- 瑞瑞爱吃桃
-
化学键的概念:指分子或者晶体内相邻原子(或离子)间强烈的相互作用。 化学键有3种极限类型,即离子键、共价键和金属键。化学键主要影响物质的化学性质,因为化学反应的本质就是旧的化学键的断裂和新化学键形成的过程。 化学键强弱对物质性质的影响:①对于离子化合物(或离子晶体),离子键的强弱影响物质的稳定性、熔沸点。离子半径越大其熔沸点就越高,带电荷越多熔沸点也越高(MgO Al2O3的熔点较高就是离子键较强)。②对于共价化合物或非金属单质,共价键的强弱会影响物质的稳定性。共价键强的分子稳定,如氮气分子很稳定就是这个原因。但是要注意氢键的影响。而对于原子晶体(C、Si、SiO2、SiC等)会影响熔沸点,键能越大,熔沸点越高。③对于金属晶体,金属键的强弱会影响熔沸点、单质的还原性和离子氧化性。金属离子半径越大其熔沸点就越高,带电荷越多熔沸点也越高。半径大小和带电荷多少还影响金属的导电导热性,硬度,延展性等。无化学键的物质:稀有气体,如氦、氖、氩等,它们的性质比较稳定,由此可知有化学键对物质化学性质的影响。
相关推荐
化学键的本质
化学键的本质是电磁力,化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。2023-07-28 23:03:061
化学键的本质是什么
化学键的本质是电磁力。分子间作用力的本质也同样是电磁力。世界上目前发现的一切作用力,都可以被归结为四种基本力(无一例外):万有引力、电磁力(其中包括库伦力)、强力、弱力。强力、弱力一般仅存在于原子核内部。而万有引力系数非常小,仅在很大质量的物体间起重要作用。因此,在大多一般现象中存在的力,除重力外都是电磁力。只不过有些比较容易观察和理解,有些不太容易观察理解。例如什么弹力、拉力、推力、支持力本质上都是电磁力(呵呵,可能有点难解,要从微观去看问题,这些力是微观的电磁力的总和。把这个问题搞清了,说明你的微观分析能力达到了相当的高度)。回到问题,共价键的本质在于通过共用电子对成键原子的原子核的引力,而将两个或多个带正电的核相互“连接”在一起。更准确地说,共用电子虽然在两核的周围任何地方都可能出现,但出现在两核的中间区域的概率较大。这样两个核就通过电子的纽带被结合在一起,有效降低核间的静电斥力,形成稳定的分子。类似地如果分子受到外界的影响,比方紫外辐射或加热,电子就可能获得额外能量。能量提高后,这些电子就不会老老实实地主要在核间运动了,它们会跑得更远,跑到核连线区域以外的地方,并且出现在那些地方的概率增大,这样核间的斥力就表现出来,而导致化学键的断裂。很明显在这些过程中,都是库伦力在起作用。对于离子键,金属键,还有楼上提出的配位键(共价键的特例)都是类似的,不存在本质上的区别。如果你能准确理解这个问题,那么化学的微观部分就很简单了。离子键的共用电子的电子云强烈偏向电负性大的元素,以至于出现在阳离子一侧的概率较小(但不是没有!)。离子键即便看作阴阳离子间的相互作用,这种作用力依然是库伦力。金属中电子是自由的,并不局限在某一原子核的周围运动,但他们和核之间依然通过库伦引力作用,减少核间排斥,形成金属晶体。至于配位键只不过共用电子对由一个原子出罢了,和一般的共价键没本质区别2023-07-28 23:03:175
化学键能的本质是什么?
化学键的本质是原子周围的电子在成键前后在空间中重新分配,而这种分配使得能体系的能量降低。以共价键为例,如两个氢原子,在成键前电子分别受各自的原子核吸引,在成键后处于两原子中间,同时受到两个原子核吸引,前后通过这个作用使得能量降低。这种电子的分配是原子核与电子共同的结果。 具体的说配位键,它的形成需要空轨道和孤对电子。N提供故对电子,氢提供空轨道,形成配位键。若是氨和氢氧根,则都是提供孤对电子,没有空轨道。简单地说,就是指相临原子间强列的互相作用。化学键分为:离子键、共价键、金属键。2023-07-28 23:03:365
化学键形成本质
化学键(chemical bond)是指分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。高中定义:使离子相结合或原子相结合的作用力通称为化学键。 这就是化学键的本质 在水分子H2O中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种极限类型 ,即离子键、共价键、金属键。离子键是由带异性电荷的离子产生的相互吸引作用,例如氯和钠以离子键结合成氯化钠。共价键是两个或两个以上原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。其中金属离子被固定在晶格结点上,处于离域电子的“海洋”之中。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。2023-07-28 23:03:553
化学键的本质鲍林求助鲍林的《化学
您好!化学键的本质是由该元素原子的成键电子的移动状态所决定的:1、由不同元素的原子(或原子团)通过电子得失而形成的化学键是离子键。2、由元素的原子通过公用电子对形成的化学键是共价键:在不同元素间,公用电子对发生偏移而形成的化学键是极性键。在非金属单质中,公用电子对不发生偏移的化学键是非极性键。3、在不同元素间公用电子对是由一方原子提供而形成的化学键是配位键。4、氢键 ……以上所述,仅供参考!2023-07-28 23:04:031
化学 :化学键的本质是能量,这话对吗?
让我来为你详细解答,先告诉你,这是不准确的希望你能耐心看完:化学键的本质是原子周围的电子在成键前后在空间中重新分配,而这种分配使得能体系的能量降低。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。化学键:是一种粒子间的吸引力,其中粒子可以是原子、离子或分子。化学键种类繁多,其能量大小、键长亦有所不同;能量较高的“强化学键”包括共价键、离子键,而分子间力、氢键等“弱化学键”能量较低。希望能帮到你,望采纳,谢谢!2023-07-28 23:04:134
化学键的本质是什么?
补充: 相邻 追问: 形成化学键为什么要放出热量?原子相互作用应该需要能量,所以形成化学键的时候应该吸收能量啊!但是为什么是放出能量? 回答: 化学键的本质是 保持该物体本身结构和状态的一种类似力的作用。 例如金刚石和石墨的分子结构都是碳,但二者硬度迥异—— 金刚石和石墨都是由碳原子构成的,但是它们的结构不同。金刚石是正四面体结构,每个面都是三角形,所以金刚石坚硬无比;而石墨是片层结构,层与层之间很容易滑动,所以石墨较软而且有滑腻感,可以作高温润滑剂。 补充: 化学键与能量变化在化学反应中,不仅有新物质生成,而且伴随着能量变化。在化学反应过程中,破坏旧化学键时,需要吸收一定的能量来克服原子(或离子)间的相互作用;形成新化学键时又要释放一定的能量。因此在化学反应中,不仅有新物质生成,而且伴随着能量变化。化学键的形成蕴涵着能量变化,在进行反应时化学键要断裂,吸收能量,反应后形成新化学键要放出能量,反应前反应物能量与反应后生成物能量不相等。三个特点:一是化学反应的特点是有新物质生成,新物质和反应物总能量不同。二是反应中要遵循能量守恒。三是反应物与生成物的能量差若以热能形式表现即为放热和吸热。2023-07-28 23:04:221
化学键本质是库伦力吗,或者说是电磁力
完全正确!这才是化学键的本质。分子间作用力的本质也同样是电磁力。世界上目前发现的一切作用力,都可以被归结为四种基本力(无一例外):万有引力、电磁力(其中包括库伦力)、强力、弱力。强力、弱力一般仅存在于原子核内部。而万有引力系数非常小,仅在很大质量的物体间起重要作用。因此,在大多一般现象中存在的力,除重力外都是电磁力。只不过有些比较容易观察和理解,有些不太容易观察理解。例如什么弹力、拉力、推力、支持力本质上都是电磁力(呵呵,可能有点难解,要从微观去看问题,这些力是微观的电磁力的总和。把这个问题搞清了,说明你的微观分析能力达到了相当的高度)。回到问题,共价键的本质在于通过共用电子对成键原子的原子核的引力,而将两个或多个带正电的核相互“连接”在一起。更准确地说,共用电子虽然在两核的周围任何地方都可能出现,但出现在两核的中间区域的概率较大。这样两个核就通过电子的纽带被结合在一起,有效降低核间的静电斥力,形成稳定的分子。类似地如果分子受到外界的影响,比方紫外辐射或加热,电子就可能获得额外能量。能量提高后,这些电子就不会老老实实地主要在核间运动了,它们会跑得更远,跑到核连线区域以外的地方,并且出现在那些地方的概率增大,这样核间的斥力就表现出来,而导致化学键的断裂。很明显在这些过程中,都是库伦力在起作用。对于离子键,金属键,还有楼上提出的配位键(共价键的特例)都是类似的,不存在本质上的区别。如果你能准确理解这个问题,那么化学的微观部分就很简单了。离子键的共用电子的电子云强烈偏向电负性大的元素,以至于出现在阳离子一侧的概率较小(但不是没有!)。离子键即便看作阴阳离子间的相互作用,这种作用力依然是库伦力。金属中电子是自由的,并不局限在某一原子核的周围运动,但他们和核之间依然通过库伦引力作用,减少核间排斥,形成金属晶体。至于配位键只不过共用电子对由一个原子出罢了,和一般的共价键没本质区别。2023-07-28 23:04:323
化学键是一种作用力吗?高中化学必修2
是的。化学键是一种强烈的相互作用力。化学键纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。相关化学键有,离子键、 共价键、 金属键、 极性键、 非极性键、 配位键、定域键化学键性质有,键能、键长、键角、键偶极、键极化度等相关规律有,泡利原理、洪特规则、键合距离希望对你有帮助2023-07-28 23:04:425
化学键断裂释放能量,这个键在哪?真的有吗?
化学键的本质是原子之间强烈的相互作用,“键”的英文单词为bond,意为“连接”、“桥联”的意思,“化学键”顾名思义,就是像“桥”一样,将化学原子连接在一起,这种“桥”当然是特殊的桥,抽象的桥,它其实就指的是将两近邻原子联结在一起的强烈相互作用。化学键当然存在了,要不然哪来的这个名词,哪来的我们多彩的现实世界。比如金属中所谓的金属键(带负电自由移动的电子充斥在金属正离子之间,作为媒介将正离子联结在一起),离子化合物中所谓的离子键(近邻正负离子之间通过库仑吸引联结在一起),共价化合物中所谓的共价键(电子对被近邻原子所共有,处于两带正电的原子核中间附近,有效降低了整个体系的电势能或者说库仑排斥能量)等,这些都是将近邻原子连接在一起的强烈相互作用,即化学键。化学键断裂,即将具有相互吸引效果的原子分开,是会吸收能量的,如金属键的破坏(金属融化),离子键的破坏(离子化合物在熔融状态或水溶液中被电离),共价键的破坏(稀盐酸中HCl分子被水电离,破坏H-Cl共价键)。与化学键断裂相反,化学键的形成却是释放能量的,形成多个原子更稳定的组合形态。2023-07-28 23:05:101
化学键的本质就是能量?为什么会有这种说法?
首先,化学键的形成是原子与原子之间电子之间的作用,电子在原子中不同的运动轨道决定了它的能量的多少,比如:电子从高能量轨道运动到低能量时就会对外发射光子,化学键的形成和断裂也涉及到电子轨道的变化,即形成杂化,所以你就可以简单的认为化学键的本质就是能量!2023-07-28 23:05:172
化学键类型有哪些?
化学键一般分为金属键、离子键和共价键。(1) 金属键:金属原子外层价电子游离成为自由电子后,靠自由电子的运动将金属离子或原子联系在一起的作用,称为金属键。金属键的本质:金属离子与自由电子之间的库仑引力。(2)离子键:电负性很小的金属原子和电负性很大的非金属离原子相互靠近时,金属原子失电子形成正离子,非金属离原子得到原子形成负离子,由正、负离子靠静电引力形成的化学键。(3)共价键:分子内原子间通过共用电子对(电子云重叠)所形成的化学键。可用价键理论来说明共价键的形成。价键理论:价键理论认为典型的共价键是在非金属单质或电负性相差不大的原子之间通过电子的相互配对而形成。原子中一个未成对电子只能和另一颗原子中自旋相反的一个电子配对成键,且成键时原子轨道要对称性匹配,并实现最大程度的重叠。扩展资料:化学键的本质就是电磁相互作用,由于另一颗原子核的靠近,电子感受到的静电场发生了变化,其相应的运动状态也会发生变化,电子运动状态变化的过程就是成键过程。这些都是共价键的经典描述,实际上电子不绕核旋转也不再原子之间。电子之间确实会排斥但是和核之间还有吸引,简单一点可以认为是一个整体的平衡。2023-07-28 23:05:262
化学键是客观存在的么
晚上好 化学键可以说是客观存在的吧 因为化学键的本质其实是原子(团)或分子之间的相互作用力 这个相互的作用力当然是客观存在的 甚至可以大致计算出这个力的大小是多少牛 至于课本上图片中的化学键 是为了增强学生的理解 故意画成一条线或几条线的纯手打 望采纳 可追问!~2023-07-28 23:05:441
化学键是什么诶?
化学键 [编辑本段]化学术语 1定义:化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。 2分类:金属键、离子键、共价键。 化学键的分类 在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。 离子键与共价键 1、离子键 [1] 是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以有可将化学键分为离子键、共价键和金属键等。 离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之见的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。 共价键是原子间通过共用电子对(电子云重叠)而形成的化学键。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。 1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类 共价键有不同的分类方法。 (1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、叁键(C C)等。 (2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。 (3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如氨分子中的N—H键中有一个属于配位键)。 (4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键。)等 2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物 洪德规则 高分辨光谱事实揭示核外电子还存在着一种奇特的量子化运动,人们称其为自旋运动,用自旋磁量子数(spin m.q.n)表示,每个轨道最多可以容纳两个自旋相反的电子。记做“↑↓”但需要指出,这里的自旋和地球的自转不同,自旋的实质还是一个等待发现的未解之谜 [1] 。 原子核也可以存在净自旋。由于热平衡,通常这些原子核都是随机朝向的。但对于一些特定元素,例如氙-129,一部分核自旋也是可能被极化的,这个状态被叫做超极化,在核磁共振成像中有很重要的应用。 洪德在总结大量光谱和电离势数据的基础上提出:电子在简并轨道上排布时,将尽可能分占不同的轨道,且自旋平行 [3] 。对于同一个电子亚层,当电子排布处于 全满(s^2、p^6、d^10、f^14) 半满(s^1、p^3、d^5、f^7) 全空(s^0、p^0、d^0、f^0) 时比较稳定。2023-07-28 23:05:511
帮总结化学键
1定义:化学键(chemical bond)是指晶体内相邻原子(或离子)间强烈的相互作用。 2分类:金属键、离子键、共价键。 化学键的分类 在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。 离子键与共价键 1、离子键 [1] 是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。 离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之见的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。 共价键是原子间通过共用电子对(电子云重叠)而形成的化学键。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。 1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类 共价键有不同的分类方法。 (1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、叁键(C≡C)等。 (2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。 (3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如氨分子中的N—H键中有一个属于配位键)。 (4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键。)等 2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物 金属键 1. 概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。 2. 改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键 [1] 。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨(Lorentz,1904)和佐默费尔德(Sommerfeld,1928)等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。2023-07-28 23:05:581
为什么叫化学键?
化学键:相邻的原子之间强烈的相互作用.分子或晶体中相邻的两个或多个原子(离子)之间的强烈相互作用,叫做化学键。化学键首先要强调分子内。分子间的相互作用、范德华力或氢键都不算化学键。相互作用主要是指邻近原子间。非邻近原子间虽也有作用但较弱,只是前者的百分之几。有些多原子分子,除了相邻的两个原子之间有强烈的相互作用外,邻近多个原子间通过共轭作用也会形成化学键,如苯、丁二烯-[1, 3]、NO2等共轭分子中的离域大π键。在NaCl晶体中,无限多个离子间相互作用,形成离子键。强相互作用预示化学键的强度,可用键能定量估计。一般化学键的键能为一百到几百kJ/mol。氢键的键能约在40kJ/mol以下。化学键的形成把原子按一定方式牢固地结合成分子,所以它是使分子或晶体能稳定存在的根本原因。化学键主要类型有离子键、共价键(包括配位键)和金属键等。化学键的本质主要围绕共价键成因的研究,形成了以价键理论、分子轨道理论和配位场理论为主体的化学键理论。2023-07-28 23:06:094
从能量的角度来看,断开化学键要?
断开化学键要吸收能量,形成要放出能量。因为化学键的本质是电子间的吸引力,要破坏这种吸引力就需要吸收能量。而形成键的时候,要让两个那么活泼的电子聚在一起,应该要让释放能量让它们安定下来。反应是吸收能量还是释放能量,取决于反应物的能量高,还是产物的总能量高(跟活化能没什么关系)。这跟反应的吸热放热的原理是类似的。(热量也是一种能量)如果反应物的总能量高,那么反应物就应该吸收能量才能形成总体能量那么高的产物。反之亦然。2023-07-28 23:06:252
化学孤电子对是什么?
孤电子对 = 孤对电子一般指的是元素自身的p轨道上的孤对电子,这些 孤对电子有很多性质,比如可以形成配位键,对分子的键角有一定的影响。具体的实例有 NH3 中N有一个 孤对电子,H2O中的O上有二对 孤对电子, HF中的F上有三对 孤对电子。2023-07-28 23:06:362
介绍一下化学键
1定义:化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。 2分类:金属键、离子键、共价键。 化学键的分类 在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。 离子键与共价键 1、离子键 [1] 是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以有可将化学键分为离子键、共价键和金属键等。 离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之见的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。 共价键是原子间通过共用电子对(电子云重叠)而形成的化学键。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。 1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类 共价键有不同的分类方法。 (1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、叁键(C C)等。 (2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。 (3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如氨分子中的N—H键中有一个属于配位键)。 (4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键。)等 2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物 金属键 1. 概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。 2. 改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键 [1] 。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨(Lorentz,1904)和佐默费尔德(Sommerfeld,1928)等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。2023-07-28 23:06:572
化学键理论适用于所有范围吗?
19世纪末,电子和放射性的发现揭开了科学家研究微观世界的序幕。随着原子结构得到阐明,原子与原子之间如何结合生成各类分子,即化学键的本质问题也逐渐得到理论与实验日益符合的解释。现代化学键理论是获自分子薛定谔方程近似解的处理方法,也称电子配对法。关于化学键的理论,19世纪就有了原子价的概念。电子发现后,德国的阿培格在1904年提出了“八数规则”。玻尔原子模型建立后,德国化学家柯塞尔和美国化学家路易斯于1916年分别提出了电价键理论和共价键理论。量子力学建立后,1927年,德国的海特勒与美籍德国人伦敦首先用量子力学的近似处理方法研究最简单的氢分子。他们认识到,氢分子中两个原子所以能够相互结合成键,是由于电子密度分布集中在两个原子核之间,形成了一个“电子桥”,并把两个原子吸引在一起而稳定下来,从而形成分子,即电子云分布在原子核之间形成化学键。在此基础上,1931年4月1日,美国化学家鲍林等,将其成果定性推广到其他分子体系形成了价键理论:原子未化合前,若未成对电子的自旋方向是反平行的,就能两两组队,电子对运动所在的原子轨道就会交盖重叠,从而形成共价键;一个电子与另一个电子配对以后就不能再与第三个电子配对;原子轨道的重叠越多,所形成的共价键就越稳定。价键理论同人们所熟悉的经典价键理论相一致,比较直观,所以很快得到了普及和发展,并解释了基态分子成键的方向性和饱和性,对现代化学发展做出了重大贡献。但受电子对成键观点的束缚,它把电子的运动只局限于成键的两原子之间,无法解释氧气等分子的结构。2023-07-28 23:07:071
作为世纪伟人,鲍林有哪些突出贡献
莱纳斯·卡尔·鲍林(Linus Carl Pauling,1901年2月28日-1994年8月19日),美国著名化学家,量子化学和结构生物学的先驱者之一。1954年因在化学键方面的工作取得诺贝尔化学奖,1962年因反对核弹在地面测试的行动获得诺贝尔和平奖,成为获得不同诺贝尔奖项的两人之一。鲍林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一。他所提出的许多概念:电负度、共振理论、价键理论、杂化轨道理论、蛋白质二级结构等概念和理论,如今已成为化学领域最基础和最广泛使用的观念。学术贡献价键理论鲍林自1930年代开始致力于化学键的研究,1931年2月发表价键理论,此后陆续发表相关论文,1939年出版了在化学史上有划时代意义的《化学键的本质》一书。这部书彻底改变了人们对化学键的认识,将其从直观的、臆想的概念升华为定量的和理性的高度,在该书出版后不到30年内,共被引用超过16000次,至今仍有许多高水平学术论文引用该书观点。由于鲍林在化学键本质以及复杂化合物物质结构阐释方面杰出的贡献,他赢得了1954年诺贝尔化学奖。鲍林对化学键本质的研究,引申出了广泛使用的杂化轨道概念。杂化轨道理论认为,在形成化学键的过程中,原子轨道自身回重新组合,形成杂化轨道,以获得最佳的成键效果。根据杂化轨道理论,饱和碳原子的四个价层电子轨道,即一个2S轨道和三个2P轨道喙线性组合成四个完全对等的sp3杂化轨道,量子力学计算显示这四个杂化轨道在空间上形成正四面体,从而成功的解释了甲烷的正四面体结构。电负性 鲍林在研究化学键键能的过程中发现,对于同核双原子分子,化学键的键能会随着原子序数的变化而发生变化,为了半定量或定性描述各种化学键的键能以及其变化趋势,鲍林于1932年首先提出了用以描述原子核对电子吸引能力的电负性概念,并且提出了定量衡量原子电负性的计算公式。电负性这一概念简单、直观、物理意义明确并且不失准确性,至今仍获得广泛应用,是描述元素化学性质的重要指标之一。共振论 鲍林提出的共振论是20世纪最受争议的化学理论之一。也是有机化学结构基本理论之一。为了求解复杂分子体系化学键的薛定谔方程,鲍林使用了变分法。在原子核位置不变的前提下,提出体系所有可能的化学键结构,写出每个结构所对应的波函数,将体系真实的波函数表示为所有可能结构波函数的线性组合,经过变分法处理后,得到体系总能量最低的波函数形式。这样,体系的化学键结构就表示成为若干种不同结构的杂化体,为了形象地解释这种计算结果的物理意义,鲍林提出共振论,即体系的真实电子状态是介于这些可能状态之间的一种状态,分子是在不同化学键结构之间共振的。鲍林将共振论用于对苯分子结构的解释获得成功,使得共振论成为有机化学结构基本理论之一。1950年代,苏联和中国等共产主义国家出于意识形态的考虑,对共振论、现代遗传学等科学理论展开政治批判,共振论被作为唯心主义的典型加以批判。由于这场政治运动的影响,在共产主义国家量子化学的传播和发展几乎陷入停顿。1980年代以后,这些国家的学术界逐渐破除了政治因素对科学的束缚,重新审视和接受共振论的思想。在量子化学领域,随着分子轨道理论的出现和发展,鲍林的化学键理论由于在数学处理上的繁琐和复杂而逐渐处于下风,共振论方法作为一种相对粗糙的近似处理也较少使用了,但是在有机化学领域,共振论仍是解释物质结构,尤其是共轭体系电子结构的有力工具。生物大分子结构和功能 1930年代中期,随着加州理工学院加强其再在生物学领域的发展,鲍林得以接触一批生物学大师,期间鲍林对他原本没有兴趣的生物大分子结构研究产生了兴趣。鲍林在生物大分子领域最初的工作是对血红蛋白结构的确定,并且通过实验首先证实,在得氧和失氧状态下,血红蛋白的结构是不同的,为了进一步精确测定蛋白质结构,鲍林首先想到他早期从事的x-射线衍射晶体结构测试的方法,他将这种方法引入到蛋白质结构测定中来,并且推导了经衍射图谱计算蛋白质中重原子坐标的公式。至今通过蛋白质结晶,进行x-射线衍射实验仍然是测定蛋白质三级结构的主要方法,人类已知结构的绝大部分蛋白质都是经由这种方法测定获得的。结合血红蛋白的晶体衍射图谱,鲍林提出蛋白质中的肽链在空间中是呈螺旋形排列的,这就是最早的α 螺旋结构模型,有科学史学者认为沃森和克里克提出的DNA双螺旋结构模型就是受到了鲍林的影响,而鲍林之所以没有提出双螺旋,是因为他在1950年代受到美国麦卡锡主义的影响,错过了一次在英国举行的学术会议,没有能够看到一副重要的DNA晶体衍射图谱。1951年鲍林结合他在血红蛋白进行的实验研究,以及对肽链和肽平面化学结构的理论研究,提出了α螺旋和β折叠是蛋白质二级结构的基本构建单元的理论。这一理论成为20世纪生物化学若干基本理论之一,影响深远。此外,鲍林还提出了酶催化反应的机理、抗原与抗体结构互补性原理以及DNA复制过程中的互补性原理,这些理论在20世纪的生物化学和医学领域都扮演了非常重要的角色。1994年8月19日,美国著名学者莱纳斯·鲍林以93岁高龄在他加利福尼亚州的家中逝世。鲍林是惟一一位先后两次单独获得诺贝尔奖的科学家。曾被英国《新科学家》周刊评为人类有史以来20位最杰出的科学家之一,与牛顿、居里夫人及爱因斯坦齐名。然而,路透社在报道鲍林逝世的消息时却说,他是"20世纪最受尊敬和最受嘲弄的科学家之一"。其他消息一个"最受尊敬"的科学家之所以"最受嘲弄",在于他提出了维生素作用的新观点,尤其是主张超大剂量服用维生素C。鲍林是"化学家、物理学家、结晶学家、分子生物学家和医学研究者",他不是医生,可他偏偏引发了医学领域一场旷日持久的大论战。鲍林根据自己多年的研究,于1970年出版了《维生素C与普通感冒》一书。书中认为:每天服用1 000毫克或更多的维生素C可以预防感冒:维生素c可以抗病毒。这本书受到读者的赞誉,被评为当年的美国最佳科普图书。可是,医学权威们激烈反对鲍林的论点。有的说:"没有任何证据能够支持维生素C可以防治感冒的观点。"有的说:"这对预防或减轻感冒没有什么用处。"权威部门也纷纷表态。例如,美国卫生基金会就告诫读者:"每天服用1000毫克以上维生素C能预防感冒的说法是证据不充分的。"美国医学协会也发表声明:"维生素C 不能预防或治疗感冒!"只有个别医学家及几百位普通病人用自身的经历支持鲍林。鲍林身陷重围。攻击他的人说他根本不是医生,没资格来谈论维生素C防治感冒的问题。还有人干脆把他讥讽为江湖医生。或说他用维生素C防治感冒是江湖游医式的宣传。尊重他的人则叹惜他晚年"不安分",说他完全可以安享荣耀,可他非要闯入医学领域。而离开他自己的化学"主流"太远。然而。鲍林不管这些。1979年。他和卡梅伦博士合作出版了《癌症和维生素C》一书,建议每个癌症患者每天服用10克(1克等于1000毫克)或更多的维生素C,建议癌症患者"尽可能早地开始服用大剂量维生素c,以此作为常规治疗的辅助手段"。他们说:"我们相信这种简单的方法将十分显著地改善癌症治疗的结果。"但是。医学权威们更不相信这种观点。鲍林先后8次向国家癌症研究所申请资助,以便通过动物实验做进一步研究,可这位世界知名科学家的每次申请都被否定。他只能靠"许多人资助"来工作。即使如此。权威机构和权威人士还是声明:维生素C对癌症没有价值。此时,仍然是一些病人用自己的实例来支持鲍林的观点。1985年,鲍林又写了一本有关健康长寿的书。他在谈及"一种提高健康水平的摄生法"时,介绍了12项具体步骤,第一项就是:"每天服用维生素C6~18克,或更多。一天也不要间断。"他认为。"这种摄生法的主要特点就是增补维生素",他自己则是个多年的身体力行者。他说:"1985年我写这本书时。每天服用4片营养物质加上18克维生素C。"鲍林认为。不管你现在年龄多大,每天服用最佳量的维生素(逐步增加维生素C用量),都是有益的。他说:"从青年或中年时开始。适当地服用维生素和其他营养物质,进行一些健身运动,能使寿命延长25~35年。""如果你已进入老年,服用适当的维生素并进行一些健身运动,可以期望使衰老进程减慢,延长寿命15年或20年。"他的超大剂量服用维生素C可以益寿的观点自然又一次被医学界所拒绝。医学权威们与鲍林的最大争论焦点在于维生素C的用量。鲍林认为,"对大多数成人来说.维生素C的最佳摄入量是在2.3~10克的范围内。"如果需要,还可以增加到每天20克、30克或更多。鲍林认为,无论是对付病毒、癌症还是抗衰老。维生素C的用量都应大大高于当时的规定用量。所以严格说,剂量之争是双方的关键之争。在鲍林去世之前,美国的权威机构--食品营养委员会对维生素C的推荐剂量是每天60毫克。有些营养学家认为只要30~40毫克就行了。可鲍林向人们建议的服用量是专家推荐剂量的几十倍到几百倍。这自然要遭到医学界人士的坚决反对了。美国健康基金会主席明确告诫人们:"所谓的大剂量维生素疗法必须避免。"医学界反对大量服用维生素C的重要理由是:这会使人得肾结石。但鲍林反驳说:尽管理论上有这种可能,可是在医学文献中没有一个肾结石病例是因大剂量服用维生素C而导致的。在鲍林去世之前。双方始终是各执一词,互不相让。不知是有意还是无意,直到鲍林逝世以后。我们才初步看到了关于维生素C剂量和作用方面的一点变化:1995年2月,美国心脏学会和部分营养学家向美国国家食品与药品管理机构建议:将维生素C的每日推荐量由60毫克提高到250~1000毫克。1996年4月,美国国立卫生研究院的科学家声称:一个人每天摄入200毫克维生素C是最理想的,而不是60毫克。1996年《纽约时报》报道的一则调查称。有30%~40%的美国人在服用维生素C,其中1/5的人每天服用量超过1克。1997年10月,《美国临床营养杂志》报道,研究人员对247名年龄在56~72岁的妇女进行了调查,其中有11%的人每天补充维生素C超过10年,这些服用者没有一人得白内障。研究人员认为,长期补充维生素C,可使白内障的危险减少77%以上--而鲍林早在1985年前就这样论述了,然而,医学界原先不相信。2000年美国药物研究所食品和营养委员会的评估认为:成人每天服用不超过2 000毫克维生素C是安全的。有报告称,据对14例临床实验证明,每天口服10克维生素C且连续3年,未发现1例肾结石。现在。多数医学界人士相信。维生素C确有一定的防治感冒的作用。研究发现。每天摄入300~400毫克维生素C的男性,要比日摄入量60毫克及不足60毫克的人多活6年。如今,许多专家承认:维生素C有抗癌作用,能预防多种疾病,包括老年痴呆症。有报道说。对18例晚期癌症患者,每天1次给予维生素C10~20克静脉滴注。结果14例全身骨关节痛患者治疗1周后有7例明显缓解。关于维生素C作用与剂量的这场大论战。鉴于美国的影响力和双方的知名度,一开始就越过了国境,波及到全球。各国的医学界人士起初差不多也都站到了美国同行那边。遥想当年。鲍林几乎是"孤军作战"地与众多医学权威机构和权威人士论争,他为此而受到的嘲弄和轻蔑是一位著名学者,也是一般人难以忍受的。可鲍林在长长的20多年时间里,义无反顾地奋起捍卫自己的观点,这种勇气和探索精神令人深深敬仰。时至今日,美国和世界各国的许多专家学者已经承认或接近承认鲍林的观点了,然而论争仍远远没有结束,例如,有些人认为维生素C能抗癌,有些人却认为它能致癌。总之,维生素C的作用与剂量问题仍需继续研究。诚然,鲍林的某些观点是否有失偏颇,尚待实践进一步检验。即使有朝一日证明他的论点不够完美,他的探求精神依旧值得人们学习。毕竟探索永无止境,毕竟科学未到尽头,我们没有理由因循守旧。从这个角度看,鲍林的其他观点也是值得人们深思的。他说:"医生在行医时应当慎重是对的,但是,如果医学要进步,行医这行业也需要接受新思想。""医生的意见不是一贯正确的,虽说其用心善良,患者要自己做出决定。"2023-07-28 23:07:161
原子的基本概述
原子是一种元素能保持其化学性质的最小单位。一个正原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。而负原子的原子核带负电,周围的负电子带正电。正原子的原子核由带正电的质子和电中性的中子组成。负原子原子核中的反质子带负电,从而使负原子的原子核带负电。当质子数与电子数相同时,这个原子就是电中性的;否则,就是带有正电荷或者负电荷的离子。根据质子和中子数量的不同,原子的类型也不同:质子数决定了该原子属于哪一种元素,而中子数则确定了该原子是此元素的哪一个同位素。 原子构成分子而分子组成物质中同种电荷相互排斥,不同种电荷相互吸引。 化学变化中的最小微粒。注意:原子是构成物质的最小粒子.是不对的,原子又可以分为原子核与核外电子,原子核又由质子和中子组成,而质子数正是区分各种不同元素的依据.质子和中子还可以继续再分.所以原子不是构成物质的最小粒子,但原子是化学反应中的最小粒子。 ①原子的质量非常小 。②不停地作无规则运动。③原子间有间隔。④同种原子性质相同,不同种原子性质不相同。 关于物质是由离散单元组成且能够被任意分割的概念流传了上千年,但这些想法只是基于抽象的、哲学的推理,而非实验和实验观察。随着时间的推移以及文化及学派的转变,哲学上原子的性质也有着很大的改变,而这种改变往往还带有一些精神因素。尽管如此,对于原子的基本概念在数千年后仍然被化学家们采用,因为它能够很简明地阐述一些化学界的现象。原子论是元素派学说中最简明、最具科学性的一种理论形态。英国自然科学史家丹皮尔认为,原子论在科学上“要比它以前或以后的任何学说都更接近于现代观点”。原子论的创始人是古希腊人留基伯(公元前500~约公元前440年),他是德谟克利特的老师。古代学者在论及原子论时,通常是把他们俩人的学说混在一起的。留基伯的学说由他的学生德谟克利特发展和完善,因此德谟克利特被公认为原子论的主要代表。德谟克利特认为,万物的本原或根本元素是“原子”和“虚空”。“原子”在希腊文中是“不可分”的意思。德谟克利特用这一概念来指称构成具体事物的最基本的物质微粒。原子的根本特性是“充满和坚实”,即原子内部没有空隙,是坚固的、不可入的,因而是不可分的。德谟克利特认为,原子是永恒的、不生不灭的;原子在数量上是无限的;原子处在不断的运动状态中,它的惟一的运动形式是“振动”;原子的体积微小,是眼睛看不见的,即不能为感官所知觉,只能通过理性才能认识。经过二十几个世纪的探索,科学家在17世纪~18世纪通过实验,证实了原子的真实存在。19世纪初英国化学家J.道尔顿在进一步总结前人经验的基础上,提出了具有近代意义的原子学说。这种原子学说的提出开创了化学的新时代,他解释了很多物理、化学现象。原子是一种元素能保持其化学性质的最小单位。一个原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。原子核由带正电的质子和电中性的中子组成。原子是化学变化的最小粒子,分子是由原子组成的,许多物质是由原子直接构成的。原子的英文名是从希腊语转化而来,原意为不可切分的。很早以前,希腊和印度的哲学家就提出了原子的不可切分的概念。17和18世纪时,化学家发现了物理学的根据:对于某些物质,不能通过化学手段将其继续的分解。19世纪晚期和20世纪早期,物理学家发现了亚原子粒子以及原子的内部结构,由此证明原子并不是不能进一步切分。量子力学原理能够为原子提供很好的模型。 1661年,自然哲学家罗伯特·波义耳出版了《怀疑的化学家》(The Sceptical Chymist)一书,他认为物质是由不同的“微粒”或原子自由组合构成的,而并不是由诸如气、土、火、水等基本元素构成。恩格斯认为,波义耳是最早把化学确立为科学的化学家 。1789年,法国科学家拉瓦锡定义了原子一词,从此,原子就用来表示化学变化中的最小的单位。1803年,英语教师及自然哲学家约翰·道尔顿(John Dalton)用原子的概念解释了为什么不同元素总是呈整数倍反应,即倍比定律(law of multiple proportions);也解释了为什么某些气体比另外一些更容易溶于水。他提出每一种元素只包含唯一一种原子,而这些原子相互结合起来就形成了化合物。1827年,英国植物学家罗伯特·布朗(Botanist Robert Brown)在使用显微镜观察水面上灰尘的时候,发现它们进行着不规则运动,进一步证明了微粒学说。后来,这一现象被称为为布朗运动。1877年,德绍尔克思(J. Desaulx)提出布朗运动是由于水分子的热运动而导致的。1897年,在关于阴极射线的工作中,物理学家约瑟夫·汤姆生(J.J.Thomsom)发现了电子以及它的亚原子特性,粉碎了一直以来认为原子不可再分的设想。汤姆生认为电子是平均的分布在整个原子上的,就如同散布在一个均匀的正电荷的海洋之中,它们的负电荷与那些正电荷相互抵消。这也叫做葡萄干蛋糕模型(枣核模型)。1905年,爱因斯坦提出了第一个数学分析的方法,证明了德绍尔克思的猜想。1909年,在物理学家欧内斯特·卢瑟福(Ernest Rutherford)的指导下,菲利普·伦纳德(P.E.A.Lenard)用氦离子轰击金箔。发现有很小一部分离子的偏转角度远远大于使用汤姆生假设所预测值。卢瑟福根据这个金铂实验的结果指出:原子中大部分质量和正电荷都集中在位于原子中心的原子核当中,电子则像行星围绕太阳一样围绕着原子核。带正电的氦离子在穿越原子核附近时,就会被大角度的反射。这就是原子核的核式结构。1913年,在进行有关对放射性衰变产物的实验中,放射化学家弗雷德里克·索迪(Frederick Soddy)发现对于元素周期表中的每个位置,往往存在不只一种质量数的原子。玛格丽特·陶德创造了同位素一词,来表示同一种元素中不同种类的原子。在进行关于离子气体的研究过程中,汤姆生发明了一种新技术,可以用来分离不同的同位素,最终导致了稳定同位素的发现 ;同年,物理学家尼尔斯·玻尔(Niels Bohr)重新省视了卢瑟福的模型,并将其与普朗克及爱因斯坦的量子化思想联系起来,他认为电子应该位于原子内确定的轨道之中,并且能够在不同轨道之间跃迁,而不是像先前认为那样可以自由的向内或向外移动。电子在这些固定轨道间跃迁时,必须吸收或者释放特定的能量。这种电子跃迁的理论能够很好的解释氢原子光谱中存在的固定位置的线条 ,并将普朗克常数与氢原子光谱的里德伯常量取得了联系。1916年,德国化学家柯塞尔(Kossel)在考察大量事实后得出结论:任何元素的原子都要使最外层满足8电子稳定结构 。路易士发现化学键的本质就是两个原子间电子的相互作用。1919年,物理学家卢瑟福在α粒子(氦原子核)轰击氮原子的实验中发现质子 。弗朗西斯·威廉·阿斯顿(Francis William Aston)使用质谱证实了同位素有着不同的质量,并且同位素间的质量差都为一个整数,这被称为整数规则。美国化学家欧文·朗缪尔提出原子中的电子以某种性质相互连接或者说相互聚集。一组电子占有一个特定的电子层。1923年,美国化学家吉尔伯特·牛顿·路易斯(G.N.Lewis)发展了柯赛尔的理论,提出共价键的电子对理论 。路易斯假设:在分子中来自于一个原子的一个电子与另一个原子的一个电子以“电子对”的形式形成原子间的化学键。这在当时是一个有悖于正统理论的假设,因为库仑定律表明,两个电子间是相互排斥的,但路易斯这种设想很快就为化学界所接受,并导致原子间电子自旋相反假设的提出 。1926年,薛定谔(Erwin Schrödinger)使用路易斯·德布罗意(Louis de Broglie)于1924年提出的波粒二象性的假说,建立了一个原子的数学模型,用来将电子描述为一个三维波形。但是在数学上不能够同时得到位置和动量的精确值。沃纳·海森堡(Werner Heisenberg)提出了著名的测不准原理。这个概念描述的是,对于测量的某个位置,只能得到一个不确定的动量范围,反之亦然。尽管这个模型很难想像,但它能够解释一些以前观测到却不能解释的原子的性质,例如比氢更大的原子的谱线。因此,人们不再使用玻尔的原子模型,而是将原子轨道视为电子高概率出现的区域(电子云) 。质谱的发明使得科学家可以直接测量原子的准确质量。该设备通过使用一个磁体来弯曲一束离子,而偏转量取决于原子的质荷比。弗朗西斯·阿斯顿使用质谱证实了同位素有着不同的质量,并且同位素间的质量差都为一个整数,这被称为整数规则。1930年,科学家发现,α射线轰击铍-9时,会产生一种电中性,拥有极强穿透力的射线。最初,这被认为是γ射线。1932年,约里奥·居里夫妇发现,这种射线能从石蜡中打出质子;同年,卢瑟福的学生詹姆斯·查得威克(James Chadwick)认定这就是中子 ,而同位素则被重新定义为有着相同质子数与不同中子数的元素。1950年,随着粒子加速器及粒子探测器的发展,科学家们可以研究高能粒子间的碰撞。他们发现中子和质子是强子的一种,由更小的夸克微粒构成。核物理的标准模型也随之发展,能够成功的在亚原子水平解释整个原子核以及亚原子粒子之间的相互作用。1985年,朱棣文及其同事在贝尔实验室开发了一种新技术,能够使用激光来冷却原子。威廉·丹尼尔·菲利普斯团队设法将纳原子置于一个磁阱中。这两个技术加上由克洛德·科昂-唐努德日团队基于多普勒效应开发的一种方法,可以将少量的原子冷却至微开尔文的温度范围,这样就可以对原子进行很高精度的研究,为玻色-爱因斯坦凝聚的发现奠定了基础 。历史上,因为单个原子过于微小,被认为不能够进行科学研究。2012年,科学家已经成功使用一单个金属原子与一个有机配体连接形成一个单电子晶体管。 在一些实验中,通过激光冷却的方法将原子减速并捕获,这些实验能够带来对于物质更好的理解。 道尔顿的原子模型英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。他的理论主要有以下四点 :①所有物质都是由非常微小的、不可再分的物质微粒即原子组成。②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同。③原子是微小的、不可再分的实心球体。④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。葡萄干布丁模型(枣糕模型)葡萄干布丁模型(枣糕模型)由汤姆生提出,是第一个存在着亚原子结构的原子模型。汤姆生在发现电子的基础上提出了原子的葡萄干布丁模型(枣核模型),汤姆生认为 :①正电荷像流体一样均匀分布在原子中,电子就像葡萄干一样散布在正电荷中,它们的负电荷与那些正电荷相互抵消。②在受到激发时,电子会离开原子,产生阴极射线。汤姆生的学生卢瑟福完成的α粒子轰击金箔实验(散射实验),否认了葡萄干布丁模型(枣糕模型)的正确性。土星模型在汤姆生提出葡萄干布丁模型同年,日本科学家提出了土星模型,认为电子并不是均匀分布,而是集中分布在原子核外围的一个固定轨道上 。行星模型行星模型由卢瑟福在提出,以经典电磁学为理论基础,主要内容有 :①原子的大部分体积是空的。②在原子的中心有一个体积很小、密度极大的原子核。③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。带负电的电子在核空间进行高速的绕核运动。随着科学的进步,氢原子线状光谱的事实表明行星模型是不正确的。玻尔的原子模型为了解释氢原子线状光谱这一事实,卢瑟福的学生玻尔接受了普朗克的量子论和爱因斯坦的光子概念在行星模型的基础上提出了核外电子分层排布的原子结构模型。玻尔原子结构模型的基本观点是 :①原子中的电子在具有确定半径的圆周轨道(orbit)上绕原子核运动,不辐射能量。②在不同轨道上运动的电子具有不同的能量(E),且能量是量子化的,轨道能量值依n(1,2,3,。..)的增大而升高,n称为量子数。而不同的轨道则分别被命名为K(n=1)、L(n=2)、M(n=3)、N(n=4)、O(n=5)、P(n=6)、Q(n=7)。③当且仅当电子从一个轨道跃迁到另一个轨道时,才会辐射或吸收能量。如果辐射或吸收的能量以光的形式表现并被记录下来,就形成了光谱。玻尔的原子模型很好的解释了氢原子的线状光谱,但对于更加复杂的光谱现象却无能为力。现代量子力学模型物理学家德布罗意、薛定谔和海森堡等人,经过13年的艰苦论证,在现代量子力学模型在玻尔原子模型的基础上很好地解释了许多复杂的光谱现象,其核心是波动力学。在玻尔原子模型里,轨道只有一个量子数(主量子数),现代量子力学模型则引入了更多的量子数(quantum number) 。①主量子数(principal quantum number),主量子数决定不同的电子亚层,命名为K、L、M、N、O、P、Q。②角量子数(angular quantum number),角量子数决定不同的能级,符号“l”共n个值(1,2,3,...n-1),符号用s、p、d、f、g,表示对多电子原子来说,电子的运动状态与l有关。③磁量子数(magnetic quantum number)磁量子数决定不同能级的轨道,符号“m”(见下文“磁矩”)。仅在外加磁场时有用。“n”“l”“m”三个量确定一个原子的运动状态。④自旋磁量子数(spin m.q.n.)处于同一轨道的电子有两种自旋,即“↑↓”自旋现象的实质还在探讨当中。2023-07-28 23:07:252
摩擦力为什么是由电磁相互引起的
接触力:弹力,摩擦力这些称呼都是人为规定的,而电磁力作为四大基本作用力(强力,弱力,电磁力,引力)之一,是客观存在的。因此弹力、摩擦力等各种作用都可以划归到四大基本作用力之中;对这两个力来说,他们的基本属性就是电磁力。 要理解这一点,必须从微观上来看。首先要理解物质的结构。举个例子,比如金属,从微观上看是由金属阳离子排列成的点阵和游离于阳离子周围的自由电子构成的结构。这样的结构为什么会稳定呢?就是因为阳离子之间的静电斥力保持阳离子间的距离,防止结构坍缩;电子围绕于阳离子周围形成弥散的电子海(electron sea),拉拢阳离子,防止结构崩溃。因此,维系这个结构的主要的力是库伦力,从四大基本作用力来说就是电磁力。当然万有引力也是存在的,但他跟电磁力相比是微不足道的。 然后再来看弹力的产生机理。为什么金属受到挤压会发生弹性形变,会产生弹力?就是因为在外界压力之下,上面说到的金属结构发生压缩,金属阳离子之间在压力方向上的距离减小,这样就打破了原有的库伦引力斥力的平衡,阳离子间斥力变大,因此宏观上表现出对抗外界压力、恢复原有形状的趋势,这就是弹力。所以本质上来讲,金属的弹力就是微观上的阳离子之间的库伦斥力,也就是四大基本作用中的电磁力。至于摩擦力,产生机理略微不同。两块金属互相接触时,界面上一块金属的某些阳离子会和另一块金属的电子海有接触,这样就会发生库伦引力,就好像这个区域上他们是一块金属一样(他们没有真的融合成为一块金属就是因为微观上金属表面不平,就像吻合不好的锯齿一样,只有少数区域有相互接触),这样如果在平行于界面的方向有剪切力,这些相互接触的区域就会发生错位,电子海和金属阳离子的重叠面积减小,就像把负电荷从正电荷周围移走,因此存在反向应力,这就是静摩擦力。动摩擦力我个人认为就是界面上的相对运动造成金属表面突出部分的形变从而引起的弹力,因此也是电磁力。 至于其他物质,内部结构不同,不一定是简单的阳离子和电子的相互作用,但广泛一点说,一定是化学键的作用,弹力和摩擦力都是由于扭曲化学键而产生的。而化学键的本质是什么呢?就是负电性的电子云围绕两个成键原子的正点性的核,也就是说,本质就是电磁力。2023-07-28 23:07:471
氢化物的反应类型
氢化物是氢与其他元素形成的二元化合物。但一般科学技术工作中总是把氢同金属的二元化合物称氢化物,而把氢同非金属的二元化合物称某化氢。 在周期表中,除稀有气体外的元素几乎都可以和氢形成氢化物,大体分为离子型、共价型和过渡型3类,它们的性质各不相同。中文名氢化物作用还原剂、引发剂和催化剂类别二元化合物种类离子型氢化物、共价型氢化物盐型离子型氢化物也称 盐型氢化物。是氢和碱金属、碱土金属中的钙、锶、钡、镭所形成的二元化合物。其 固体为离子晶体,如NaH、BaH2等。这些元素的 电负性都比氢的电负性小。在这类氢化物中,氢以H-形式存在,熔融态能导电,电解时在 阳极放出 氢气,故该方法又称金属储氢法。离子型氢化物都是无色或白色晶体,常因含有金属杂质而发灰,金属过量则呈蓝紫色。 离子型氢化物中氢的氧化数为-1,具有强烈失电子趋势,是很强的还原剂,在 水溶液中与水强烈反应放出氢气,使溶液呈强碱性,如:CaH2+2H2O→Ca(OH)2+2H2↑在 高温下还原性更强,如:NaH+2CO→HCOONa+C2CaH2+PbSO4→PbS+2Ca(OH)22LiH+TiO2→Ti+2LiOH离子型氢化物对空气和水是不稳定的,有些甚至会发生自燃。离子型氢化物可由金属与 氢气在不同条件下直接合成制得。反应温度为300- 700 C。为了避免反应在金属表面生成的氢化物阻止进一步的反应,常用金属在矿物油中的分散质,或者加入表面活性剂。除用做 还原剂外,还用做干燥剂、脱水剂、 氢气发生剂,1kg氢化锂在 标准状态下同水反应可以产生2.8m3的氢气。在非水溶剂中与+Ⅲ氧化态的B(Ⅲ),Al(Ⅲ)等生成广泛用于 有机合成和无机合成的复合氢化物,如氢化铝锂:4LiH+AlCl3→LiAlH4+3LiCl复合氢化物主要用做 还原剂、引发剂和 催化剂。共价型共价型氢化物也称 分子型氢化物。由氢和ⅢA~ⅦA族 元素所形成。其中与ⅢA族元素形成的氢化物是缺电子化合物和聚合型氢化物,如乙硼烷B2H6,氢化铝(AlH3)n等。各 共价型氢化物 热稳定性相差十分悬殊,氢化铅PbH4, 氢化铋BiH3在 室温下强烈分解,氟化氢,水受热到1000℃时也几乎不分解。 共价型氢化物也有 还原性,因氢的 氧化数为+1,其还原性大小取决于另一元素R-n失电子能力。一般说,同一族从上至下 还原性增强,同一周期从左至右 还原性减弱,例如:4NH3+5O2→4NO+6H2O2PH3+4O2→P2O5+3H2O2H2S+3O2→2SO2+2H2O共价型氢化物在水中的行为较为复杂。常见为:2023-07-28 23:07:541
化学键是否由强相互作用引起的吗?
强相互作用是作用于强子之间的力,是目前所知的四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10^(-15)~10^(-10) m 范围内)。最早研究的强相互作用是核子(质子或中子)之间的核力,它是使核子结合成原子核的相互作用。化学键的本质是原子周围的电子在成键前后在空间中重新分配,而这种分配使得能体系的能量降低。一切化学反应实质上就是原子最外层电子运动状态的改变;在化学反应中吸收或者释放的能量就叫做化学能,化学能的来源是在化学反应中由于原子最外层电子运动状态的改变和原子能级发生变化的结果”。两回事,化学键是核外电子的事,强相互作用是原子核内的事,不属于化学研究范围。2023-07-28 23:08:042
化学键 怎样会被破坏
化学键的本质是静电作用,化学键(chemicalbond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。破坏化学键需要吸收能量,可以是加热,光照等形式2023-07-28 23:08:262
化学的本质是电磁力吗?
完全正确!这才是化学键的本质。分子间作用力的本质也同样是电磁力。 世界上目前发现的一切作用力,都可以被归结为四种基本力(无一例外):万有引力、电磁力(其中包括库伦力)、强力、弱力。强力、弱力一般仅2023-07-28 23:08:463
氧化数的概念?怎么理解它和化合价的区别与联系?
氧化数的概念?怎么理解它和化合价的区别与联系? 氧化数与化合价在中学阶段可以说是相同的 一、氧化数概念和确定氧化数的规则 氧化数又叫氧化态,它是以化合价学说和元素电负性概念为基础发展起来的一个化学概念,它在一定程度上标志着元素在化合物中的化合状态。在根据化合价的升降值和电子转移情况来配平氧化还原反应方程式时,除简单的离子化合物外,对于其他物质,往往不易确定元素的化合价数;对于一些结构复杂的化合物或原子团,更难确定它们在反应中的电子转移情况,因而难以表示物质中各元素所处的价态。1948年,美国化学教授格拉斯顿首先提出用“氧化数”这一述语来代替配平氧化还原反应方程式时元素的价数,以便简便地表述氧化还原反应中电子的转移情况,进而表明物质中各元素的氧化态。他规定氧化数用罗马数字表示,以区别于 *** 数字表示的化合价。以后许多化学研究者对于氧化数提出了各种不同的看法。60年代以前,正负化合价和氧化数的概念在许多情况下是混用的。 70年代初,国际纯粹和应用化学联合会(IUPAC)在《无机化学命名法》中,进一步严格定义了氧化数概念,并对氧化数的求法作出一些规定。这些规定比较严格,但在具体求化合物中元素的氧化数时不方便,例如一个化合物中究竟有多少键合电子,它们如何分配,有时说不清楚。当化合物中两种元素的电负性相近时,如对于NCl3、S4N4等,按上述规定难于确定这些元素的氧化数。 氧化数概念可这样定义:在单质或化合物中,假设把每个化学键中的电子指定给所连接的两原子中电负性较大的一个原子,这样所得的某元素一个原子的电荷数就是该元素的氧化数。可见,氧化数是一个有一定人为性的,经验性的概念,它是按一定规则指定了的数字,用来表征元素在化合状态时的形式电荷数(或表观电荷数)。这种形式电荷,正象它的名称所指出的那样,只有形式上的意义。 日本化学教授桐山良一(在1952年)和美国著名化学家鲍林(1975年)等人分别发表论说,对确定元素氧化数的方法制定了一些规则。现在化学界普遍接受的规则是: 1.在单质中,元素的氧化数为零。 2.在离子化合物中,元素原子的氧化数等于该元素单原子离子的电荷数。 3.在结构已知的共价化合物中,把属于两原子的共用电子对指定给两原子中电负性较大的原子时,分别在两原子上留下的表观电荷数就是它们的氧化数。例如,在H2O中,氧原子的氧化数为-Ⅱ,氢的为+Ⅰ。对于同种元素两个原子之间的共价键,该元素的氧化数为零。如该化合物中某一元素有二或二以上个共价键,则该元素的氧化数为其各个键所表现的氧化数的代数和。 4.在结构未知的共价化合物中,某元素的氧化数可按下述规定由该化合物其他元素的氧化数算出,这个规定是:分子或复杂离子的总电荷数等于其中各元素氧化数的代数和。 5.对几种元素的氧化数有下列规定:(1)除金属氢化物(如LiH、CaH2)中氢的氧化数为-Ⅰ外,其余氢的化合物中氢的氧化数都是+Ⅰ。(2)氧的氧化数一般为-Ⅱ,例外的有:H2O2及过氧化物中氧以氧化数是-Ⅰ;OF2中是+Ⅱ。(3)氟在其所有化合物中氧化数该都为-Ⅰ;其他卤素,除了与电负性更大的卤素结合时(如ClF、ICl3)或与氧结合时具有正的氧化数外,氧化数都为-Ⅰ。 对于某一化合物或单质,只要按照上述规则就可确定其中元素的氧化数,不必考虑分子的结构和键的类型。因此,对于氧化还原反应用氧化数比用化合价方便得多。现在氧化数已成为化学中的一个基本概念,用来定义与氧化还原反应有关的概念和配平氧化还原反应方程式。 但在我国现行中学化学课本中,仍用正负化合价来定义氧化还原反应的有关概念。将前面所述氧化数概念及其应用,与中学化学课本中化合价概念的定义及其应用对比一下,就可看出,中学化学课本中所定义的化合价实际上指的是氧化数,它不同于现代化学中的(如大学化学课程中所应用的)化合价概念。 二、氧化数和化合价两个概念的区别 如前所述,氧化数概念是从正负化合价概念分化发展产生的,这既说明它们有历史联系,又表明氧化数和化合价是两个不同的概念。化合价的原意是某种元素的原子与其他元素的原子相化合时两种元素的原子数目之间一定的比例关系,所以化合价不应为非整数。例如,在Fe3O4中,Fe实际上存在两种价态:+2和+3价,其分子组成为:Fe+3·Fe+2[Fe+3O4]。氧化数是形式电荷数,所以可以为分数。引入氧化数概念后,化合价概念可保持原来原子个数比的意义,而不必使用“平均化合价”等容易使化合价概念模糊的术语了。这也正是氧化数概念在正负化合价概念的基础上区分出来的理由之一。 化合价的意义和数值与分子中化学键的类型有关。对于同一物质,其中同一元素的化合价和氧化数两者的数值一般是不同的。对于离子化合物,由一个原子得失电子形成的简单离子的电价正好等于该元素的氧化数。其他离子的电价数与其中元素的氧化数不一定相等。对于共价化合物来说,元素的氧化数与共价数是有区别的。第一,氧化数分正负,且可为分数;共价数不分正负,也不可能为分数。第二,同一物质中同种元素的氧化数和共价数的数值不一定相同。例如,H2分子和N2分子中H和N的氧化数皆为0,而它们的共价数分别为1和3。在H2O2分子中O的共价数为2,其氧化数为-1。在CH3Cl中,碳的共价数为4,碳的氧化数为+2,碳和氧原子之间的共价键数却为3。 化合价的概念 答:现在的概念是化学反应中核外电子得失或者共用电子对偏转的数目,但是不同时期这个概念是不同的。 化合价概念的发展 关于化合价概念的定义,1978年版苏联格林卡著《普通化学》第13节指出:“化合价是一个复杂的概念。所以,存在着几种化合价的定义,它们从不同的角度来阐明这一概念。下述概念算是最普遍的:元素的化合价是它的原子以一定的比例同其他原子化合的能力。”1973年版英国百科全书对化合价所下的定义是:“化学中的化合价是元素的一种性质,它决定该元素的一个原子与其他原子化合的能力。” 如前所述,19世纪50年代化合价概念就引入了化学中,随着原子和分子结构理论的发展,化合价概念获得了越来越深刻的物理根据。它经历了一个从现象到本质,从初级本质向更深入的本质逐步深化的过程。化合价概念的发展大体上经历了下面所述的三个发展阶段,这三个阶段在时间上的划分不是十分明显的,在某些时期存在着新旧概念混用的状况。前面引用的化合价最普遍的定义的优点,是它适用于不同的发展阶段。它的缺点是不够具体。 一、第一阶段 在这一阶段,认为氢的化合价为1,把它作为各种元素的化合价的单位,由经验式从一种元素的化合价判断其他元素的化合价。这个阶段从19世纪50年代开始延续到本世纪的20年代—30年代。用这种方法确定的化合价可以叫做据氢化合价。 1852年弗兰克兰首先提出了化合价概念,1857年—1858年凯库勒和库帕等分别提出碳通常是四价和碳原子之间连成链的学说,1874年范霍夫和勒贝尔提出分子立体结构,认为碳原子的四个单链分别指向正四面体的四个顶角的方向,他们都以氢的化合价为1作为化合价的单位。直到本世纪20年代—30年代,许多化学教科书中叙述的化合价学说仍属于这一阶段。 当时认为,氢一个原子不可能与多于一个的其他元素的原子结合,所以氢永远是1价的,可用来作为化合价的单位。另一元素的化合价可以用与其一个原子相化合或被其一个原子所置换的氢原子数自来表示。例如,根据经验式HCl、H2O、NH3、CH4,可以确定在这些化合物中氯的化合价为1,氧、氮、碳的化合价分别为2、3、4。如果已知某元素的氧化物的经验式,则根据氧的化合价为2也可确定该元素的化合价(可叫做据氧化合价)。例如,根据经验式Na2O、CaO、Al2O3、SiO2,可知钠是1价,钙、铝、硅分别2价、3价、4价。碳与氧可生成两种化合物CO和CO2,其中碳的化合价分别为2和4。 根据原子学说和当量的定义,在给定的化合物中,元素的化合价,它的原子的摩尔质量及其当量质量之间,显然存在下述关系: 或 现在,我们知道,决定一个化合物各组成元素的化合价的是化学键,只根据无机化合物的经验式并不能认识其化学键的性质和数目。但是,这一阶段毕竟是探索化学键本质的过程中最初始的但也是必不可少的一个步骤。 二、第二阶段 随着化学键理论的发展,人们发现化学键有三种极限键型(典型键型):离子键、共价键和金属键,化合价是讨论离子键和共价键时常用的概念。在这一阶段,化合价概念分化为共价、电价、配位数等不同的概念。因此,需要分别用不同的方法来确定某元素一个原子与其他原子化合的能力——化合价的数值。 1973年版英国百科全书在给化合价概念下了普遍的定义以后指出:“为了对化合价的性质有更清楚的了解,化合价这一概念已分裂为下列几个新概念:(1)共价,(2)离子价,(3)配位数,(4)氧化数或氧化态等。”我们知道,这种分化过程从1916年提出离子键和共价键的电子理论以后开始,到1970年以后氧化数被普遍采用,经历了好几十年。 电价(离子价)是离子化合物中元素的化合价。正、负离子所带电荷数通常称为该离子的电价。对于单原子离子来说,这也就是该元素的电价。例如,NaCl由Na+和Cl-离子组成,它们的电价分别为+1和-1,元素钠和氯也分别为+1和-1价。在MgO中,存在的离子是Mg2+和O2-,因此元素镁和氧的电价分别为+2和-2。(国外有的大学化学教材,如美国布朗和小李梅合著的《化学——中心科学》一书规定:元素的化合价是一正整数。例如MgO中元素镁和氧的电价是2。)在周期系的主族元素中,活泼金属的正离子的电价一般等于元素所在族数;活泼非金属的负离子的电价一般等于8减族数。 路易斯和朗缪尔建立共价键的电子理论后,由共价键形成的物质中元素的化合价就被称为共价,开始了由结构式判断元素的化合价,由元素一个原子所形成的化学键(共价键)的数目来表示化合价(共价)的时期。著名化学家鲍林在他1975年版的《化学》一书中对共价下的定义就是:“一个元素的共价是指它的一个原子和其他原子形成的共价键数”。这也就是说,某元素一个原子与其他原子共享的电子对的数目,称为该元素的共价。例如,由下列结构式可以判断出元素氟、氧、铍、硼、氮、碳的共价分别是1、2、2、3、3、4。 上述共价的概念和确定共价数的方法,对量子化学中的现代价键理论也是适用的。价键理论(包括杂化轨道理论)认为元素的共价是由其自由原子最外电子层中未配对的电子的数目决定的。例如,Li、N、O、F原子最外电子层中分别有1、3、2和1个未配对的电子,所以它们的共价数分别为1、3、2和1。Ne原子的最外层虽有8个电子,但已全部。配对,所以共价为0。C原子最外层有4个电子,其中2个已配对,2个未配对,但可经过杂化变为4个未配对电子,能形成4个共价键,共价从2变为4。 上述鲍林关于共价的定义和由原子所形成共价键的数目来确定元素共价的方法,适用于共用电子对是由两个成键原子各提供一个电子由情况。它们用于共价配键化合物时就遇到了困难。 配位数是由化合价分化产生的另一个概念,它主要用于络合物和晶体。某一粒子(原子、离子或分子)的配位数,就是在粒子周围直接结合的其他粒子的数目。对于过渡元素络合物,配位数是指中心离子邻接的配位体粒子的数目。配位数一般可由2到12,但以配位数4和6的络合物较常见,最常见的是6。例如:铁氰化钾K3[Fe(CN)6]的中心离子是Fe3+离子,配位体是CN-离子,其配位数为6;铜氨络离子[Cu(NH3)4]2+的中心离子是Cu2+离子,配位体是NH3分子,其配位数为4。配位数的大小即与中心离子和配位体粒子的相对大小有关,又与两者间化学键的性质有关。 在晶体中,某一粒子(原子、离子或分子)的配位数是指该粒子周围直接连接的其他粒子的数目。在由共价键形成的原子晶体中,由于共价键有方向性和饱和性,所以原子的配位数决定于元素的共价。例如,石英(SiO2)晶体是原子晶体,其中每个硅原子和4个氧原子以共价键相连结,每个氧原子和2个硅原子相连结,因此硅和氧原子的配位数分别为4和2,与它们的共价数分别相等。在离子晶体中,形成离子键的正、负离子的电子云分布,通常是球形对称的,所以离子键没有方向性和饱和性。正、负离子交错排列,各跟尽可能多的异号离子接触,因此配位数比较高。例如,在NaCl晶体中,Na+和Cl-离子的配位数都是6:在CsCl品体中,Cs+和Cl-高子的配位数都是8。在金属单质晶体的A1和A3型最密堆积中,原子的配位数为12;在A2型和A4型堆积中,配位数分别为8和4。 有些氧化还原反应既涉及离子化合物又涉及共价化合物或单质。为了便于研究这些反应和配 *** 应方程式,有的学者曾经以电价和共价为基础,提出“正负化合价”概念,以正负化合价的升降值来表示在反应中物质发生“电子转移”(包括电子得失和电子偏移)的电子数目。这种正负化合价概念曾经在相当长的时间内被广泛使用。 三、第三阶段 在这一阶段,发现对于以共价键形成的单质和化合物,价键理论虽然对其中很多物质是适用的,但对其中另一部分物质不能适用。这后一类物质不仅包括新发现的比较复杂的金属有机化合物和原子簇化合物,如夹心结构π络合物二茂铁(C5H5)2Fe、二苯铬(C6H6)2Cr等,也包括一些看来比较简单的物质,如O2、B2、B2H2、Al2Cl6等。以价键理论为基础的共价概念应用于这些物质时遇到困难。因此,分子轨道理论越来越受到人们的重视。于是,在一定范围内,关于共价键的传统观念——在相邻的两个原子之间以一对电子形成一个键这样的基本观点,发生了动摇。与此相联系,标志着用整数来定量量度化学元素化合能力的化合价概念也受到了挑战。 面对以上情况,化学家们的注意力更多地转向探索化学键的本质。至于怎样修改和发展共价概念被放在次要地位。在我国,著名化学家徐光宪在探讨原子簇化合物的结构规则等问题的基础上,于1983年提出了共价的新定义。 另一方面,在这一阶段,用于氧化还原反应的正负化合价概念逐渐被1948年提出的氧化数概念所代替。 化合价升高=化合价降低=化合价改变总数怎么理解 我们说的改变数指单说降低数或单说升高数 化合价的概念是什么 化合价是元素在相互化合时,反应物原子的个数比总是一定的。又由于原子是化学反应中不可再分的最小微粒,所以元素之间相互化合形成某种化合物时,其各元素之间变化的核外电子数目之间必是一个一定的简单整数比。 定义:化合价是物质中的原子得失的电子数或共用电子对偏移的数目。 化合价表示原子之间互相化合时原子的得失电子的数目。 化合价也是元素或根在形成化合物时表现出的一种性质。 会出现(+2,+3)类似的多个化合价是因为许多元素的原子在不同条件下得失电子(或形成共用电子对)的数目可以不同,因此显示出可变的化合价 化合价——元素的原子相互化合的数目 化合价的概念?化合价与原子最外层电子数的关系怎么表示? 刚学的,不扎实。 离子化合物的化合价是指离子获得或失去电子的数量,得到为负价,失去为正价。如NaCl,Na正一价,Cl负一价。共价化合物的化合价是指共用电子对数量,偏向为负价,偏离为正价。如HCl,H正一价,Cl负一价。 金属化合价一般有最外层电子数,非金属化合价一般与最外层电子数和为8.当然这不绝对,还是要靠记忆。 附口诀一首,虽然是初中。。。 一价氢氯钾钠银 二价氧钙镁钡锌 三铝四硅五价银 二三鉄,二四碳 二四六硫都齐全 铜汞二价最常见 关于原子结构与化学性质的问题,详见高中化学必修二。 化合价与离子所带电荷的区别与联系 化合价是对一种原子化合能力的标示。而离子所带电荷为原子失去电子形成的结果。 什么是化合价?化合价是怎么来的?化合价和离子有什么联系? 化合价:详细见初中化学课本化合价一章。 高中课本详细说明了化合价是在怎么来的: 原子得失电子后所带的电量称之为其化合价。 化合价只有当原子变为离子后才能表现出来。 例如铁: 能够表现为+2价和+3价 怎么才能表现出+2或+3价呢? 只有反应来看,铁失去两个电子就是+2价 三个电子就是+3价 化学式和化合价怎么理解 化学式中的各种元素的化合价最终应该得0 比如:CO2中O的化合价为-2,两个O就是-2*2=-4,所以C的化合价就是+42023-07-28 23:08:541
化学进化的过程
【最开始】古时候,原始人类为了他们的生存,在与自然界的种种灾难进行抗争中,发现和利用了火。原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。燃烧就是一种化学现象。(火的发现和利用,改善了人类生存的条件,并使人类变得聪明而强大。)掌握了火以后,人类开始食用熟食;继而人类又陆续发现了一些物质的变化,如发现在翠绿色的孔雀石等铜矿石上面燃烧炭火,会有红色的铜生成。这样,人类在逐步了解和利用这些物质的变化的过程中,制得了对人类具有使用价值的产品。人类逐步学会了制陶、冶炼;以后又懂得了酿造、染色等等。这些有天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本原及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成的,而五行则是由阴阳二气相互作用而成的。此说法是朴素的唯物主义自然观,用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。 【公元前4世纪】希腊也提出了与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及其变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼丹术,阿拉伯炼丹术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中人工合成金银或修炼长生不老之药。他们有目的的将各类物质搭配烧炼,进行实验。为此涉及了研究物质变化用的各类器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、洁净、灼烧、熔融、升华、密封等。 与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改进后,仍然在今天的化学实验中沿用。炼丹家在实验过程中发明了火药,发现了若干元素,制成了某些合金,还制出和提纯了许多化合物,这些成果我们至今仍在利用。【真正成为学科意义上的化学】 【16世纪开始】欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际应用,继而更加注意物质化学变化本身的研究。在元素的科学概念建立后,通过对燃烧现象的精密实验研究,建立了科学的氧化理论和质量守恒定律,随后又建立了定比定律、倍比定律和化合量定律,为化学进一步科学的发展奠定了基础。 【1775年前后】拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期,使化学沿着正确的轨道发展。19世纪初,英国化学家道尔顿提出近代原子学说,突出地强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。近代原子论使当时的化学知识和理论得到了合理的解释,成为说明化学现象的统一理论。接着意大利科学家阿伏加德罗提出分子概念。自从用原子-分子论来研究化学,化学才真正被确立为一门科学。这一时期,建立了不少化学基本定律。俄国化学家门捷列夫发现元素周期律,德国化学家李比希和维勒发展了有机结构理论,这些都使化学成为一门系统的科学,也为现代化学的发展奠定了基础。 通过对矿物的分析,发现了许多新元素,加上对原子分子学说的实验验证,经典性的化学分析方法也有了自己的体系。草酸和尿素的合成、原子价概念的产生、苯的六环结构和碳价键四面体等学说的创立、酒石酸拆分成旋光异构体,以及分子的不对称性等等的发现,导致有机化学结构理论的建立,使人们对分子本质的认识更加深入,并奠定了有机化学的基础。 【1 9世纪下半叶】热力学等物理学理论引入化学之后,不仅澄清了化学平衡和反应速率的概念,而且可以定量地判断化学反应中物质转化的方向和条件。相继建立了溶液理论、电离理论、电化学和化学动力学的理论基础。物理化学的诞生,把化学从理论上提高到一个新的水平。 【二十世纪至今】 二十世纪的化学是一门建立在实验基础上的科学,实验与理论一直是化学研究中相互依赖、彼此促进的两个方面。进入20世纪以后,由于受到自然科学其他学科发展的影响,并广泛地应用了当代科学的理论、技术和方法,化学在认识物质的组成、结构、合成和测试等方面都有了长足的进展,而且在理论方面取得了许多重要成果。在无机化学、分析化学、有机化学和物理化学四大分支学科的基础上产生了新的化学分支学科。 近代物理的理论和技术、数学方法及计算机技术在化学中的应用,对现代化学的发展起了很大的推动作用。19世纪末,电子、X射线和放射性的发现为化学在20世纪的重大进展创造了条件。 在结构化学方面,由于电子的发现开始并确立的现代的有核原子模型,不仅丰富和深化了对元素周期表的认识,而且发展了分子理论。应用量子力学研究分子结构,产生了量子化学。 从氢分子结构的研究开始,逐步揭示了化学键的本质,先后创立了价键理论、分子轨道理论和佩位场理论。化学反应理论也随着深入到微观境界。应用X射线作为研究物质结构的新分析手段,可以洞察物质的晶体化学结构。测定化学立体结构的衍射方法,有X射线衍射、电子衍射和中子衍射等方法。其中以X射线衍射法的应用所积累的精密分子立体结构信息最多。 研究物质结构的谱学方法也由可见光谱、紫外光谱、红外光谱扩展到核磁共振谱、电子自选共振谱、光电子能谱、射线共振光谱、穆斯堡尔谱等,与计算机联用后,积累大量物质结构与性能相关的资料,正由经验向理论发展。电子显微镜放大倍数不断提高,人们以可直接观察分子的结构。 经典的元素学说由于放射性的发现而产生深刻的变革。从放射性衰变理论的创立、同位素的发现到人工核反应和核裂变的实现、氘的发现、中子和正电子及其它基本粒子的发现,不仅是人类的认识深入到亚原子层次,而且创立了相应的实验方法和理论;不仅实现了古代炼丹家转变元素的思想,而且改变了人的宇宙观。 作为20世纪的时代标志,人类开始掌握和使用核能。放射化学和核化学等分支学科相继产生,并迅速发展;同位素地质学、同位素宇宙化学等交叉学科接踵诞生。元素周期表扩充了,已有109号元素,并且正在探索超重元素以验证元素“稳定岛假说”。与现代宇宙学相依存的元素起源学说和与演化学说密切相关的核素年龄测定等工作,都在不断补充和更新元素的观念。 在化学反应理论方面,由于对分子结构和化学键的认识的提高,经典的、统计的反应理论以进一步深化,在过渡态理论建立后,逐渐向微观的反应理论发展,用分子轨道理论研究微观的反应机理,并逐渐建立了分子轨道对称守恒定律和前线轨道理论。分子束、激光和等离子技术的应用,使得对不稳定化学物种的检测和研究成为现实,从而化学动力学已有可能从经典的、统计的宏观动力学深入到单个分子或原子水平的微观反应动力学。 计算机技术的发展,使得分子、电子结构和化学反映的量子化学计算、化学统计、化学模式识别,以及大规模术技的处理和综合等方面,都得到较大的进展,有的已经逐步进入化学教育之中。关于催化作用的研究,以提出了各种模型和理论,从无机催化进入有机催化和增物催化,开始从分子微观结构和尺寸的角度核生物物理有机化学的角度,来研究酶类的作用和酶类的结构与其功能的关系。 分析方法和手段是化学研究的基本方法和手段。一方面,经典的成分和组成分析方法仍在不断改进,分析灵敏度从常量发展到微量、超微量、痕量;另一方面,发展初许多新的分析方法,可深入到进行结构分析,构象测定,同位素测定,各种活泼中间体如自由基、离子基、卡宾、氮宾、卡拜等的直接测定,以及对短寿命亚稳态分子的检测等。分离技术也不断革新,离子交换、膜技术、色谱法等等。 合成各种物质,是化学研究的目的之一。在无机合成方面,首先合成的是氨。氨的合成不仅开创了无机合成工业,而且带动了催化化学,发展了化学热力学和反应动力学。后来相继合成的有红宝石、人造水晶、硼氢化合物、金刚石、半导体、超导材料和二茂铁等配位化合物。 在电子技术、核工业、航天技术等现代工业技术的推动下,各种超纯物质、新型化合物和特殊需要的材料的生产技术都得到了较大发展。稀有气体化合物的合成成功又向化学家提出了新的挑战,需要对零族元素的化学性质重新加以研究。无机化学在与有机化学、生物化学、物理化学等学科相互渗透中产生了有机金属化学、生物无机化学、无机固体化学等新兴学科。 酚醛树脂的合成,开辟了高分子科学领域。20世纪30年代聚酰胺纤维的合成,使高分子的概念得到广泛的确认。后来,高分子的合成、结构和性能研究、应用三方面保持互相配合和促进,使高分子化学得以迅速发展。 各种高分子材料合成和应用,为现代工农业、交通运输、医疗卫生、军事技术,以及人们衣食住行各方面,提供了多种性能优异而成本较低的重要材料,成为现代物质文明的重要标志。高分子工业发展为化学工业的重要支柱。 20世纪是有机合成的黄金时代。化学的分离手段和结构分析方法已经有了很大发展,许多天然有机化合物的结构问题纷纷获得圆满解决,还发现了许多新的重要的有机反应和专一性有机试剂,在此基础上,精细有机合成,特别是在不对称合成方面取得了很大进展。 一方面,合成了各种有特种结构和特种性能的有机化合物;另一方面,合成了从不稳定的自由基到有生物活性的蛋白质、核酸等生命基础物质。有机化学家还合成了有复杂结构的天然有机化合物和有特效的药物。这些成就对促进科学的发展起了巨大的作用;为合成有高度生物活性的物质,并与其他学科协同解决有生命物质的合成问题及解决前生命物质的化学问题等,提供了有利的条件。 【化学发展的趋势】20世纪以来,化学发展的趋势可以归纳为:由宏观向微观、由定性向定量、由稳定态向亚稳定态发展,由经验逐渐上升到理论,再用于指导设计和开创新的研究。一方面,为生产和技术部门提供尽可能多的新物质、新材料;另一方面,在与其它自然科学相互渗透的进程中不断产生新学科,并向探索生命科学和宇宙起源的方向发展2023-07-28 23:09:042
化学键断裂所吸收的能量与键能有什么关系?
化学键能指1.01*10^5Pa和25摄氏度下(常温常压下),将1mol理想气体分子AB拆开为中性气态原子A和B所需要的能量(单位为KJ.mol-1)键能越大,化学键越牢固,含有该键的分子越稳定。键能是表征化学键强度的物理量,可以用键断裂时所需的能量大小来衡量。在101.3kPa和298K下,将1mol气态分子AB断裂成理想气态原子所吸收的能量叫做AB的离解能(KJ·mol-1),常用符号D(A-B)表示。即:AB(g)─→A(g)+ B(g)键能通常通过热化学方法或光谱化学实验测定离解能得到,我们常用键能表示某种键的强弱。(注:键能大小并不能被用于表示物质能量多少,而只表示物质与达到活泼态时自由能之差)由键能求焓变公式:ΔH=反应物的总键能-生成物的总键能键能与物质本身的关系:键能越大,本身能量就越低,键能越小,本身能量越高。做为反应物的物质,在反应过程中需要吸热,产生上述原因是因为:能量低,本身结构稳定,需要吸收更多的热量,键能大。能量高,本身结构不稳定,需要吸收的热量低,键能小。所以您的说法是对的。~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O,互相帮助,祝共同进步2023-07-28 23:09:145
Pauling规则
Pauling规则(鲍林规则)有五个,具体如下:1、配位多面体规则,其内容是:在离子晶体中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比。2、电价规则:在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价。静电键强度S=正离子数Z+/正离子配位数n ,则负离子电荷数 Z=∑Si=∑(Zi+/ni)。3、多面体共顶、共棱、共面规则,其内容是:在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。其中高电价,低配位的正离子的这种效应更为明显。4、不同配位多面体连接规则:若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势。5、节约规则,其内容是:在同一晶体中,组成不同的结构基元的数目趋向于最少。扩展资料提出鲍林规则的是美国化学键鲍林:莱纳斯·卡尔·鲍林(Linus Carl Pauling,1901年2月28日-1994年8月19日),美国著名化学家,量子化学和结构生物学的先驱者之一。鲍林在1928一1931年,提出了杂化轨道的理论。该理论的根据是电子运动不仅具有粒子性,同时还有波动性。杂化轨道理论,很好地解释了甲烷的正四面体结构。后来,鲍林在研究量子化学和其他化学理论时,创造性地提出了许多新的概念。例如,共价半径、金属半径、电负性标度等,这些概念的应用,对现代化学、凝聚态物理的发展都有巨大意义。1954年鲍林因在化学键方面的工作取得诺贝尔化学奖,1962年因反对核弹在地面测试的行动获得诺贝尔和平奖,成为获得不同诺贝尔奖项的两人之一。参考资料来源:百度百科-鲍林规则2023-07-28 23:09:316
火烧纸,纸被碳化,化学能转化为热能.这应该是分子键断裂产能吧,我想不明白分子键断裂为什么会产能?
楼主的基本概念有些模糊,但这不是个例,带有相当的普遍性。1. 化学键的本质两个孤立原子(比方相距非常远)之间不存在化学键,当二者靠的很近的时候,两个原子的外层电子在空间的分布将发生变化,电子更多的出现在两个原子核中间,较少出现在其它区域,即两原子核间带有部分净的负电荷,这部分负电荷和两核间的库伦引力将使两个带正电的核(原本要相互排斥的)吸引到了一起,形成了稳定的分子,这种吸引作用称为化学键。化学键能就是化学键形成过程中吸引作用电势能(负值)与核间排斥电势能(正值)之和的相反数。如果引力势能的绝对值大于斥力势能,总的电势能为负值,键能为正值,可以形成稳定分子,形成稳定分子后,系统总能量(即总的电势能)降低。多余的能量将被释放到外界。反之两个原子将相互排斥,不能形成稳定分子。综上,化学键不是一种特殊的物质,而是原子间的一种电相互作用,形成化学键是能量降低的过程,反之拆散化学键是能量上升的过程。2. 化学反应的本质能量相对较高的分子转化为能量相对较低的分子的过程。在此过程中,旧物质分子中的化学键被打断(形成孤立原子,此过程要外界提供能量),然后孤立原子重新组合成新的分子(新的分子中,化学键能更大,分子总的电势能更低,此过程中系统放出能量至外界,补偿前一过程的外界能耗还有多余)。总的来说,经过反应,系统的能量降低,降低的能量释放到外界(这就是通常所说的反应放出的热量)。需要指出的是并非所有反应都放热,吸热反应也是可以发生的。3. “能量即质量”这个说法是有疑问的,只能在特定的语境下使用。化学反应释放的热量所等效的质量,比起核反应释放热量的等效质量微不足道(楼主不妨自行估算一下)。因此,化学反应中的质量亏损微乎其微,用现今最精密的仪器也无法测出,但理论上一定是存在的。由于这个质量亏损极其微小,因此才有化学上的质量守恒定律,即原子在化学反应中不变,系统总质量不变。但事实上这条定律存在极其微小的误差(只是不影响实际应用而已)。楼主如仍有疑问,欢迎进一步讨论。2023-07-28 23:09:594
化学键断裂为什么要吸收能量?
化学键的本质是电磁作用力。化学键断裂意味着两原子间的距离增大使得两原子的电磁力可以忽略。而这时断裂化学键是相当于克服力做功,所以是要吸收能量。2023-07-28 23:10:063
以物理学的观点来看,有化学作用力这回事吗?
化学作用力就是常说的化学键,氢键,范德华力。化学键是指物质的最小分子中原子与原子的作用力;氢键指分子间或分子内氢原子与氧原子的作用力(只影响物质的物理性质,不影响化学性质);范德华力是指分子之间的作用力(也只影响物理性质,不影响化学性质)。物理原因:因为原子有原子核和核外电子组成,原子核带正电,电子带负电,由于异性相吸,即有库仑力作用,而且电子不能与原子核接触,所以电子以库仑力为向心力做高速的圆周运动。本质就是电场的作用。氢键,范德华力,也都是由于电场的原因而产生的。2023-07-28 23:10:164
横跨生物学和医学领域的天才化学家晚年又为何沦为被嘲弄的科学家
20世纪是个大师辈出的时代,世纪之初的量子论、相对论、波粒二象性等物理学革命成果促使化学面貌焕然一新,鲍林这样一位天才化学家生逢其时,研究兴趣横跨化学、生物化学、医学并且成果丰硕,此外他还是一位坚定的和平主义者,积极推动反核事业,赢得「 ”和平老人”美誉,他的一生精彩无限,值此鲍林逝世25周年之际,谨以本文缅怀一代化学大师。 一、人物生平 1901年2月18日,鲍林出生于美国西海岸的俄勒冈州波特兰市,他的家境并不宽裕,父亲是当地一名药剂师也是家中仅有的经济来源,然而父亲在他年幼之时突然因病离世,家境也因此急剧恶化。尽管生活艰难,鲍林却并未意志消沉,他在打工贴补家用的同时坚持学习,并且对化学表现出极其浓厚的兴趣。 1917年,鲍林考入俄勒冈州农学院化学工程系,一度因家境困难辍学,1922年顺利获得学士学位后他又考入加州理工学院跟随当时著名的化学家诺伊斯(Noyes)从事晶体X射线衍射研究,并成功完成了辉钼矿(MoS2)晶体的全测定工作。1925年,鲍林获得化学哲学博士学位后又相继在欧洲多个重点实验室从事学习和研究工作,也正是在那时候鲍林接触到新兴的量子力学理论和现代物理测试方法,为他后来提出化学键理论奠定了重要基础。此后,鲍林便任教于母校加州理工学院,1969年又担任斯坦福大学化学教授,他一生所涉领域颇多,也犯过错误,但丝毫不能掩盖他在科学史上光辉的一面,1994年8月19日鲍林在自家农场去世,走完了他非凡的一生。 图1 青年时代的鲍林 二、化学键本质的探索者 鲍林对化学的最大贡献当属他对化学键本质的研究及其在物质结构方面的应用,这也正是他青年时代起就非常感兴趣的研究内容。物理学家建立原子结构模型后不久,美国化学家路易斯(G. N. Lewis)提出「 ”共用电子对”达到稀有气体稳定结构的电子模型,几年后朗缪尔(I. Langmuir)接受和发展了路易斯的观点,提出以「 ”共价键”来表示共用的一对电子。然而他们仍然不能科学地阐释化学键的本质,即无法解释原子之间为何会选择「 ”共享”电子,将本该相互排斥的电子牢牢结合在一起的「 ”力”又是什么呢? 图2 美国化学家G. N. Lewis和I. Langmuir 受限于旧量子论,路易斯-朗缪尔的共价键理论本质上是个静态模型,不但无法阐明成键本质更无法解释氢分子(H2)独特的光谱现象。1927年,德国化学家海特勒(W. H. Heitler)和伦敦(F. W. London)创造性地将量子力学方法用于处理氢分子,标志着量子化学的诞生,也奠定了近代价键理论的基础。海特勒-伦敦的计算结果表明,由于电子的波动性,原子间波的干涉作用使得原子轨道重叠区域电子密度增大,自旋相反的单电子(未成对电子)在相互接近过程中彼此呈现相互吸引的作用,并使体系能量降低,这也解决了化学键的本质问题。 图3 德国化学家W. H. Heitler和F. W. London 上述理论被称为价键理论(Valence Bond Theory),俗称的VB法,也时常被称作电子配对理论。它在解释共价键的方向性和饱和性以及定性讨论分子结构方面取得很大成功,但理论初期的不完善性也显露无疑,例如有些分子的键角明显偏离原子轨道之间的夹角,有些原子的成键数目大于价层轨道中未成对电子数,VB法在解释这些现象时显得无能为力。 为了解释多原子分子的空间结构,鲍林于1931年在VB法的基础上创造性地提出了杂化轨道理论(Hybrid Orbital Theory),合理解释了甲烷分子(CH4)的四面体构型,进一步丰富和发展了VB理论。为了衡量化合物中原子对「 ”成键电子对(键合电子)”的吸引能力,鲍林又率先提出「 ”电负性”概念,他以热化学和键能数据为基础,系统给出了电负性标度数据,这些数据至今仍被广泛采用,在预测化合物及化学键的离子性或共价性程度上发挥了重要作用。 图4 杂化轨道理论对甲烷分子成键的解释 除了以上贡献,还需要指出的是,鲍林是「 ”共振论”的创始人。诸如苯(C6H6)、臭氧(O3)分子在内的不少分子需要用两个或更多价键结构才能给出满意的描述,因此鲍林认为正是这些价键结构之间的「 ”共振”才完整构成了分子的真正结构。然而「 ”共振论”问世后的数十年中,争论不休,褒贬不一,上世纪50年代初,苏联学者曾以「 ”唯心论”和「 ”机械论”从哲学方面对它进行简单化的错误批判,这种批判也影响到后来的中国学术界。站在现代化学角度来看,「 ”共振论”确有其弊端,但它毕竟与主流的分子轨道理论相比更加简明直观,在定性解释化合物的某些性质上依然实用,因而它并未完全退出历史舞台,国内外教科书及文献著作中「 ”共振论”依然被广泛采用。 图 5 苯分子和二氧化氮分子的「 ”共振”结构 鲍林自上世纪30年代开始致力于化学键的研究,1931年2月发表价键理论,此后陆续发表相关论文,1939年出版了化学史上具有划时代意义的《化学键的本质》一书。该书彻底改变了人们对化学键的认识,将其从直观的、臆想的概念升华为定量的和理性的层次,由于鲍林在化学键本质以及复杂化合物物质结构阐释方面杰出的贡献,他赢得了1954年诺贝尔化学奖。 三、生物学和医学领域的先行者 鲍林前期的主要研究内容是化学键理论,从中后期开始他的研究领域逐渐拓展到生物学和医学领域。1937年起,他便开始对氨基酸和蛋白质的结构进行研究,并正式确定蛋白质的a-螺旋体结构——这是蛋白质研究领域的重大突破,也为后来确定DNA结构创造了条件也提供了理论依据。尽管鲍林最终没能正确揭示DNA的双螺旋结构,还和生物学家沃森、克里克有过关于DNA真实结构的争论,但无法否认他为后续蛋白质结构研究所奠定的重要基础。 图 6蛋白质的a-螺旋体结构(左)、DNA结构发现者沃森和克里克(中)、DNA和RNA的螺旋结构(右)(图片来源于网络) 1945年,鲍林开始了他对「 ”分子病”的研究,当时人们普遍认为镰刀型细胞贫血症仅仅是由红细胞变形引起的典型的细胞型疾病,鲍林却敏锐地意识到该疾病极有可能是一种血红蛋白分子的疾病。为此他借助电泳技术成功发现正常与异常血红蛋白在相同电场中表现出的迁移速度差异,1949年11月鲍林在Science上发表论文,详细讨论了异常血红蛋白与正常血红蛋白的差异,并且讨论了疾病成因和遗传机制等问题。鲍林对镰刀型细胞血红蛋白的研究第一次展示了这种疾病的分子基础,也是真正意义上第一次提出「 ”分子病”的概念,吸引了后续医学科研人员从分子层次上进行疾病研究。 图 7 正常的血红蛋白(圆饼状)和镰刀型细胞贫血症异常血红蛋白(图片来源于网络) 四、坚定的和平主义者 20世纪50年代,二战结束后不久,鲍林特别关注世界范围内的战争与和平问题。那时世界各国都在频繁地进行核试验,鲍林意识到核辐射对人类生存及健康造成的巨大威胁,1955年他联合爱因斯坦等科学家,反对研究和生产毁灭性武器。1958年,他又撰写了《不要再有战争》一书,书中以丰富的资料,说明了核武器对人类的重大威胁。1962年,鲍林因在反对核武器试验上做出的努力获得诺贝尔和平奖,成为继居里夫人之后第二位获得不同诺贝尔奖项的科学家,也是仅有的每次都是独立获奖的人。 图 8 鲍林撰写的《不要再有战争一书》 五、毁誉参半的「 ”维生素之争” 20世纪60年代,美国突然掀起一股维生素热潮,而这股热潮的制造者正是鲍林。他认为维生素C能够增强人体免疫系统,对感冒有显著疗效,他更指出服用大剂量的维生素C还可使癌症得到缓解。为此,他做了大量的研究和宣传工作,人们对这位科学家深信不疑,霎时间维生素C成为「 ”明星分子”。此外,鲍林还认为维生素C是一种常见的「 ”正分子”并大肆宣扬所谓「 ”正分子医学”,然而这一观点严重挑战了传统医学认知,被认为是对传统医学的威胁,时至今日也从未得到主流医学界的认可。 图 9 商品化的维生素C和它的结构式(图片来源于网络) 尽管鲍林的说法得到普通民众的热烈追捧,却一直未得到医学界和营养学界的认可,反对和批评之声不绝于耳,昔日的「 ”科学巨匠”也被攻击为「 ”江湖庸医”,他也被视为「 ”伪科学传播者”。时至今日,对于鲍林晚年极力推崇维生素C的争议仍未完全退却,学界也没有对维生素C的保健作用和服用剂量等达成共识。客观来说,无论争议的具体焦点如何,维生素对生命有机体的重要作用仍不失为20世纪的重要发现之一,这是毋庸置疑、也是无可争议的。 六、结束语 鲍林一生对化学的贡献颇多,对年轻一代化学家的影响也极其深远,他十分关切我国的化学事业,曾于1973年和1981年两度对我国进行学术访问和交流,著名化学家唐有祺和卢嘉锡先生都曾在鲍林指导下研究和学习。 从现代化学的进程来评价鲍林,他创造性地提出杂化轨道、电负性、共振论等化学领域最基础又广泛使用的概念,极大丰富和发展了价键理论,成为当之无愧的「 ”现代结构化学奠基人”;横跨生物学和医学领域,他的研究又为后人指明方向;为世界和平奔走,科学家的人文精神在他身上得到了极好诠释。尽管晚年深陷争议,但鲍林敢为人先,积极探索新领域的精神仍然值得我们赞赏。作为极富创造力的科学家和热心世界和平的社会活动家,鲍林完美诠释了一个科学家应该具备的品质,而这种品质必将世代流传,影响和激励着一代又一代的科学工作者。 参考资料: [1] 盛根玉. 化学键本质的探索者鲍林[J]. 化学教学, 2011 (11): 57-60. [2] 张宏志, 摇李建. 鲍林对于血红蛋白分子学领域的贡献[J]. 大学化学, 2012, 27(6). [3] 褚廷夫. 有「 ”第一流天才”与「 ”和平老人”美誉的鲍林[J]. 化学教学, 1998, 6: 10-11. [4] 田荷珍. 鲍林与现代化学[J]. 大学化学, 1987, 2(2): 56-59. [5] 周公度, 段连运. 结构化学基础(第5版)[M]. 北京大学出版社, 2017 [6] 淮沙. 维生素之争[J]. 生命世界, 2010 (3): 26-31. [7] 吕仁庆等. 鲍林与共振论-关于共振论的论争[J]. 广东化工, 2010, 37(5): 23-24. 撰稿人:Geronimo2023-07-28 23:10:241
各类化学反应的实质及关系
就以上面的例子吧,在C与O2燃烧时,O2中的O-O键断开,C之间的C-C键也断开,C与O之间形成了C-O键,从而形成了新物质CO2,至于化学键的本质可以去查百度百科,在这里不再说了。 化合反应:指的是由两种或两种以上的物质生成一种新物质的化学反应 2H2+O2=H2O分解反应:指一种化合物在特定条件下(如加热,通直流电,催化剂等)分解成二种或二种以上较简单的单质或化合物 2H2O=2H2+O2置换反应:指一种单质和一种化合物生成另一种单质和另一种化合物的反应2HCl+Fe=FeCl2+H2复分解反应:由两种化合物互相交换成分,生成另外两种化合物的反应,叫做复分解反应 H2SO4+BaCl2=BaSO4+2HCl氧化还原反应:元素化合价改变的反应,反之是非氧化还原反应,置换反应都是氧化还原反应不再举例2023-07-28 23:10:334
化学键的本质是什么
本质是原子周围的电子在成键前后在空间中重新分配,而这种分配使得能体系的能量降低。以共价键为例,如两个氢原子,在成键前电子分别受各自的原子核吸引,在成键后处于两原子中间,同时受到两个原子核吸引,前后通过这个作用使得能量降低。这种电子的分配是原子核与电子共同的结果。有电磁力的作用,但另一方面,在那个尺度范围,受量子力学的支配。2023-07-28 23:10:531
化学键的本质是什么?
这要试成键粒子来说,主要分为离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,由于静电引力产生的。主要是是存在于金属和非金属之间,电负性差异比较大的情况下,阳离子的电子被吸电子能力较强的阴离子吸附,从而成键。共价键是两个或几个原子通过共用电子对产生的吸引作用。两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用 金属键则是使金属原子结合在一起的相互作用,由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成,可以看成是高度离域的共价键。2023-07-28 23:11:032
化学键的本质鲍林求助鲍林的《化学键的本质》
化学键(chemical bond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键。一、离子键。带相反电荷离子之间的互相作用叫做离子键(Ionic Bond),成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,形成稳定结构。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。但是非金属元素之间也可能有离子键,如氯化铵。离子键可以延伸,所以,离子化合物不是由分子构成的。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠中的离子键较氯化钾中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子可以看作是球形的,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如氯化钠中一个钠离子可以六个氯离子直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。二、共价键。共价键(Covalent Bond)是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。以共价键结合形成的化合物,叫做共价化合物。三、金属键。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。希望我能帮助你解疑释惑。2023-07-28 23:11:211
化学键怎么理解好,有点不懂
化学键(英语:Chemical Bond)是一种粒子间的吸引力,其中粒子可以是原子、离子或分子。透过化学键,粒子可组成多原子的化学物质。键由两相反电荷间的电磁力引起,电荷可能来自电子和原子核,或由偶极子造成。化学键种类繁多,其能量大小、键长亦有所不同;能量较高的“强化学键”包括共价键、离子键,而分子间力、伦敦扩散力和氢键等“弱化学键”能量较低。离子键1.离子键是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。2.一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Clu207b直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。原子通过共用电子对形成共价键后,体系总能量降低。共价键1.共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如Hu2082)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键.C=C中有一个σ键与一个π键。)等2.旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。3.新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物离子化合物1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2.共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3.在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键1.概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2.改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨(Lorentz,1904)和佐默费尔德(Sommerfeld,1928)等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。2023-07-28 23:11:301
化学键简介
目录 1 拼音 2 注解 1 拼音 huà xué jiàn 2 注解 分子或晶体中相邻的两个或多个原子(离子)之间的强烈相互作用,叫做化学键。化学键首先要强调分子内。分子间的相互作用、范德华力或氢键都不算化学键。相互作用主要是指邻近原子间。非邻近原子间虽也有作用但较弱,只是前者的百分之几。有些多原子分子,除了相邻的两个原子之间有强烈的相互作用外,邻近多个原子间通过共轭作用也会形成化学键,如苯、丁二烯[1, 3]、NO2等共轭分子中的离域大π键。在NaCl晶体中,无限多个离子间相互作用,形成离子键。强相互作用预示化学键的强度,可用键能定量估计。一般化学键的键能为一百到几百kJ/mol。氢键的键能约在40kJ/mol以下。化学键的形成把原子按一定方式牢固地结合成分子,所以它是使分子或晶体能稳定存在的根本原因。化学键主要类型有离子键、共价键(包括配位键)和金属键等。化学键的本质主要围绕共价键成因的研究,形成了以价键理论、分子轨道理论和配位场理论为主体的化学键理论。2023-07-28 23:11:371
什么是化学键
化学键求助编辑百科名片 化学键化学键(chemical bond)是指分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。高中定义:使离子相结合或原子相结合的作用力通称为化学键。目录分类键合距离 Bonding distance离子键 Ionic Bond共价键 Covalent bond离子化合物与共价化合物金属键 Metallic bond定域键 localized bond极性键 Polarity chemical bond非极性键 Nonpolar chemical bond配位键 Coordination chemical bond泡利原理 Pauli principle洪特规则 Hong"s rule分类键合距离 Bonding distance离子键 Ionic Bond共价键 Covalent bond离子化合物与共价化合物金属键 Metallic bond定域键 localized bond极性键 Polarity chemical bond非极性键 Nonpolar chemical bond配位键 Coordination chemical bond泡利原理 Pauli principle洪特规则 Hong"s rule展开 编辑本段分类 所有物质都是由原子,分子,离子构成的在水分子H2O中2个氢原子和1个氧原子就是通过化学键结合成水分子 。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种极限类型 ,即离子键、共价键、金属键。离子键是由带异性电荷的离子产生的相互吸引作用,例如氯和钠以离子键结合成氯化钠。共价键是两个或两个以上原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。其中金属离子被固定在晶格结点上,处于离域电子的“海洋”之中。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。编辑本段键合距离 Bonding distance 键合距离是指两个或以上的原子核之间形成化学键所必需的最短距离。编辑本段离子键 Ionic Bond 1.离子键是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 离子键概念:带相反电荷离子之间的相互作用称为离子键 成键微粒:阴离子、阳离子。 成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥) 成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。 存在范围:离子键存在于大多数强碱、盐及金属氧化物中。 2.一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。 离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。 共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循保利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。 原子通过共用电子对形成共价键后,体系总能量降低。编辑本段共价键 Covalent bond 1.共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类 共价键有不同的分类方法。 (1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、叁键(C≡C)等。 (2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。 (3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如氨分子中的N—H键中有一个属于配位键)。 (4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键。)等 2.旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3.新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物编辑本段离子化合物与共价化合物 1.离子化合物:由阳离子和阴离子构成的化合物。 大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 原子之间依靠化学键组成有机小分子活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。 2.共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。 非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。 3.在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。2023-07-28 23:11:452
请问化学键的种类有哪几种?
化学键的种类有:离子键、共价键、金属键。化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。离子键(ionic bond)带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键:1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。2、原子通过共用电子对形成共价键后,体系总能量降低。共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。化合物分类:1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键:1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。举例:HCl分子中的H-Cl键属于极性键有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:11:531
化学键的分类?
化学键的种类有:离子键、共价键、金属键。化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。离子键(ionic bond)带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键:1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。2、原子通过共用电子对形成共价键后,体系总能量降低。共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。化合物分类:1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键:1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。举例:HCl分子中的H-Cl键属于极性键有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:12:001
化学键为什么叫键?
个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只要条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。2023-07-28 23:12:203
几种化学键的类型
化学键的种类有:离子键、共价键、金属键。化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。离子键(ionic bond)带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键:1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。2、原子通过共用电子对形成共价键后,体系总能量降低。共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。化合物分类:1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键:1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。举例:HCl分子中的H-Cl键属于极性键有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:12:483
化学键的种类有都哪些
化学键的种类有:离子键、共价键、金属键。 化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。 使离子相结合或原子相结合的作用力通称为化学键。 离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。 金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。 化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。 即正离子和负离子之间由于静电引力所形成的化学键。 离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO42-,NO3-等。 离子键的作用力强,无饱和性,无方向性。 离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。 共价键的作用力很强,有饱和性与方向性。 因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。 共价键又可分为三种: (1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键共享的电子对只有一个原子单独提供。 如Zn—S键,共享的电子对由锌提供,Z:+¨..S:=Zn→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。 原子晶体的晶格结点上排列着原子。 原子之间有共价键联系着。 在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。 关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。 这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。 对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。 金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。 但它没有包括所有其他可 分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。 由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。 化学键有3种类型,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。 离子键(ionicbond) 带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。 两个原子间的电负性相差极大时,一般是金属与非金属。 例如氯和钠以离子键结合成氯化钠。 电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。 之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。 而离子键可以延伸,所以并无分子结构。 离子键亦有强弱之分。 其强弱影响该离子化合物的熔点、沸点和溶解性等性质。 离子键越强,其熔点越高。 离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。 例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。 定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 离子键概念:带相反电荷离子之间的相互作用称为离子键。 成键微粒:阴离子、阳离子。 成键本质:静电作用。 静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。 (一吸,两斥) 成键原因:①原子相互得失电子形成稳定的阴、阳离子。 ②离子间吸引与排斥处于平衡状态。 ③体系的总能量降低。 存在范围:离子键存在于大多数强碱、盐及金属氧化物中。 一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。 在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。 化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。 开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号;电子发现以后,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因,原则上阐明了化学键的本质。 通过以后许多人,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。 但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。 离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。 离子键的本质是静电作用。 由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。 只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。 不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。 共价键: 1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。 形成重叠电子云的电子在所有成键的原子周围运动。 一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。 电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。 共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。 共价键有饱和性和方向性。 2、原子通过共用电子对形成共价键后,体系总能量降低。 共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。 由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。 (1)按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。 (2)按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。 (3)按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。 如铵根离子中的N—H键中有一个属于配位键)。 (4)按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。 如C—C。 )和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。 如C=C中键能较小的键,C=C中有一个σ键与一个π键。 )等 3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。 如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。 如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。 化合物分类: 1.离子化合物:由阳离子和阴离子构成的化合物。 大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。 非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。 2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。 非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。 3、在离子化合物中一定含有离子键,可能含有共价键。 在共价化合物中一定不存在离子键。 金属键: 1、概述:化学键的一种,主要在金属中存在。 由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。 由于电子的自由运动,金属键没有固定的方向,因而是非极性键。 金属键有金属的很多特性。 例如一般金属的熔点、沸点随金属键的强度而升高。 其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。 2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。 这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。 由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。 上述假设模型叫做金属的自由电子模型,称为改性共价键理论。 这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。 这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。 但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。 随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。 定域键:只存在于两个原子之间的共价键。 只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。 如乙烯中有一个C-C和四个C-Hσ键、一个C-Cπ键。 定域键具有比较恒定的键性质。 例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。 因此,分子的有关广延性质可近似表示为相应的键性质之和。 定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。 这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。 极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。 这样的共价键叫做极性共价键,简称极性键。 举例:HCl分子中的H-Cl键属于极性键 有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。 但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。 非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。 同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。 非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。 非极性键的键偶极矩为0。 以非极性键结合形成的分子都是非极性分子。 存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。 由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。 例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。 举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:12:571
如何深刻形象的理解化学键?
化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互吸引作用。 例如,在水分子中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共有电子产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。 1、离子键是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。 2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。 化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。 量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。 1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。 3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物2023-07-28 23:13:061
请问化学键有哪些种类啊?
化学键的种类有:离子键、共价键、金属键。化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。离子键(ionic bond)带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键:1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。2、原子通过共用电子对形成共价键后,体系总能量降低。共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。化合物分类:1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键:1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。举例:HCl分子中的H-Cl键属于极性键有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:13:133
化学键的种类有都哪些
化学键的种类有:离子键、共价键、金属键。化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。离子键(ionic bond)带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。离子键概念:带相反电荷离子之间的相互作用称为离子键。成键微粒:阴离子、阳离子。成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。存在范围:离子键存在于大多数强碱、盐及金属氧化物中。一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。共价键:1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。2、原子通过共用电子对形成共价键后,体系总能量降低。共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类:共价键有不同的分类方法。(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。如铵根离子中的N—H键中有一个属于配位键)。(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。化合物分类:1.离子化合物:由阳离子和阴离子构成的化合物。大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。金属键:1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。举例:HCl分子中的H-Cl键属于极性键有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。举例:Cl2分子中的Cl-Cl键属于非极性键2023-07-28 23:13:232