07-24 06:55:391
麦克斯韦速度分布是对称分布,为什么速率分布曲线却不对称?
分子的速率不能为负,所以横轴的速率坐标不是对称的,只能有正半轴。因此速率分布曲线只能在区间[0,无穷]上分布,这样导致速率分布曲线也不对称,尽管速度分布函数是对称的。你要是将坐标移到最高点处,它也是对称的.把它当作一个数学问题来看可以变成对称的,但物理问题有它的实际性.你发邮件到期weixb123@163.com我发几篇专门的论文给你看一下.不过请你点我为最佳答案哦.2023-07-24 06:55:542
麦克斯韦严密地从牛顿第二定律出发推导了麦克斯韦速度分布律。
麦克斯韦严密地从牛顿第二定律出发推导了麦克斯韦速度分布律。 A.正确 B.错误 正确答案:B 怎么理解热力学第二定律是一条几率定律? A.逆过程发生的几率为零 B.逆过程发生的几率极小 C.逆过程有很大的几率会发生 D.逆过程不可能发生 正确答案:B 下面对“熵”这个量的描述不正确的()。 A.熵是一个微观量 B.熵是一个宏观量 C.熵跟几率有关 D.熵是热力学中表征物质状态的参量之一 正确答案:A 场是物质的一种形式。 A.正确 B.错误 正确答案:A 谁发明了电场线? A.麦克斯韦 B.法拉第 C.赫兹 D.玻尔兹曼 正确答案:B2023-07-24 06:56:251
图1-2-8所示为两种不同温度气体分子的麦克斯韦速率分布曲线.其横坐标为速率,纵坐标为对应这一速率的分子
T 2 大于T 1 据麦克斯韦气体分子分布规律知,温度升高,气体分子速率大的占的比率要增大,速率小的所占的比率要减小,这也就是我们前边学过的“温度越高分子运动越剧烈,所以T 2 要大于T 1 ”.2023-07-24 06:56:351
有物理学院的吗,问几道热力学与统计的题目
热力学的基础是热力学三定律喽,也是最重要的定理.从热力学第一、第二定律出发,可以得到一系列的麦克斯韦关系,这个也是比较重要的,可以将式子变成想要的形式.再之后就是要知道一些重要的物理量定义——内能、焓、熵、自由能.然后与三定律关系不大的一部分是相变,包括经典理论、克拉博龙方程、朗道相变理论.再之后应当就是灵活应用了.对于统计物理部分,首先要知道三大分布——麦克斯韦-玻尔兹曼分布、玻色-爱因斯坦分布、费米-狄拉克分布,这个是基础.之后就是基于三个分布定义的配分函数、巨配分函数以及它们和热力学公式的联系.在统计物理中,还要建立相空间的概念.最后,应该就是系综了,包括正则系综、微正则系综和巨正则系综.在统计物理部分,可以得到的定理比较多,比如麦克斯韦-玻尔兹曼分布中可以得到麦克斯韦速度分布律,进而可以从统计意义下理解压强、温度等经典概念,还可以得到能均分定理,等等;从玻色-爱因斯坦分布可以解释光子气体(即普朗克公式)和BEQ现象,等等;从费米-狄拉克分布可以描述自由电子气体,得到金属热容的T3律,等等;系综理论可以推导出实际气体状态方程——范德瓦耳斯方程,还可以解释相变(如伊辛模型、超流)等等.2023-07-24 06:57:042
詹姆斯·克拉克·麦克斯韦人物简介
詹姆斯·克拉克·麦克斯韦詹姆斯·克拉克·麦克斯韦(JamesClerkMaxwell,1831年6月13日~1879年11月5日),出生于苏格兰爱丁堡,英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人之一。1831年6月13日生于苏格兰爱丁堡,1879年11月5日卒于剑桥。1847年进入爱丁堡大学学习数学和物理,毕业于剑桥大学。他成年时期的大部分时光是在大学里当教授,最后是在剑桥大学任教。1873年出版的《论电和磁》,也被尊为继牛顿《自然哲学的数学原理》之后的一部最重要的物理学经典。麦克斯韦被普遍认为是对物理学最有影响力的物理学家之一。没有电磁学就没有现代电工学,也就不可能有现代文明。中文名:詹姆斯·克拉克·麦克斯韦外文名:JamesClerkMaxwell国籍:英国出生地:爱丁堡出生日期:1831年6月13日逝世日期:1879年11月5日职业:物理学家,数学家毕业院校:剑桥大学三一学院信仰:无神论主要成就:创建英国第一个专门的物理实验室建立了麦克斯韦方程组创立了经典电动力学预言了电磁波的存在提出了光的电磁说。代表作品:《电磁学通论》、《论电和磁》求学生涯1846年智力发育格外早的麦克斯韦就向爱丁堡皇家学院递交了一份科研论文。1847年16岁中学毕业,进入爱丁堡大学学习。这里是苏格兰的最高学府。他是班上年纪最小的学生,但考试成绩却总是名列前茅。他在这里专攻数学物理,并且显示出非凡的才华。他读书非常用功,但并非死读书,在学习之余他仍然写诗,不知满足地读课外书,积累了相当广泛的知识。在爱丁堡大学,麦克斯韦获得了攀登科学高峰所必备的基础训练。其中两个人对他影响最深,一是物理学家和登山家福布斯,一是逻辑学和形而上学教授哈密顿。福布斯是一个实验家,他培养了麦克斯韦对实验技术的浓厚兴趣,一个从事理论物理的人很难有这种兴趣。他强制麦克斯韦写作要条理清楚,并把自己对科学史的爱好传给麦克斯韦。哈密顿教授则用广博的学识影响着他,并用出色的怪异的批评能力刺激麦克斯韦去研究基础问题。在这些有真才实学的人的影响下,加上麦克斯韦个人的天才和努力,麦克斯韦的学识一天天进步,他用三年时间就完成了四年的学业,相形之下,爱丁堡大学这个摇篮已经不能满足麦克斯韦的求知欲。为了进一步深造,1850年,他征得了父亲的同意,离开爱丁堡,到人才济济的剑桥去求学。赫兹是德国的一位青年物理学家,麦克斯韦的《电磁学通论》发表之时,他只16岁。在当时的德国,人们依然固守着牛顿的传统物理学观念,法拉第、麦克斯韦的理论对物质世界进行了崭新的描绘,但是违背了传统,因此在德国等欧洲中心地带毫无立足之地,甚而被当成奇谈怪论。当时支持电磁理论研究的,只有波尔茨曼和赫尔姆霍茨。赫兹后来成了赫姆霍茨的学生。在老师的影响下,赫兹对电磁学进行了深入的研究,在进行了物理事实的比较后,他确认,麦克斯韦的理论比传统的“超距理论”更令人信服。于是他决定用实验来证实这一点。1886年,赫兹经过反复实验,发明了一种电波环,用这种电波环作了一系列的实验,终于在1888年发现了人们怀疑和期待已久的电磁波。赫兹的实验公布后,轰动了全世界的科学界,由法拉第开创、麦克斯韦总结的电磁理论,至此取得了决定性的胜利。麦克斯韦的伟大遗愿终于实现了。科学研究1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版。1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室。1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。电磁情缘回顾电磁学的历史,物理学的历程一直到1820年的时候都是以牛顿的物理学思想为基础的。自然界的“力”——热、电、光、磁以及化学作用正在被逐渐归结为一系列流体的粒子间的瞬时吸引或排斥。人们已经知道磁和静电遵守类似引力定律的平方反比定律。在19世纪以前的40年中,出现了一种反对这种观点的动向,这种观点赞成“力的相关”。1820年,奥斯特发现的电磁现象马上成了这种新趋势的第一个证明和极为有力的推动力,但当时的人又对此捉摸不定和感到困惑。奥斯特所观察到的电流与磁体间的作用有两个基本点不同于已知的现象:它是由运动的电显示出来的,而且磁体既不被引向带电流的金属线,也不被它推开,而是对于它横向定位。同一年,法国科学家安培用数学方法总结了奥斯特的发现,并创立了电动力学,此后,安培和他的追随者们便力图使电磁的作用与有关瞬时的超距作用的现存见解调和起来。麦克斯韦的电学研究始于1854年,当时他刚从剑桥毕业不过几星期。他读到了法拉第的《电学实验研究》,立即被书中新颖的实验和见解吸引住了。在当时人们对法拉第的观点和理论看法不一,有不少非议。最主要原因就是当时“超距作用”的传统观念影响很深。另一方面的原因就是法拉第的理论的严谨性还不够。法拉第是实验大师,有着常人所不及之处,但唯独欠缺数学功力,所以他的创见都是以直观形式来表达的。一般的物理学家恪守牛顿的物理学理论,对法拉第的学说感到不可思议。有位天文学家曾公开宣称:“谁要在确定的超距作用和模糊不清的力线观念中有所迟疑,那就是对牛顿的亵渎!”在剑桥的学者中,这种分歧也相当明显。汤姆逊也是剑桥里一名很有见识的学者之一。麦克斯韦对他敬佩不已,特意给汤姆逊写信,向他求教有关电学的知识。汤姆逊比麦克斯韦大7岁,对麦克斯韦从事电学研究给予过极大的帮助。在汤姆逊的指导下,麦克斯韦得到启示,相信法拉第的新论中有着不为人所了解的真理。认真地研究了法拉第的著作后,他感受到力线思想的宝贵价值,也看到法拉第在定性表述上的弱点。于是这个刚刚毕业的青年科学家决定用数学来弥补这一点。1855年麦克斯韦发表了第一篇关于电磁学的论文《论法拉第的力线》。一般认为麦克斯韦是从牛顿到爱因斯坦这一整个阶段中最伟大的理论物理学家。1879年他在48岁时因病与世长辞。他光辉的生涯就这样过早地结束了。1865年开始,麦克斯韦辞去了皇家学院的教席,开始潜心进行科学研究,系统地总结研究成果,撰写电磁学专著。麦克斯韦生前没有享受到他应得的荣誉,因为他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来。然而他没能看到科学革命的发生。1879年11月5日,麦克斯韦因病在剑桥逝世,年仅48岁。那一年正好爱因斯坦出生。主要成就麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论预见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并推导出电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观量求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。麦克斯韦方程组研究背景他由于列出了表达电磁基本定律的四元方程组而闻名于世。在麦克斯韦以前的许多年间,人们就对电和磁这两个领域进行了广泛的研究,人们都知道这两者是密切相关的。适用于特定场合的各种电磁定律已被发现,但是在麦克斯韦之前却没有形成完整、统一的学说。麦克斯韦用列出的简短四元方程组(但却非常复杂),就可以准确地描绘出电磁场的特性及其相互作用的关系。这样他就把混乱纷纭的现象归纳成为一种统一完整的学说。麦克斯韦方程在理论和应用科学上都已经广泛应用一个世纪了。优点麦克斯韦方程的最大优点在于它的通用性,它在任何情况下都可以应用。在此以前所有的电磁定律都可由麦克斯韦方程推导出来,许多从前没能解决的未知数也能从方程推导过程中寻出答案。这些新成果中最重要的是由麦克斯韦自己推导出来的。根据他的方程可以证明出电磁场的周期振荡的存在。这种振荡叫电磁波,一旦发出就会通过空间向外传播。根据方程,麦克斯韦就可以表达出电磁波的速度接近300000公里(186000英里)/秒,麦克斯韦认识到这同所测到的光速是一样的。由此他得出光本身是由电磁波构成的这一正确结论。因此,麦克斯韦方程不仅是电磁学的基本定律,也是光学的基本定律。的确如此,所有先前已知的光学定律可以由方程导出,许多先前未发现的事实和关系也可由方程导出。在此基础上,麦克斯韦认为光是频率介于某一范围之内的电磁波。这是人类在认识光的本性方面的又一大进步。正是在这一意义上,人们认为麦克斯韦把光学和电磁学统一起来了,这是19世纪科学史上最伟大的综合之一。可见光并不是唯一的一种电磁辐射。麦克斯韦方程表明与可见光的波长和频率不同的其它电磁波也可能存在。这些从理论上得出的结论后来被海因利茨·赫兹公开演示证明了。赫兹不仅生产出而且检验出了麦克斯韦预言存在的不可见光波。几年以后,伽格利耶尔摩·马可尼证明这些不可见光波可以用于无线电通讯,无线电随之问世。今天我们也用不可见光为电视通讯。X线、γ线、红外线、紫外线都是电磁波辐射的其它一些例子。所有这些射线都可以用麦克斯韦方程来加以研究。意义麦克斯韦的主要贡献是建立了麦克斯韦方程组,创立了经典电动力学,并且预言了电磁波的存在,提出了光的电磁说。麦克斯韦是电磁学理论的集大成者。他出生于电磁学理论奠基人法拉第提出电磁感应定理的1831年,后来又与法拉第结成忘年之交,共同构筑了电磁学理论的科学体系。物理学历史上认为牛顿的经典力学打开了机械时代的大门,而麦克斯韦电磁学理论则为电气时代奠定了基石。天文学和热力学虽然麦克斯韦成名主要是在于他对电磁学和光学做出的巨大贡献,但是他对许多其它学科也做出了重要的贡献,其中包括天文学和热力学。他的特殊兴趣之一是气体运动学。麦克斯韦认识到并非所有的气体分子都按同一速度运动。有些分子运动慢,有些分子运动快,有些以极高速度运动。麦克斯韦推导出了求已知气体中的分子按某一速度运动的百分比公式,这个公式叫做“麦克斯韦分布式”,是应用最广泛的科学公式之一,在许多物理分支中起着重要的作用。力学麦克斯韦在力学方面的贡献主要有:1853年推广用偏振光测量应力的方法;1864年提出结_力学中桁架内力的图解法,指出桁架形状和内力图是一对互易图,并提出求解静不定桁架位移的单位载荷法。1868年对粘弹性材料提出一种模型(后称麦克斯韦模型),并引进松弛时间的概念。同年在《论调节器》中分析了蒸汽机自动调速器和钟表机构的运动稳定性问题。1870年将G.R.艾里提出的弹性力学中的应力函数由二维推广到三维,并指出它应满足双调和方程。1873年给出荷电系统中引力和斥力引起的应力场。卡文迪许实验室麦克斯韦的另一项重要工作是筹建了剑桥大学的第一个物理实验室——著名的卡文迪许实验室。该实验室对整个实验物理学的发展产生了极其重要的影响,众多著名科学家都曾在该实验室工作过。卡文迪许实验室甚至被誉为“诺贝尔物理学奖获得者的摇篮”。作为该实验室的第一任主任,麦克斯韦在1871年的就职演说中对实验室未来的教学方针和研究精神作了精彩的论述,是科学史上一个具有重要意义的演说。麦克斯韦的本行是理论物理学,但他却清楚地知道实验称雄的时代还没有过去。他批评当时英国传统的“粉笔”物理学,呼吁加强实验物理学的研究及其在大学教育中的作用,为后世确立了实验科学精神。土星光环理论分析早在1787年,拉普拉斯进行过把土星光环作为固体研究的计算。当时他曾确定,土星光环作为一个均匀的刚性环,它不会瓦解的原因要满足两个条件,一是它以一种使离心力与土星引力相平衡的速度运转,二是光环的密度与土星的密度之比超过临界值0.8,从而使环的内层与外层之间的引力超过在不同半径处离心力与万有引力之差。他之所以有如此推论,是因为,一个均匀环的运动在动力学上是不稳定的,任何轻微的破坏平衡的位移都会导致环的运动被破坏,使光环落向土星。拉普拉斯推测,土星光环是一个质量分布不规则的固体环。到了1855年,理论仍然停留在此,而这中间,人们又观测到了土星的一个新的暗环,和更进一步的分离现象,还有光环系统自从被发现以来二百年间整体尺度的缓慢变化。因此,一些科学家们提出了一个假说,来解释土星光环在动力学上的稳定性,这个假说是:土星光环是:由固体流体和大量并非相互密集的物质构成的。麦克斯韦就根据这一假说进行了论述。他首先着手的是拉普拉斯留下的固体环理论,并确定了一个任意形状环的稳定性条件。麦克斯韦依据环在土星中心造成的势,列出了运动方程式,获得了对匀速运动的势的一阶导数的两个限制,然后由泰勒展开式又得到关于稳定运动二阶导数的三个条件。麦克斯韦又把这些结果换成关于质量分布的傅立叶级数的前三个系数的条件。因而他证明了,除非有一种奇妙的特殊情形,几乎每个可以想象的环都是不稳定的。这种特殊的情形是指一个均匀环在一点上承载的质量介于剩余质量的4.43倍到4.67倍之间。但是这种特殊情况的固体环在不均匀的引力下会瓦解掉,所以固体环的理论假说是不能成立的。光学麦克斯韦早在1849年在爱丁堡的福布斯实验室就开始了色混合实验。在那个时候,爱丁堡有许多研究颜色的学者,除了福布斯、威尔逊和布儒斯特外,还有一些对眼睛感兴趣的医生和科学家。实验主要就是在于观察一个快速旋转圆盘上的几个着色扇形所生成的颜色。麦克斯韦和福布斯首先做出的一个实验是使红、黄、蓝组合产生灰色。他们的实验失败了,而其中的主要原因是:蓝与黄混合并不象常规那样生成绿色,而是当两者都不占优势时产生一种淡红色,这种组合加上红色不可能产生任何灰色。人物著作婚姻生活1856年4月30日,詹姆斯·克拉克·麦克斯韦被任命为阿伯丁的马里沙尔学院自然哲学讲座教授。在阿伯丁,麦克斯韦认识了马沙尔学院院长的女儿凯瑟琳·玛丽·迪尤尔(KatherineMaryDewar),凯瑟琳年长麦克斯韦七岁,美丽,身材比他略高,明朗坦率。1858年2月18日,他写信给珍妮姨妈,把订婚的事情通知她说:亲爱的姨妈:这封信要告诉你,我就要有妻子了。我没有完全写出她的整个质量,我觉得不合适;但我要告诉你的是,我们彼此需要,而且比我见到过的任何一对伴侣更知心。不用担心;她不是学数学的;但是数学以外还有很多别的事情,而她并不想以数学取胜所以,你现在知道她是谁了,她就是凯瑟琳·玛丽·迪尤尔(迄今为止叫这个名)。我听罗伯特舅舅谈到(间接地)她的那位院长父亲。她的母亲是一位上流社会夫人,安静而严谨,却总是以充满忍让的方式对待任何事物情况就是这样。我和她的事情已经定下来了,事事如意。这些都有保证,你会知道的。麦克斯韦用诗句抒发了自己对凯瑟琳的感情:你和我将长相厮守在生机盎然的春潮里,我的神灵已经穿越如此广阔的寰宇?我这就将我的整个生命导入这生机盎然的春潮,将真正使三个自我穿越这世界的广袤在这首诗中,麦克斯韦真挚地表达了自己的情爱。1858年7月4日麦克斯韦与凯瑟琳·马丽·迪尤尔(KatherineMaryDewar)(后来改为克拉克·麦克斯韦姓即改为麦克斯韦的姓,取名凯瑟琳·克拉克·麦克斯韦,他们结婚时,她34岁——在维多利亚时代已经是一个老处女了。)正式结婚,婚礼在阿伯丁举行。人物评价1931年,爱因斯坦在麦克斯韦百年诞辰的纪念会上,评价其建树“是牛顿以来,物理学最深刻和最富有成果的工作。麦克斯韦在电磁学上取得的的成就被誉为继艾萨克·牛顿之后,“物理学的第二次大统一”。麦克斯韦被普遍认为是对二十世纪最有影响力的十九世纪物理学家。他对基础自然科学的贡献仅次于艾萨克·牛顿。科学史上,称牛顿把天上和地上的运动规律统一起来,是实现第一次大综合,麦克斯韦把电、光统一起来,是实现第二次大综合,因此应与牛顿齐名。《电磁学通论》是一部经典的电磁理论著作,可与牛顿的《数学原理》(力学)、达尔文的《物种起源》(生物学)相提并论。从安培、奥斯特,经法拉第、汤姆逊最后到麦克斯韦,通过几代人的不懈努力,电磁理论的宏伟大厦,终于建立起来。这本书的出版,理所当然地成了物理学界的一件大事,当时麦克斯韦只有42岁,已经回到剑桥任实验物理学的教授。人们早已通过他以前的几篇卓有见地的论文而熟识了他,他的朋友和学生以及科学界的人士对他的这本书更是期待已久,争相到各地书店去购买,以求先睹为快,所以书的第一版很快就被抢购一空。人物影响2016年6月17日,NASA对外宣布,他们正在测试一款机翼独特的混合动力小型飞机,带有14个电动马达。NASA将其命名为X-57,也称为“麦克斯韦”(Maxwell)。Maxwell的名称来自19世纪苏格兰物理学家詹姆斯·克拉克·麦克斯韦(JamsClerkMaxwell)。2023-07-24 06:57:111
3cm的黄金角蛙,一次喂几条大麦或面包虫,几天喂一次
一天两条左右,2-3天喂一吃。一定要加到温水,夏天也是,没有加热棒不建议养。2023-07-24 06:56:053
梅林传奇的幕后花絮
科林·摩根自身口音是北爱尔兰口音。但他是口音帝,可以惟妙惟肖的模仿多种口音。《梅林传奇》里使用的是标准英音。 科林·摩根的哥哥Neil Morgan客串过《梅林传奇》第二季第五集。 亚瑟的角色比较早就确定了布莱德利·詹姆斯,但是梅林的选角比较难。科林·摩根面试当天因为剧组人错把亚瑟的剧本给他了,导演说你来试试梅林,然后他们才意识到剧本给错了。事实上,科林只用了5分钟来准备,再进去试戏,就成功得到了这个角色。 布莱德利·詹姆斯与剧中第三季第六集中扮演Elena公主的乔治雅·金戏外结缘成为情侣。 尽管格温为传说里亚瑟王的王后,本剧梅林与亚瑟两人互动却远胜于亚瑟与格温。饰演亚瑟的布莱德利·詹姆斯曾公开表示亚瑟和梅林之间有兄弟情谊(Bromance),而且本剧兄弟情谊多于罗曼史 。 《梅林传奇》是在央视播过的,对女主的怨念在人民群众中呼声最高的。皮肤黝黑、长相并不符合大众审美的安琪·科尔比饰演原著中吸引了无数骑士倾国倾城的英格兰王后,令她得到了“滚娘”这一外号。男主角接受采访时也曾透露,第三季里要突然与之来电,实在有些不适应 。2023-07-24 06:56:081
香港航空国际航班自动值机最早可以提早多久?
网上预办登机的时间,即自动值机时间介绍如下:旅客于航班起飞前48小时至90分钟办理预办登机手续,优先预选座位及接收手机登机证。但往返美国的航班只适用于航班起飞前24小时至90分钟办理预办登机手续。建议旅客于航班起飞前最少3小时到达机场办理登机手续,并于领取登机证后尽快前往登机闸口准备登机,以免影响行程。扩展资料:注意事项:1、建议在航班起飞前60分钟前往登机手续柜位办理登机手续,否则您预留之座位有可能不获保留。另行付费预留座位或腿部空间加长座位(增值服务) 及/或 金鹏会俱乐部 – 白金卡及金卡会员则获得豁免,惟需遵照不同机场所订立之办理登机手续时间办理登机手续。2、除特定航线外,建议可于起飞前90分钟至48小时内于网上或手机应用程序预办登机,或于起飞前60分钟前往机场自助登机服务机办理登机手续。3、在完成手机预办登机手续后,航班信息有可能随时更改,旅客请留意机场内的航班信息显示屏上最新的航班出发时间及登机闸口。4、机场登机闸口会于起飞前20分钟关闭,旅客应于航班起飞前2小时抵达机场,以预留充足时间办理出境手续及接受保安检查,并登上香港航空的航班。香港航空保留拒绝迟到的乘客登机之权利。参考资料来源:香港航空——网上预办登机2023-07-24 06:56:091
尿酸高怎么办?
高尿酸血症作为一种代谢性疾病,是痛风的重要生化基础和直接原因。血清的尿酸水平升高与冠心病、高血压等心血管疾病密切相关,也和代谢综合征密切相关。高尿酸血症可以损害人的身心健康,生活质量下降,预期寿命缩短。所以一旦患者血尿酸水平增高,男性>420umol/L,女性>360umol/L的时候,要积极治疗。目前治疗高尿酸血症的药物安全有效,但要结合病人的病情选择,可以吃促进尿酸排泄的中药,每天喝两杯咨风草茶,可以有效阻止人体对于尿酸的吸收,同时加速尿酸排出。 尿酸高怎么办1.禁酒,酒精易使体内乳酸堆积,对尿酸排出有抑制作用,易诱发痛风;严格戒酒,啤酒加海鲜绝对禁止。啤酒本身含有酒精,会使尿酸的排泄受到影响;而且酒精氧化过程中,会产生一些物质,使尿酸增高。海鲜含嘌呤和蛋白质,大量摄入蛋白质会使我们人体处于一种微酸的环境,这样会促进尿酸结晶的形成;另外,短期大量摄入海鲜,大量的嘌呤会使尿酸急剧升高。虽然我们饮食因素只占尿酸的10%~20%,但是短时间内大量吃海鲜导致尿酸急剧升高,再喝酒影响排泄。2.避免大量进食高嘌呤食物,像花生,牛肉,猪肉,海鲜,如动物的内脏、沙丁鱼、金枪鱼,豆类及发酵食物等;鱼虾类、鲜肉、豌豆、菠菜、酒等!避免吃炖肉或卤肉。3.每天饮食中蛋白质的量应控制在每公斤体重1克左右,动物内脏心、肝、肠、肾、脑和肉汤等以及沙丁鱼、虾、贝等海鲜都应少吃。蛋白质以牛奶、鸡蛋为主。4.饮食中蔬菜水果牛奶不限量,少吃盐每天应该限制在2克至5克以内。5.每日的饮食结构中,以碳水化合物,二者可促进尿酸排出,可选用精白米、富强粉、玉米、馒头、面条等6.避免过度劳累、紧张、受寒、关节损伤等诱发因素;7.不宜使用抑制尿酸排出的药物。8少吃脂肪,因脂肪可减少尿酸排出。2023-07-24 06:56:093
香港航空怎么选座位
问题一:香港航空如何在网上选座位 你可以登陆香港航空公司的官方网站,弗照提示输入你的机票航班号,订单号,然后就可以订位置了。有些航空公司对于提前订座位有要求的,比如只能在飞机起飞前36小时或者48小时才能开始订座位。 问题二:香港航空的飞机怎么选座位 一般刚坐飞机的人喜欢选靠窗的,可以直观感受起飞和降落的情况;多坐几次以后通常都选靠走道的,方便上洗手间和上下飞机。 靠窗与靠走道就看自己的喜好了,千万不要选两边都有人的座位,那是非常痛苦的事情。 至于是坐飞机前部好还是飞机后部好,其实都差不多的,要颠簸全机一起颠簸,感觉不到前后有什么区别的。 问题三:去哪儿网订香港航空可以在网上选座位吗 网上全票可以选座位,折扣票不可以;机场换取登机牌的时候可以选择位置或者选择系统自动获取。一般是登机前2小时或者3小时办理登机牌 问题四:在去哪儿网定了香港航空的机票 可以提前选位吗 你在订好机票后肯定会收到一封确认邮件,邮件里有个confirmation number,到香港航空的官网里找到my reservation, 把number 输进去,就可以在官网选位置了。 问题五:香港航空 330选座 40,41,42的坐位度不会比39和前边的,40-42中间只有3个坐位,是因为机尾较窄而作出的调整,如果要的话,经济仓是没办法了,除非你可以升到商务或头等 如果只是想找一个跟前面坐位远一点,可以让你的脚申直的位置,可以订28,这一排应该是这个食的最前一排,通常会空间大一点点,或是到机场,要求坐安全门的位置 机尾有一个问题,就是一般会较吵,但如果是长途机,你有时想自己跑问空中服务员弄点水,弄点小吃的话,机尾会很方便的 问题六:香港航空,中型机32S机翼大概在第几排附近,座位怎么选好呢 第10排到第16排就是机翼位置。 选座位,有不同的想法,我喜欢靠窗而且靠后,靠后是因为传说中,事故里,后排安全一点。靠窗,可以看风景,也可以打盹不受干扰。 如果长距离飞行,选择过道,可以方便自己活动而不干扰其他人休息,也是一个不错的选择。 问题七:香港航空空客333,帮忙选两个靠紧急出口,避开机翼的位置,谢谢 10分 因为没有看到飞机外形图,所以只是根据飞行安排的惯例解答: 1、图片中除了第一张36-39行外,其他两张显示为虚位(不提供择位)的,就是飞机紧急通道出口所在行,已用红色线标出。因为这部分的位置一般会留给能与航班机组成员语言沟通的乘客(即同一语种最好是同一地区),所以是由负责登机的工作人员根据旅客身份安排,不允许旅客自由选择。 2、因为紧急出口都会避开机翼的位置,所以你可以在上下两到三行的位置选择,这样即可以保证离紧急通道最近又避开机翼已用蓝色线标出。但提醒一下,基本上最靠近紧急通道行的那排位置是不可以调整座位的(如后背上下调节),所舒适度会差一些。 最后建议亲还是看一下原图,按正常,选择位置图的两边会标有机翼的位置,能确认一下会更有保障。哦,对了,你可以先选择座位,然后早一些到机场登机办理柜台,请工作人员再帮你确认一下,如果不是太忙,一般可以现场再调整一下的,不过这要看提前订位的旅客多不多。 问题八:求帮忙选飞机座位,都是大高个,选哪个比较合适,香港航空的333机型 图上48排是紧急通道,很宽敞,但是不能预选,只能在柜台上人工选。 其他座位空间都一样。选靠过道的稍微好一点。你可以早一点去机场,到柜台办登机牌选紧急通道的座位。 问题九:香港航空hx305靠窗户的座位有哪几个 HX 305 的机型是 空客 332 (330-200),所有带 A 和 H 的都是靠窗的。 问题十:香港快运航空如何?第一次坐,说说我的感受吧。 在去哪儿APP订的香港 香港快运航空是低成本廉价航空,其实跟国内的春秋航空是一样的,票价就是飞机上的一个座位,另外其他服务如行李托运、餐食等等都需要自费2023-07-24 06:56:021
德雷尔一家第五季什么时候出
预计2024年1月。《德雷尔一家》(TheDurrells)是由斯蒂夫巴伦等执导,基莉霍斯、乔什奥康纳、卡伦伍德豪斯、黛西沃特斯通、米罗帕克主演的英国田园剧,于2016年4月3日在英国ITV首播。该剧导演透露第五季正在筹划当中,预计2024年1月出,该剧改编自英国博物学家杰拉尔德·达雷尔的回忆录《希腊三部曲》,讲述了一战结束后,一位丧偶的母亲带着四个孩子,离开阴冷的英国城镇伯恩茅斯,来到希腊小岛科孚岛居住的经历。2023-07-24 06:56:021
世界上的十大公害事件
有八大公害事件,分别是比利时马斯河谷烟雾事件、美国多诺拉镇烟雾事件、伦敦烟雾事件、美国洛杉矶光化学烟雾事件、日本水俣病事件、日本富山骨痛病事件、日本四日市气喘病事件、日本米糠油事件。1、比利时马斯河谷烟雾事件1930年12月1日至5日,时值隆冬,大雾笼罩了整个比利时大地。比利时列日市西部马斯河谷工业区上空的雾特别浓重。第三天开始,在二氧化硫(SO2)和其他几种有害气体以及粉尘污染的综合作用下,河谷工业区有上千人发生呼吸道疾病,症状表现为胸疼、咳嗽、流泪、咽痛、声嘶、恶心、呕吐、呼吸困难等。一个星期内就有60多人死亡,是同期正常死亡人数的十多倍。其中以心脏病、肺病患者死亡率最高。许多家畜也未能幸免于难,纷纷死去。这次事件曾轰动一时,是20世纪最早记录下的大气污染惨案。2、美国多诺拉镇烟雾事件1948年10月26-31日,位于美国宾夕法尼亚州的多诺拉小镇,由于小镇上的工厂排放的含有二氧化硫等有毒有害物质的气体及金属微粒在气候反常的情况下聚集在山谷中积存不散,这些毒害物质附在悬浮颗粒物上,严重污染了大气。人们在短时间内大量吸入这些有害的气体,引起各种症状,全城14000人中有6000人眼痛、喉咙痛、头痛胸闷、呕吐、腹泻,20多人死亡。3、伦敦烟雾事件1952 年 12 月 5 日至 9 日,伦敦上空受反气旋影响,大量工厂生产和居民燃煤取暖排出的废气难以扩散,积聚在城市上空。伦敦被有浓厚的烟雾笼罩,交通瘫痪,行人小心翼翼地摸索前进。市民不仅生活被打乱,健康也受到严重侵害。许多市民出现胸闷、窒息等不适感,发病率和死亡率急剧增加。直至 12 月 9 日,一股强劲而寒冷的西风吹散了笼罩在伦敦的烟雾。据统计,当月因这场大烟雾而死的人多达 4,000 人。此次事件被称为“伦敦烟雾事件”。4、美国洛杉矶光化学烟雾事件美国洛杉矶光化学烟雾事件是 1940 年至 1960 年间发生在美国洛杉矶的有毒烟雾污染大气的事件,世界有名的公害事件之一。光化学烟雾是大量聚集的汽车尾气中的碳氢化合物在阳光作用下,与空气中其他成份发生化学作用而产生的有毒气体。这些有毒气体包括臭氧、氮氧化物、醛、酮、过氧化物等。5、日本水俣病事件日本水俣病事件,在1956年日本水俣湾出现的一种奇怪的病。这种“怪病”是日后轰动世界的“水俣病”,是最早出现的由于工业废水排放污染造成的公害病。症状表现为轻者口齿不清、步履蹒跚、面部痴呆、手足麻痹、感觉障碍、视觉丧失、震颤、手足变形,重者神经失常,或酣睡,或兴奋,身体弯弓高叫,直至死亡。6、日本富山骨痛病事件痛痛病事件,指1955年至1977年发生在日本富山县神通川流域的公害事件。1955年,在神通川流域河岸出现了一种怪病,症状初始是腰、背、手、脚等各关节疼痛。随后遍及全身,有针刺般痛感,数年后骨骼严重畸形,骨脆易折,甚至轻微活动或咳嗽,都能引起多发性病理骨折,最后衰弱疼痛而死。经调查分析,痛痛病是河岸的锌、铅冶炼厂等排放的含镉废水污染了水体,使稻米含镉。而当地居民长期饮用受镉污染的河水,以及食用含镉稻米,致使镉在体内蓄积而中毒致病。此病以其主要症状而得名。截至1968年5月,共确诊患者258例,其中死亡128例,到1977年12月又死亡79例。痛痛病在当地流行20多年,造成200多人死亡。7、日本四日市气喘病事件四日市位于日本东部海湾。1955年这里相继兴建了十多家石油化工厂,化工厂终日排放的含SO2的气体和粉尘,使昔日晴朗的天空变得污浊不堪。1961年,呼吸系统疾病开始在这一带发生,并迅速蔓延。据报道患者中慢性支气管炎占25%,哮喘病患者占30%,肺气肿等占15%。1964年这里曾经有3天烟雾不散,哮喘病患者中不少人因此死去。1967年一些患者因不堪忍受折磨而自杀。1970年患者达500多人。1972年全市哮喘病患者871人,死亡11人。8、日本米糠油事件日本米糠油事件,世界八大环境公害事件之一,是由POPs所造成的典型污染事件,在当时造成了严重的生命和财产损失,造成了较大的社会恐慌。事件的具体经过为:1968年3月,日本的九州、四国等地区的几十万只鸡突然死亡。经调查,发现是饲料中毒,但因当时没有弄清毒物的来源,也就没有对此进行追究。然而当年6-10月,又有4家门人因患原因不明的皮肤病到九州大学附属医院就诊,患者初期症状为痤疮样皮疹,指甲发黑,皮肤色素沉着,眼结膜充血等。此后3个月内,又确诊了112个家庭325名患者,之后在全国各地仍不断出现。至1977年,因此病死亡人数达数万余人,1978年,确诊患者累计达1684人。参考资料来源:百度百科——八大公害事件2023-07-24 06:55:593