DNA图谱 / 问答 / 问答详情

DNA复制过程请用生物化学方面知识说明一下DNA复制过程及步骤

2023-06-30 08:52:46
共1条回复
黑桃花
DNA复制过程 以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—strandedDNAbindingprotein,ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNAhelicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuousreplication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶III作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶I将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(McClintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:①保护染色体末端免受损伤,使染色体保持稳定;②与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶I催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶I催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:①迥纹形式的发夹环;②仅由C,A组成的简单序列大量重复(C4A2)20~70;③链上有许多缺口(nicks)。

相关推荐

生物学SSB是什么意思

SSB在生物学中是单链结合蛋白的英文缩写。其功能在于稳定DNA解开的单链,阻止复性和保护单链部分不被核酸酶水解。单链结合蛋白(SSB,single strand DNA-binding protein):又称DNA结合蛋白,是DNA复制所必须酶。DNA解旋后,DNA分子只要碱基配对,就有结合成双链的趋向。扩展资料单链DNA型结合蛋白(SSBP)单链DNA型结合蛋白又称单链结合蛋白,是专门负责与DNA单链区域结合的一种蛋白质,为DNA复制、重组和修复所必需的成分。结合于螺旋酶沿复制叉方向向前推进产生的单链区,防止新形成的单链DNA重新配对形成双链DNA或被核酸酶降解的蛋白质。螺旋酶沿复制叉方向向前推进产生了一段单链区,但是这种单链DNA不会长久存在,会很快重新配对形成双链DNA或被核酸酶降解。然而,在细胞内有大量单链DNA结合蛋白能很快地和单链DNA结合,防止其重新配对形成双链DNA或被核酸酶降解。SSBP与螺旋酶不一样,它不具备酶的活性,不和ATP结合。参考资料来源:百度百科-单链结合蛋白
2023-06-30 04:44:355

单链结合蛋白简介

目录 1 拼音 2 英文参考 3 注解 1 拼音 dān liàn jié hé dàn bái 2 英文参考 single strand binding protein 3 注解 单链结合蛋白是又称为双螺旋稳定蛋白(helix destabilizing protein)。当解旋酶将双链打开以后,单链DNA具有一种潜在的恢复原来双链的能力,重新形成氢键。而且单链本身若有反向重复也会形成发夹结构,这两种情况都会影响复制的,但SSB可以解决这一问题。SSB并不是酶,是由177个aa组成的蛋白,E.coli的SSB以四聚存在,分子量为74KDa,结合在单链上,每个分子可以覆盖32Nt,使DNA受到保护,不被酶水解,也不回复成双链,因此可以降低DNA的Tm值。SSB对于细菌复制叉的结构的作用和解旋酶是同等的。 在原核中SSB与DNA结合表现出协同效应。若第一个SSB的结合能力为1,则第二个SSB的结合能力为103。这可能因为(1)SSB之间的相互作用;(2)第一个SSB和DNA的结合改变了DNA的结构。真核生物的SSB则不表现协同效应。
2023-06-30 04:45:081

“”单链DNA结合蛋白与DNA结合后使DNA解链” 这句话对吗?

对DNA结合蛋白,又称螺旋失稳蛋白,DNA解链蛋白,单链DNA结合蛋白。是解链酶(unwinding enzyme)类中的一种类型,当DNA发生暂时性熔化时,它与DNA单链区结合而促使反应偏向单链的形成,使DNA在大大低于Tm(解链温度)的温度下发生双链的分离,双螺旋则在复制叉的前方分开,并在复制叉处稳定单链结构,阻止再形成双螺旋。http://baike.baidu.com/view/1958952.htm
2023-06-30 04:45:252

参与DNA复制的物质是什么?

DNA的复制是一个复杂的过程,需要DNA模板、合成原料——三磷酸核苷酸、酶和蛋白质等多种物质的参与。解旋酶:DNA复制涉及的第一个问题就是DNA两条链要在复制叉位置解开。DNA双螺旋并不会自动解旋,细胞中有一类特殊的蛋白质可以促使DNA在复制叉处打开,这就是解旋酶。解旋酶可以和单链DNA以及ATP结合,利用ATP分解生成ADP时产生的能量沿DNA链向前运动促使DNA双链打开。单链DNA结合蛋白:解旋酶沿复制叉方向向前推进产生了一段单链区,但是这种单链DNA极不稳定,很快就会重新配对形成双链DNA或被核酸酶降解。在细胞内有大量单链DNA结合蛋白(single strand DNA binding protein,SSB),能很快地和单链DNA结合,防止其重新配对或降解。SSB结合到单链DNA上之后,使DNA呈伸展状态,有利于复制的进行。当新DNA链合成到某一位置时,该处的SSB便会脱落,可以重复利用。DNA拓扑异构酶:DNA在细胞内往往以超螺旋状态存在,DNA拓扑异构酶催化同一DNA分子不同超螺旋状态之间的转变。DNA拓扑异构酶有两类。DNA拓扑异构酶I的作用是暂时切断一条DNA链,形成酶—DNA共价中间物,使超螺旋DNA松弛,再将切断的单链DNA连接起来,不需要任何辅助因子,如大肠杆菌的ε蛋白;DNA拓扑异构酶Ⅱ能将负超螺旋引入DNA分子,该酶能暂时性地切断和重新连接双链DNA,同时需要ATP水解提供能量,如大肠杆菌中的DNA旋转酶。引物酶:引物酶在复制起点处合成RNA引物,引发DNA的复制。它与RNA聚合酶的区别在于可以催化核糖核苷酸和脱氧核糖核苷酸的聚合,而RNA聚合酶只能催化核糖核苷酸的聚合,其功能是启动DNA转录合成RNA,将遗传信息由DNA传递到RNA。DNA聚合酶:DNA聚合酶最早是在大肠杆菌中发现的,以后陆续在其他原核生物中找到。它们的共同性质是:以dNTP为前体催化DNA合成;需要模板和引物的存在;不能起始合成新的DNA链;催化dNTP加到生长中的DNA链的3′—OH末端;催化DNA合成的方向是5′→3′。DNA连接酶:DNA连接酶是1967年在三个实验室同时发现的。它是一种封闭DNA链上的缺口的酶,借助ATP或NAD水解提供的能量催化DNA链的5′?磷酸基团的末端与另一DNA链的3′—OH生成磷酸二酯键。只有两条紧邻的DNA链才能被DNA连接酶催化连接。
2023-06-30 04:45:331

单链DNA结合蛋白与DNA结合后使DNA解链这句话对吗

不对.DNA解旋有专门的DNA解旋酶,单链DNA结合蛋白只是结合单链,不能解旋.
2023-06-30 04:45:401

单链DNA结合蛋白与DNA结合后使DNA解链这句话对吗?

dna复制时会招募ssb蛋白他能稳定单链结构防止复性防止被dna酶水解解链需要解链酶复制时是dnab蛋白做解链酶
2023-06-30 04:46:031

什么是非特异性的DNA结合蛋白

为DNA蛋白质之一种,是与单链DNA有强的亲和性,与DNA复制、遗传的重组等DNA代谢有关的蛋白质。也称螺旋不稳定蛋白质(helixdestabili-zingprotein),又称解DNA旋卷蛋白质(DNAuntwistingprotein)。此蛋白质与单链DNA协同(cooperative)结合,其结合与DNA碱基的排列是非特异性的。此蛋白质结合的DNA使DNA多聚酶的活性增高,并促进重组过程。单链DNA结合蛋白质在生物界广泛存在,B.Alberts等最早发现了噬菌体T4基因32形成的这种蛋白质。以后从细菌、霉菌、两栖类和哺乳类等细胞中也有分离出来。
2023-06-30 04:46:111

参与细胞DNA复制的蛋白质有哪些?

  参与复制主要的酶和蛋白质因子介绍如下:  (1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。  ②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。  (2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。  (3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。  (4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。  (5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。  (6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。  (7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。
2023-06-30 04:46:181

为什么DNA聚合酶需要单链结合蛋白和RNA聚合酶不需要

这个问得好……我觉得主要是因为,RNA的转录量很多,而且RNA酶是没有修复功能的,而复制有。前者错误几率比后者大得多。DNA复制要求十分精细,而转录因为量很大,所以可以弥补。我想降解可能也是和这个类似。
2023-06-30 04:46:271

求原核生物DNA生物合成过程

1、DNA复制机理——半保留复制 半保留复制(semiconservative replication)是DNA生物合成的一个重要特征。是指DNA合成(复制)时,双链解开,分别作为模板(template)指导DNA的合成,合成的子代新生双链DNA中,总有一条来自亲代DNA...... 2、DNA复制的酶类 参与DNA复制的主要物质有:底物,即dATP,dGTP,dCTP 和 dTTP,总称为dNTP; DNA聚合酶(polymerase);模板(template),即双链DNA解开形成的单链;引物(primer),引导新生DNA的产生;其他...... 3、DNA复制过程 DNA复制时,首先需要解开双链,再生成引发体,在引发体的基础上开始合成新链。复制中的新链总是沿5′向3′端方向延伸,即底物dNTP去掉焦磷酸并以磷酸二酯键方式连接在延伸中的DNA链3′端的-OH上,一个接一个地叠加。由于DNA的双链的走向...... 4、DNA复制过程的调控 原核及其它低等生物与高等生物DNA复制的调控模式可能不同,同一生物的调控模式也可有不同的变化。对DNA复制的调节既有正调节也有负调节。
2023-06-30 04:47:103

双链rna有什么用?单链dna又有什么用?

不管是双链RNA还是单链DNA,都是自然界内常见的物质. 一般的RNA都有二级结构.自身可以形成部分的双链区,比如,16S RNA的二级结构图. 在自然界中,也有细胞内自己产生的RNA,可以与mRNA等部分序列互补成双链RNA,调控转录和翻译,比如,miRNA. 还有一些双链RNA的病毒,常见于植物RNA病毒. 单链DNA在DNA转录或复制活跃时,结合单链结合蛋白,会形成部分的单链结构.单链DNA病毒也常见于动物病毒或噬菌体. 在自然界中,微生物有时也会形成单股的DNA,以便于DNA转移,比如F质粒转移. 除此之外,三链DNA也很常见哦~
2023-06-30 04:47:191

如何分离分子量相同的单链DNA和单链RNA

甲醛变性凝胶电泳并不能区分相相同大小的ssDNA和ssRNA.因为二者长度一致,在凝胶中泳动速率也一致。目前有可分离ssRNA和ssDNA的技术,我只是看过一个设想,但没有后续的实验报道。即使用纯化的SSB蛋白(就是单链DNA结合蛋白,其体内功能是DNA复制时结合解旋酶解开而成的单链DNA,防止复性)作为亲和柱固相,亲和层析DNA/RNA溶液,由于SSB能够特异性的结合ssDNA,因此能够分离ssDNA和ssRNA。此外,如果不要求得率的话,直接用RNaseI处理即可获得ssDNA。
2023-06-30 04:47:281

DNA复制时前导链与随从链的合成有哪些不同

DNA复制时前导链与随从链的合成有哪些不同1.简述分子生物学的中心法则及其扩充。2.何谓DNA的半保留复制?简述复制的主要过程。3.DNA复制时,应具备哪些条件?4.造成DNA损伤的因素是什么?损伤的修复方式有哪几种?5.简述DNA损伤的修复类型。1.1958年,Crick提出了分子生物学的中心法则。DNA是遗传的主要物质,携带有遗传信息。通过复制,遗传信息从亲代DNA传到子代DNA。DNA把遗传物质传递给RNA的过程称为转录。RNA通过翻译,以三个碱基序列决定一个氨基酸这种遗传密码方式,决定蛋白质的基本结构。这种遗传信息的传递规律称为中心法则。其扩充包括在反转录酶的作用下以RNA为模板,指导DNA合成的反转录过程。同时RNA本身也可以进行复制及翻译成蛋白质。2. DNA在复制时,亲代DNA两条链均可作为模板,生成两个完全相同的子代DNA,每个子代DNA的一条链来自亲代DNA,另一条链是新合成的,称为半保留复制。复制的主要过程是:(1)拓扑异构酶松弛超螺旋;(2)解螺旋酶将双股螺旋打开;(3)单链DNA结合蛋白结合在每条单链上,以维持两条单链处于分开状态;(4)引物酶催化合成RNA引物;(5) DNA 聚合酶Ⅲ 催化合成新的DNA 的领头链及冈崎片段;(6)RNA酶水解引物, DNA聚合酶Ⅰ催化填补空隙;(7) DNA连接酶将冈崎片段拼接起来以完成随从链的合成。3. (1)底物:以脱氧三磷酸核苷为底物,总称dNTP,包括dATP 、dGTP 、dCTP 、dTTP。(2)模板:要有母链DNA为模板必须先解链,解旋。双链解开后,两链均可做模板。(3)酶和蛋白质因子:DNA聚合酶等,还需要特定的蛋白质因子。(4)引物:以小段RNA作为引物。4. 造成DNA损伤的因素及损伤的修复方式:(1)引起DNA损伤的因素:主要是一些物理和化学因素,如紫外线照射,电离辐射,化学诱变剂等。(2)损伤修复的方式有:光修复、切除修复、重组修复和SOS修复。5. 修复是指针对已经发生的缺陷而施行的补救机制,主要有光修复、切除修复、重组修复和SOS修复。光修复:通过光修复酶催化完成的,需300~600nm波长照射即可活化,可使嘧啶二聚体分解为原来的非聚合状态,DNA完全恢复正常。切除修复:细胞内主要的修复机制,主要有核酸内切酶、DNA聚合酶Ⅰ及连接酶完成修复。重组修复:先复制再修复。损伤部位因无模板指引,复制出来的新子链会出现缺口,通过核酸酶将另一股健康的母链与缺口部分进行交换。SOS修复:SOS是国际海难信号,SOS修复是一类应急性的修复方式,是由于DNA损伤广泛以至于难以继续复制由此而诱发出一系列复杂的反应。1.简述三种RNA在蛋白质合成中的作用。2.试述复制、转录、翻译的方向性。3.简述原核生物蛋白质翻译延长过程。1.(1)mRNA的作用:以一定结构的mRNA作为直接模板合成一定结构的多肽链,将mRNA上带有遗传信息的核苷酸顺序翻译成氨基酸顺序,即mRNA是通过其模板作用传递遗传信息,指导蛋白质的合成。(2)tRNA的作用:tRNA是转运氨基酸的工具。作为蛋白质合成原料的20种氨基酸各有其特定的tRNA,而且一种氨基酸常有数种tRNA来运载。(3)rRNA的作用:它和蛋白质结合成核蛋白体,是蛋白质合成的场所。2.(1)复制的方向性:DNA复制时,每个复制子可形成两个复制叉,如模板单链DNA3"→5"的方向与复制叉方向相同,则是连续复制;如果模板方向和复制叉方向相反,则DNA合成为不连续合成。(2)转录的方向性:DNA模板解链方向是3"→5";转录RNA合成的方向是5"→3"。(3)翻译的方向性:核蛋白体沿mRNA从5"→3"方向进行翻译,所合成的多肽链方向是由N端→C端。3.(1)进位:氨基酰-tRNA根据遗传密码的指引,进入核糖体A位;(2)转肽(成肽):在转肽酶作用下,将P位点上肽酰基转移到A位点氨基酰-tRNA上,在A位上形成肽键,肽链延长;(3)转位(移位):核糖体在mRNA上以5"→3"移动三个核苷酸距离,卸载的tRNA离开P位点移至E位,在A位上新形成肽酰-tRNA又移到P位上,下一个密码子对应A位点。1.区别酶蛋白与蛋白酶。2.酶蛋白与辅助因子的相互关系如何?3.简述“诱导契合假说”。 4.简述Km和Vmax的意义。5.区别酶的激活与酶原的激活。1.酶蛋白与蛋白酶是两个完全不同的概念。酶蛋白是全酶的一部分,结合酶中蛋白质部分称为酶蛋白,非蛋白质部分称为辅助因子,全酶等于酶蛋白+辅助因子。只有全酶才具有催化作用,将酶蛋白与辅助因子分开后,均无催化作用。如琥珀酸脱氢酶是由酶蛋白部分和辅助因子FAD结合构成的,只有琥珀酸脱氢酶这一全酶才具有催化活性。而蛋白酶是水解蛋白质的酶,为一完整的酶,具有水解蛋白质的作用,属于单纯蛋白酶类,胰蛋白酶是胰腺分泌的水解蛋白质的酶。2.(1)酶蛋白与辅助因子组成全酶,单独哪一种都没有催化活性;(2)一种酶蛋白只能结合一种辅助因子形成全酶,催化一定的化学反应; (3)一种辅助因子可与不同酶蛋白结合成不同的全酶,催化不同的化学反应;(4)酶蛋白决定反应的特异性,而辅助因子具体参加化学反应,决定酶促反应的性质。3.酶在发挥其催化作用之前,必须先与底物密切结合。这种结合不是锁与钥匙式的机械关系,而是在酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,这一过程称为酶-底物结合的诱导契合假说。酶的构象改变有利于与底物结合;底物也在酶的诱导下发生变形,处于不稳定状态,易受酶的催化攻击,这种不稳定状态称为过渡态。过渡态的底物与酶的活性中心结构最相吻合,从而降低反应的活化能。4.Km(米氏常数):(1)Km值等于酶促反应速度为最大速度一半时的底物浓度。(2)当ES解离成E和S的速度大大超过分解成E和P的速度时,Km值近似于ES的解离常数Ks。在这种情况下,Km值可用来表示酶对底物的亲和力。此时,Km值愈大,酶与底物的亲和力愈小;Km值愈小,酶与底物的亲和力愈大。Ks值和Km值的涵义不同,不能互相代替使用。(3)Km值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和外界环境(如温度、pH、离子强度)有关,与酶的浓度无关。各种酶的Km值范围很广,大致在10-2~10mmol/L之间。Vmax(最大速度):Vmax是酶完全被底物饱和时的反应速度。如果酶的总浓度已知,便可从Vmax计算酶的转换数。酶的转换数定义是:当酶被底物充分饱和时,单位时间内每个酶分子(或活性中心)催化底物转变为产物的分子数。对于生理性底物,大多数酶的转换数在1~104/秒之间。5.酶的激活与酶原的激活不同。酶的激活是使已具有活性的酶活性增高,即使酶的活性由小变大。如氯离子是唾液淀粉酶的激活剂,唾液淀粉酶本身就具有水解淀粉的能力,只是活性较低,加入氯离子后,使水解淀粉能力增强。而酶原的激活是使本来无活性的酶原转变成有活性的酶,即使无活性变为有活性。如肠激酶是胰蛋白酶原的激活剂,胰蛋白酶原本身没有水解蛋白质的能力,当加入肠激酶后,肠激酶能引起胰蛋白酶原分子结构改变,并使之转变成胰蛋白酶,后者具有水解蛋白质的作用。1.糖酵解的生理意义?2.糖异生的生理意义?3.磷酸戊糖途径的生理意义?4.NADPH有哪些重要的生理意义?5.什么是糖异生的三个“能障”?克服这三个“能障”需要哪些酶?6.血糖的来源和去路?7.三羧酸循环的生理意义是什么?1.⑴糖酵解最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。当机体缺氧或剧烈运动,肌局部血液不足时,能量主要通过糖酵解获得。⑵在生理条件下,某些组织细胞通过糖酵解获得能量。成熟红细胞没有线粒体,完全依赖糖酵解供应能量。神经、白细胞、骨髓等代谢极为活跃,即使不缺氧,也常由糖酵解提供部分能量。2.⑴当空腹或饥饿时,体内糖的来源不足,依赖甘油、氨基酸等异生成葡萄糖以维持血糖水平恒定,保证主要依赖葡萄糖供能的组织(如脑组织)功能正常。⑵糖异生是肝补充或恢复糖原储备的重要途径。⑶长期饥饿时,肾糖异生增强,有利于维持酸碱平衡,对于防止饥饿造成的代谢性酸中毒有重要作用。3.⑴是体内产生5-磷酸核糖的重要途径,核糖是核酸和游离核苷酸的组成成分。⑵产生NADPH+H+:①作为供氢体参与体内的许多合成代谢;如从乙酰CoA合成脂酸、胆固醇。②参与体内的羟化反应,是加单氧酶系的供氢体。与生物合成有关,如胆汁酸或某些类固醇激素的合成等;与生物转化有关。③是谷胱甘肽还原酶的辅酶,维持谷胱甘肽处于还原状态,还原型的谷胱甘肽可以保护一些含有-SH基的蛋白质或酶免受氧化剂尤其是过氧化物的损害。对维持红细胞的完整性起重要作用,同时防止高铁血红蛋白生成。⑶磷酸戊糖途径与糖酵解、糖有氧氧化及糖醛酸途径相通。4.⑴NADPH作为供氢体参与体内许多合成代谢。 如从乙酰CoA合成脂酸、胆固醇。⑵参与体内的羟化反应,是加单氧酶系的供氢体。与生物合成有关,如胆汁酸或某些类固醇激素的合成等;与生物转化有关。⑶是谷胱甘肽还原酶的辅酶,维持谷胱甘肽于还原状态。还原型谷胱甘肽能保护巯基酶的活性,对维持红细胞的完整性起重要作用,同时防止高铁血红蛋白生成。5.糖酵解过程中由已糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶催化的反应不可逆,这三个不可逆反应是糖异生的三个“能障”。克服这三个“能障”需要四个限速酶,即丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖双(二)磷酸酶-1和葡萄糖-6-磷酸酶。6.来源:⑴食物中糖经消化、吸收。⑵肝糖原分解。⑶非糖物质糖异生。去路:⑴彻底氧化分解,生成CO2和H2O,释放能量。 ⑵合成肝糖原,肌糖原。⑶转变为非糖物质:脂类、氨基酸等。 ⑷转变成其他糖。7.⑴是三大营养素的最终代谢通路。 ⑵是糖、脂肪、氨基酸代谢联系的枢纽。⑶为其他合成代谢提供小分子前体。 ⑷为氧化磷酸化反应生成ATP提供NADH+H+和FADH2。1.为何蛋白质的含氮量能表示蛋白质相对含量实验中又是如何依此原理计算蛋白质含量的2.何谓肽键和肽链及蛋白质的一级结构3.什么是蛋白质的二级结构它主要有哪几种各有何结构特征4.举例说明蛋白质的四级结构。5.变性后蛋白质有何变化?6.组成蛋白质的基本单位是什么?结构有何特点?1.各种蛋白质的含氮量颇为接近,平均为16%,因此测定蛋白质的含氮量就可推算出蛋白质含量。常用的公式为:蛋白质含量(克%)=每克样品含氮克数×6.25×100。2.一个氨基酸的α-羧基和另一个氨基酸的α-氨基进行脱水缩合反应,生成的酰胺键称为肽键,肽键具有双键性质。由许多氨基酸通过肽键相连而形成长链,称为肽链。肽链有两端:游离α-氨基的一端称为N-端,游离α-羧基的一端称为C-端。蛋白质一级结构是指多肽链中氨基酸排列顺序,它的主要化学键为肽键。3.蛋白质二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋、β-折叠、β-转角和无规卷曲四种。在α-螺旋结构中,多肽链主链围绕中心轴以右手螺旋方式旋转上升,每隔3.6个氨基酸残基上升一圈。氨基酸残基的侧链伸向螺旋外侧。每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羰基上的氧形成氢键,以维持α-螺旋稳定。在β-折叠结构中,多肽链的肽键平面折叠成锯齿状结构,侧链交错位于锯齿状结构的上下方。两条以上肽链或一条肽链内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,维持β-折叠构象的稳定。在球状蛋白质分子中,肽链主链常出现180o回折,回折部分称为β-转角,β-转角通常由4个氨基酸残基组成,第二个残基常为脯氨酸。无规卷曲是指肽链中没有确定规律的结构。4.蛋白质四级结构是指蛋白质分子中具有完整三级结构的各亚基在空间排布的相对位置。例如血红蛋白,它是由1个α亚基和1个β亚基组成一个单体,二个单体呈对角排列,形成特定的空间位置关系。四个亚基间共有8个非共价键,维系其四级结构的稳定性。5.生物学活性丧失,溶解度降低,易被蛋白酶水解,粘度增加。6.组成蛋白质的基本单位是氨基酸,它们都是α-氨基酸。除甘氨酸外,α-碳原子都是不对称碳原子,均为L–α–氨基酸。
2023-06-30 04:47:371

g是双链dna结合蛋白优势单链dna结合蛋白

A、题干中“rep蛋白可以将DNA双链解旋”可知,rep蛋白能使A与T、C与G之间的氢键断裂,A正确; B、高温处理DNA分子也可以使DNA双链解旋,B错误; C、DNA复制的过程的特点为边解旋边复制、DNA分子复制的方式是半保留复制,C正确; D、根据题干中“rep蛋白可以将DNA双链解旋,结合蛋白可以和解旋的DNA单链结合”可知,可以促进DNA复制,D错误. 故选:AC.
2023-06-30 04:47:441

简述原核生物DNA复制,RNA转录及蛋白质翻译的详细过程。

以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)  ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质.原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应.ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环.所以,ssbDNA蛋白只保持单链的存在,不起解旋作用.(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA.这种解链酶分解ATP的活性依赖于单链DNA的存在.如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动.复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的.故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA.
2023-06-30 04:47:532

DNA复制 如何解决前导链和后倒链不同步问题

这是鼎鼎大名的半不连续复制(http://baike.baidu.com/view/3112426.htm)。DNA复制开始时,DNA螺旋酶首先在复制起点处将双链DNA解开,通过转录激活合成的RNA分子也起分离两条DNA链的作用,然后单链DNA结合蛋白质结合在被解开的链上。引发前体(preprimosome),在单链DNA结合蛋白的作用下与单链DNA结合生成中间物,这是一种前引发过程。引发前体进一步与引物酶(primase)组装成引发体(primosome)。引发体可以在单链DNA上移动,在dnaB亚基的作用下识别DNA复制起点位置。首先在前导链上由引物酶催化合成一段RNA引物,然后,引发体在滞后链上沿5"→3"方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动,见后),在一定距离上反复合成RNA引物供DNA聚合酶Ⅲ合成冈崎片段使用。滞后链模板环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ,然后再折向与未解链的双链DNA在同一方向上,则滞后链的合成可以和前导链的合成在同一方向上进行。(简单的说就是绕了个圈!)这样,当DNA聚合酶Ⅲ沿着滞后链模板移动时,由特异的引物酶催化合成的RNA引物即可以由DNA聚合酶Ⅲ所延伸。当合成的DNA链到达前一次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片断便从DNA聚合酶Ⅲ上释放出来。这时,由于复制叉继续向前运动,便产生了又一段单链的滞后链模板,它重新环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ开始合成新的滞后链冈崎片段。通过这样的机制,前导链的合成不会超过滞后链太多(最后只有一个冈崎片段的长度)。而且,这样引发体在DNA链上和DNA聚合酶Ⅲ以同一速度移动。http://v.youku.com/v_show/id_XNDkwNDU2NzY=.html
2023-06-30 04:48:113

dnaa蛋白是什么

应该是DnaA蛋白吧?参与DNA复制的起始,DNA复制的第一步是,DnaA蛋白与复制起始位点9bp重复序列结合,由于DnaA是ATP结合蛋白,它水解ATP释放的能量促使DNA双链在13bp重复序列去解开,促使单链结合蛋白SSB与DNA单链区结合。
2023-06-30 04:48:171

dna复制的三个过程

dna复制的三个过程分别是起始阶段、延长阶段和终止阶段。参与DNA复制的物质:1、解旋酶DNA复制涉及的第一个问题就是DNA的两条单链要在复制叉位置解开。DNA双链并不会自动解旋,细胞中有一类特殊的蛋白质可以促使DNA在复制叉处打开,这就是解旋酶。解旋酶可以和单链DNA以及ATP结合,利用ATP水解生成ADP时产生的能量沿DNA链向前运动促使DNA双链打开。2、单链DNA结合蛋白解旋酶沿复制叉方向向前推进产生了一段单链区,但是这种单链DNA极不稳定,很快就会重新配对形成双链DNA或被核酸酶降解。在细胞内有大量单链DNA结合蛋白(single strand DNA binding protein, SSB),能很快地和单链DNA结合,防止其重新配对或降解。SSB结合到单链DNA上之后,使DNA呈伸展状态,有利于复制的进行。当新DNA链合成到某一位置时,该处的SSB便会脱落,脱落的SSB可以重复利用。DNA链的延伸:DNA新链的延伸由DNA聚合酶III所催化。为了复制的不断进行,解旋酶须沿着模板前进,边移动边解开双链。由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就可能造成复制叉难以再继续前进,但在细胞内DNA的复制不会因出现拓扑学问题而停止,因为拓扑异构酶会解决这一问题。随着引发体合成RNA引物,DNA聚合酶III开始不断地将引物延伸,合成DNA。DNA聚合酶III是一个多亚基复合二聚体,一个单体用于前导链的合成,另一个单体用于滞后链的合成,因此它可以在同一时间分别复制DNA前导链和滞后链。虽然DNA前导链和滞后链复制的方向不同,但如果滞后链模板环绕DNA聚合酶III,并通过DNA聚合酶III,然后再折向未解链的双链DNA的方向,则滞后链的合成可以和前导链的合成在同一方向进行。
2023-06-30 04:48:361

ssb和单链dna结合强不强

A、根据题干中“双螺旋解开后会产生一段单链区,DNA结合蛋白(SSB)能很快地与单链结合”,说明SSB不是一种解开DNA双螺旋的解旋酶,A错误; B、根据题干信息可知,SSB与单链的结合将利于DNA复制,B错误; C、根据题干信息可知,SSB与DNA单链既可结合也可分开,C正确; D、根据题干信息可知,SSB是一种DNA结合蛋白,故与单链的结合不遵循碱基互补配对原则,D错误. 故选:C.
2023-06-30 04:49:191

dna是怎么合成的?

DNA在体内通过半保留复制的方式不断合成新的DNA链。在体外人工基因合成无需模板,不受基因来源限制也可以进行DNA合成。人工基因合成的方法是基于亚磷酰胺的DNA合成法,也是今天Oligo自动化生产所采用的主要方法。该方法包括(1)去保护。酸催化去除DMT(二甲氧基三苯基甲基)基团,以便下一轮碱基(dA、dC、dG和dT)添加。(2)碱基偶联。将含有DMT保护基团护的亚磷酰胺通过四唑活化剂加到未保护的5′u2006OH末端。(3)加帽。将游离的5′u2006OH乙酰化,以防止进一步的链延伸所造成的单碱基缺失。(4)氧化。通过碘液将磷酸三酯氧化为磷酸盐,进入一个反应循环。由于随着链延长所带来的化学反应效率、合成纯度以及产率的下降,目前该方法合成的Oligo长度一般不超过200个核苷酸(nt)。随后,通过人工进行PCR片段扩增和组装合成基因。
2023-06-30 04:49:262

分子生物学,名词解释

实时荧光定量PCR技术(Real-time quantitative Polymerase Chain Reaction简称Real Time PCR)是在定性PCR技术基础上发展起来的核酸定量技术亮氨酸拉链(leucine zipper):出现在DNA结合蛋白质和其它蛋白质中的一种结构基元(motif)。当来自同一个或不同多肽链的两个两用性的α-螺旋的疏水面(常常含有亮氨酸残基)相互作用形成一个圈对圈的二聚体结构时就形成了亮氨酸拉链蓝白斑筛选是一种基因工程常用的重组菌筛选方法。野生型大肠杆菌产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。有色物质可以使整个培养菌落产生颜色变化,而颜色变化是鉴定和筛选的最直观有效的方法。操纵子(operon):指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。转录的功能单位。很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA序列。主要见于原核生物的转录调控,如乳糖操纵子、阿拉伯糖操纵子、组氨酸操纵子、色氨酸操纵子等.简述原核生物的复制起始过程: DNA的复制是一个边解旋边复制的过程。复制开始时,DNA分子首先利用细胞提供的能量,在解旋酶的作用下,把两条螺旋的双链解开,这个过程叫解旋。然后,以解开的每一段母链为模板,以周围环境中的四种脱氧核苷酸为原料,按照碱基配对互补配对原则,在DNA聚合酶的作用下,各自合成与母链互补的一段子链。随着解旋过程的进行,新合成的子链也不断地延伸,同时,每条子链与其母链盘绕成双螺旋结构,从而各形成一个新的DNA分子。这样,复制结束后,一个DNA分子,通过细胞分裂分配到两个子细胞中去!
2023-06-30 04:49:354

持模板处于单链状态并保护单链完整的蛋白是

【答案】:D[考点]DNA复制的酶 [分析]在DNA-pol参与复制之前, 首先起作用的起始物质有DnaA蛋白、 DnaB蛋白、DnaC蛋白。DnaA蛋白辨认复 制起始点,DnaC蛋白辅助解螺旋酶(DnaB 蛋白)使其在DNA链上移动并打开双链, 故129题应选A。作为模板的DNA总是要处于单链状态,而DNA分子只要符合碱基配对又总会有形成双链的倾向,但细胞内存在SSB (单链DNA结合蛋白),其作用是在复制中维持模板DNA处于单链状态并保护单链的完整,故130题应选D。
2023-06-30 04:49:421

大肠杆菌DNA复制过程中,于单链DNA结合以维持单链稳定的蛋白是

称为单链DNA结合蛋白(SSB,single strand DNA-binding protein) 定义:结合于螺旋酶沿复制叉方向向前推进产生的单链区,防止新形成的单链DNA重新配对形成双链DNA或被核酸酶降解的蛋白质,称为单链DNA结合蛋白.
2023-06-30 04:50:011

生物学SSB是什么意思

单链结合蛋白(SSB,single strand DNA-binding protein):又称DNA结合蛋白,是DNA复制所必须酶。DNA解旋后,DNA分子只要碱基配对,就有结合成双链的趋向。SSB结合于螺旋酶沿复制叉方向向前推进产生的单链区,防止新形成的单链DNA重新配对形成双链DNA或被核酸酶降解的蛋白质。ssb作用时表现协同效应,保证SSB在下游区段的继续结合。它不像聚合酶那样沿着复制方向向前移动,而是不停的结合,脱离。扩展资料:SSB蛋白的作用:1、保证被解链酶解开的保持单链结构,它以四聚体形式存在于复制叉处,待单链复制后才掉下,重新循环。所以,SSB蛋白只保持单链的存在,并不能起解链的作用。2、可以保护单链DNA不被酶水解。3、它与酶不同,不具催化活性,但能改变复制过程中的平衡状态和反应速度。参考资料来源:百度百科 SSB参考资料来源:百度百科 单链结合蛋白
2023-06-30 04:50:101

原核生物DNA复制过程

以原核生物DNA复制过程予以简要说明   1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   2.冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   3.复制的引发和终止   所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。
2023-06-30 04:50:252

DNA的复制过程有哪几步

DNA复制过程  以原核生物DNA复制过程予以简要说明  1.DNA双螺旋的解旋  DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程  (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)  ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质.原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应.ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环.所以,ssbDNA蛋白只保持单链的存在,不起解旋作用.(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA.这种解链酶分解ATP的活性依赖于单链DNA的存在.如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动.复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的.故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA.(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等.一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链.两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成.因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段.
2023-06-30 04:50:451

原核生物DNA的复制过程是什么

以原核生物DNA复制过程予以简要说明   1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   2.冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   3.复制的引发和终止   所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。
2023-06-30 04:50:545

dna复制过程中参与的酶和因子有哪些

  DNA的合成是以4种脱氧核苷三磷酸为反应底物,在DNA聚合酶的催化下,使脱氧核苷酸之间形成3",5"-磷酸二酯键,生成脱氧核苷酸长链,同时生成焦磷酸。实际上,DNA合成的反应是很复杂的,催化反应的酶和蛋白质因子也有多种,现将参与复制主要的酶和蛋白质因子介绍如下:  (1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。  ②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。  (2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。  (3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。  (4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。  (5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。  (6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。  (7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。  DNA复制的基本规律总结如下:  ①复制过程是半保留的;  ②细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始;  ③复制可以是单向的或是双向的,以双向较为常见,两个方向复制的速度不一定相同;  ④两条DNA链合成的方向均是从5"向3"方向进行的;  ⑤复制是半不连续的,即其中一条前导链的合成是相对连续的,而滞后链的合成则是不连续的;  ⑥滞后链中各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并由DNA聚合酶Ⅰ催化填补余下的空隙,再由DNA连接酶连接各片段成完整的链。  ⑦复制的终止是在终止区,由两个向前移动的复制叉相遇而停止的。  原核细胞DNA的复制只能从一个特定位点开始,在另一个特定位点终止,这种能够独立进行复制的单位称为复制子。其DNA复制过程可概括如下:  ①首先由拓扑异构酶解除DNA的超螺旋结构,接着在解链酶作用下DNA双链局部解链,单链结合蛋白立即与其结合,防止再形成双链;  ②在复制起点上组装引发体,其中的引发酶合成RNA引物;  ③以亲代单链DNA为模板,DNA聚合酶Ⅲ在引物3"端按碱基互补的原则催化合成新的DNA链;  ④在复制叉上,一条链自起点开始以5"→3"的方向连续合成,称为前导链,另一条链则首先按5"→3"的方向合成若干片段(冈崎片段),再由DNA聚合酶Ⅰ切除RNA引物并填补空隙,后由DNA连接酶把这些片段连接成完整的链,因此称为滞后链,此种方式被称为半不连续复制。  ⑤复制的终止是在终止区,由两个向前移动的复制叉相遇而停止。Tus-ter复合物阻挡复制叉的前行。由拓扑异构酶Ⅳ(属于拓扑异构酶Ⅱ的一种)作用,使复制叉解体,释放出子链DNA。
2023-06-30 04:51:101

dna多起点复制发生在原核生物吗?这有何意义,具体要怎么执行呢?

不发生,多起点双向复制发生在真核生物中,原核生物是单起点双向复制。真核生物因为细胞内含有核膜,并且蛋白质的需求量高,所以多起点复制有效的加快了复制的效率,方便后续的转录和翻译。具体是DNA双螺旋的解旋DNA在复制的时候,在DNA解旋酶的作用下,双链首先解开,形成了复制叉,而复制叉的形成则是由多种蛋白质和酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)ssbDNA蛋白是较牢固结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白和DNA结合时表现出协同效应:如果第一个ssbDNA蛋白结合到DNA上去能力为1,第二个的结合能力可高达103;真核生物细胞里的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白作用是保证解旋酶解开的单链在复制完成前能保持单链结构,以四聚体的形式存在于复制叉处,等待单链复制后才脱下来,重新循环。因此,ssbDNA蛋白仅保持单链的存在,是不起解旋作用。(2)DNA解链酶(DNA helicase)DNA解链酶可以通过水解ATP获得能量以解开双链DNA。这一种解链酶分解ATP的活性依赖于单链DNA的存在。若双链DNA中有单链末端或切口,则DNA解链酶能首先结合在这一部分,然后逐步向双链的方向移动。复制时,大部分DNA解旋酶沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动。因而推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程DNA在复制前不仅为双螺旋而且处于超螺旋状态,而超螺旋状态的存在为解链前的必须结构状态,参与解链的除解链酶外有一些特定蛋白质,比如大肠杆菌中的Dna蛋白等。一旦DNA局部双链被解开,就必须有ssbDNA蛋白以稳定解开单链,保证此局部不会恢复为双链。两条单链DNA复制的引发过程是有所差异,可是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA合成。因此前导链和后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去、不形成冈崎片段、后者则随着复制叉的出现、不断合成长约2—3kb的冈崎片段。冈崎片段与半不连续复制因为DNA的两条链是反向平行的,所以在复制叉附近解开的DNA链,一条为5"—〉3"方向,另一条为3"—〉5"方向,两个模板极性是不同。所有已知DNA聚合酶合成方向均为5"—〉3"方向,不为3"—〉5"方向,所以无法解释DNA的两条链同时进行复制的问题。解释DNA两条链各自模板合成子链等速复制现象,日本的学者冈崎(Okazaki)等人提出了DNA的半不连续复制(semidiscontinuous replication)模型。在1968年,冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性之后用超离心方法得到了许多3H标记的,被后人称作为冈崎片段的DNA。延长标记时间之后,冈崎片段可转变为成熟的DNA链,所以这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程里首先合成较小的片段,即用DNA连接酶温度敏感突变株进行的试验,在连接酶不起作用的温度中,便产生大量小DNA片段积累,表明DNA复制过程里至少有一条链首先合成较短的片段,之后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物长。深入研究还可证明,前导链的连续复制与滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制
2023-06-30 04:51:182

dna复制过程中参与的酶和因子有哪些?

DNA的合成是以4种脱氧核苷三磷酸为反应底物,在DNA聚合酶的催化下,使脱氧核苷酸之间形成3",5"-磷酸二酯键,生成脱氧核苷酸长链,同时生成焦磷酸。实际上,DNA合成的反应是很复杂的,催化反应的酶和蛋白质因子也有多种,现将参与复制主要的酶和蛋白质因子介绍如下:x0dx0a(1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。x0dx0a②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。x0dx0a(2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。x0dx0a(3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。x0dx0a(4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。x0dx0a(5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。x0dx0a(6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。x0dx0a(7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。x0dx0ax0dx0aDNA复制的基本规律总结如下:x0dx0a①复制过程是半保留的;x0dx0a②细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始;x0dx0a③复制可以是单向的或是双向的,以双向较为常见,两个方向复制的速度不一定相同;x0dx0a④两条DNA链合成的方向均是从5"向3"方向进行的;x0dx0a⑤复制是半不连续的,即其中一条前导链的合成是相对连续的,而滞后链的合成则是不连续的;x0dx0a⑥滞后链中各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并由DNA聚合酶Ⅰ催化填补余下的空隙,再由DNA连接酶连接各片段成完整的链。x0dx0a⑦复制的终止是在终止区,由两个向前移动的复制叉相遇而停止的。x0dx0a原核细胞DNA的复制只能从一个特定位点开始,在另一个特定位点终止,这种能够独立进行复制的单位称为复制子。其DNA复制过程可概括如下:x0dx0a①首先由拓扑异构酶解除DNA的超螺旋结构,接着在解链酶作用下DNA双链局部解链,单链结合蛋白立即与其结合,防止再形成双链;x0dx0a②在复制起点上组装引发体,其中的引发酶合成RNA引物;x0dx0a③以亲代单链DNA为模板,DNA聚合酶Ⅲ在引物3"端按碱基互补的原则催化合成新的DNA链;x0dx0a④在复制叉上,一条链自起点开始以5"→3"的方向连续合成,称为前导链,另一条链则首先按5"→3"的方向合成若干片段(冈崎片段),再由DNA聚合酶Ⅰ切除RNA引物并填补空隙,后由DNA连接酶把这些片段连接成完整的链,因此称为滞后链,此种方式被称为半不连续复制。x0dx0a⑤复制的终止是在终止区,由两个向前移动的复制叉相遇而停止。Tus-ter复合物阻挡复制叉的前行。由拓扑异构酶Ⅳ(属于拓扑异构酶Ⅱ的一种)作用,使复制叉解体,释放出子链DNA。
2023-06-30 04:51:371

以大肠杆菌为例,论述原核生物DNA的复制过程

以原核生物DNA复制过程予以简要说明   1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   2.冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   3.复制的引发和终止   所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA。
2023-06-30 04:51:463

原核生物DNA复制过程

以原核生物DNA复制过程予以简要说明   1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   2.冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   3.复制的引发和终止   所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。
2023-06-30 04:52:063

在细胞中,核外有无参与DNA合成的酶,为什么

核外有参与DNA合成的酶。参与DNA合成主要的酶和蛋白质因子介绍如下:(1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。(2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。(3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。(4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。(5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。(6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。(7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。
2023-06-30 04:52:153

dna复制过程中参与的酶和因子有哪些?

  DNA的合成是以4种脱氧核苷三磷酸为反应底物,在DNA聚合酶的催化下,使脱氧核苷酸之间形成3",5"-磷酸二酯键,生成脱氧核苷酸长链,同时生成焦磷酸。实际上,DNA合成的反应是很复杂的,催化反应的酶和蛋白质因子也有多种,现将参与复制主要的酶和蛋白质因子介绍如下:  (1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。  ②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。  (2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。  (3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。  (4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。  (5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。  (6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。  (7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。  DNA复制的基本规律总结如下:  ①复制过程是半保留的;  ②细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始;  ③复制可以是单向的或是双向的,以双向较为常见,两个方向复制的速度不一定相同;  ④两条DNA链合成的方向均是从5"向3"方向进行的;  ⑤复制是半不连续的,即其中一条前导链的合成是相对连续的,而滞后链的合成则是不连续的;  ⑥滞后链中各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并由DNA聚合酶Ⅰ催化填补余下的空隙,再由DNA连接酶连接各片段成完整的链。  ⑦复制的终止是在终止区,由两个向前移动的复制叉相遇而停止的。  原核细胞DNA的复制只能从一个特定位点开始,在另一个特定位点终止,这种能够独立进行复制的单位称为复制子。其DNA复制过程可概括如下:  ①首先由拓扑异构酶解除DNA的超螺旋结构,接着在解链酶作用下DNA双链局部解链,单链结合蛋白立即与其结合,防止再形成双链;  ②在复制起点上组装引发体,其中的引发酶合成RNA引物;  ③以亲代单链DNA为模板,DNA聚合酶Ⅲ在引物3"端按碱基互补的原则催化合成新的DNA链;  ④在复制叉上,一条链自起点开始以5"→3"的方向连续合成,称为前导链,另一条链则首先按5"→3"的方向合成若干片段(冈崎片段),再由DNA聚合酶Ⅰ切除RNA引物并填补空隙,后由DNA连接酶把这些片段连接成完整的链,因此称为滞后链,此种方式被称为半不连续复制。  ⑤复制的终止是在终止区,由两个向前移动的复制叉相遇而停止。Tus-ter复合物阻挡复制叉的前行。由拓扑异构酶Ⅳ(属于拓扑异构酶Ⅱ的一种)作用,使复制叉解体,释放出子链DNA。
2023-06-30 04:52:221

DNA复制过程

DNA复制过程 以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。
2023-06-30 04:52:315

在DNA复制过程中,后随链是怎样合成的?

这个不是一两句话 就能说清的...我这有PPT 很详细,需要的M我 1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质.原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应.ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环.所以,ssbDNA蛋白只保持单链的存在,不起解旋作用. (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA.这种解链酶分解ATP的活性依赖于单链DNA的存在.如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动.复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的.故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA. (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等.一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链.两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成.因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段. 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同.所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题.为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型.1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA.延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物.另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA.一般说,原核生物的冈崎片段比真核生物的长.深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制. 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链.对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去.对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与.后随链的引发过程由引发体来完成.引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体.引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止.由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA..
2023-06-30 04:52:471

如何分离分子量相同的单链DNA和单链RNA

果单链的dna与rna分子量相同,那么他们的链长肯定不同,所带电荷也不同。这样,琼脂糖凝胶电泳就能将其分离。然后提取出来就行了方法2将其分为两份,一份用dna酶充分消化,一份用rma酶充分消化,得到的不就是一份rna,一份dna吗?这是分离方法,希望我的回答对您有所帮助
2023-06-30 04:53:083

什么是DNA复制的三大关键因子?

参与DNA复制的酶及其蛋白质因子:1,拓扑异构酶,作用:帮助解开复制叉前后的超螺旋结构。2,DNA解旋酶,作用:解开螺旋。3,Rep蛋白,作用:帮助解开双螺旋结构。4,引物合成酶,作用:催化RNA引物合成并与DNA链互补的反应。5,单链结合蛋白,作用:稳定单连区。6,DNA聚合酶Ⅰ,作用:消除引物,填满裂缝。7,DNA聚合酶Ⅲ,作用:合成DNA。8,DNA连接酶,作用:连接DNA末端。9,RNA聚合酶,作用:沿DNA模板转录一短的RNA分子。扩展资料DNA复制过程:(1)DNA双螺旋的解旋DNA在复制的时候,在DNA解旋酶的作用下,双链首先解开,形成了复制叉,而复制叉的形成则是由多种蛋白质和酶参与的较复杂的复制过程1,单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)ssbDNA蛋白是较牢固结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白和DNA结合时表现出协同效应:如果第一个ssbDNA蛋白结合到DNA上去能力为1,第二个的结合能力可高达103;真核生物细胞里的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白作用是保证解旋酶解开的单链在复制完成前能保持单链结构,以四聚体的形式存在于复制叉处,等待单链复制后才脱下来,重新循环。因此,ssbDNA蛋白仅保持单链的存在,是不起解旋作用。2,DNA解链酶(DNA helicase)DNA解链酶可以通过水解ATP获得能量以解开双链DNA。这一种解链酶分解ATP的活性依赖于单链DNA的存在。若双链DNA中有单链末端或切口,则DNA解链酶能首先结合在这一部分,然后逐步向双链的方向移动。复制时,大部分DNA解旋酶沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动。因而推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。3,DNA解链过程DNA在复制前不仅为双螺旋而且处于超螺旋状态,而超螺旋状态的存在为解链前的必须结构状态,参与解链的除解链酶外有一些特定蛋白质,比如大肠杆菌中的Dna蛋白等。一旦DNA局部双链被解开,就必须有ssbDNA蛋白以稳定解开单链,保证此局部不会恢复为双链。两条单链DNA复制的引发过程是有所差异,可是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA合成。因此前导链和后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去、不形成冈崎片段、后者则随着复制叉的出现、不断合成长约2—3kb的冈崎片段。(2)冈崎片段与半不连续复制因为DNA的两条链是反向平行的,所以在复制叉附近解开的DNA链,一条为5"—〉3"方向,另一条为3"—〉5"方向,两个模板极性是不同。所有已知DNA聚合酶合成方向均为5"—〉3"方向,不为3"—〉5"方向,所以无法解释DNA的两条链同时进行复制的问题。解释DNA两条链各自模板合成子链等速复制现象,日本的学者冈崎(Okazaki)等人提出了DNA的半不连续复制(semidiscontinuous replication)模型。在1968年,冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性之后用超离心方法得到了许多3H标记的,被后人称作为冈崎片段的DNA。延长标记时间之后,冈崎片段可转变为成熟的DNA链,所以这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程里首先合成较小的片段,即用DNA连接酶温度敏感突变株进行的试验,在连接酶不起作用的温度中,便产生大量小DNA片段积累,表明DNA复制过程里至少有一条链首先合成较短的片段,之后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物长。深入研究还可证明,前导链的连续复制与滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。(3)端粒和端粒酶在1941年,美籍印度人麦克林托克(Mc Clintock)就提出端粒(telomere)的假说,指出染色体末端必然存在一种特殊结构——端粒。已知染色体端粒的作用至少有2:a.保护染色体末端免受损伤,使染色体保持稳定;b. 与核纤层相连,使染色体得以定位。参考资料来源百度百科-DNA复制
2023-06-30 04:53:151

DNA复制需要哪些酶和蛋白质因子?

  参与复制主要的酶和蛋白质因子介绍如下:  (1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。  ②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。  (2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。  (3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。  (4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。  (5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。  (6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。  (7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。
2023-06-30 04:53:311

dna复制中若出现错误,对生物就有害 为什么不对

DNA复制过程中如果出错,有可能导致某些基因发生突变,对于生物来说,发生基因突变如果再导致性状的改变对生物大多时候是不利的。但这个改变并不是绝对不利的,基因突变有可以使生物出现更适应环境的性状。所以,DAN复制中若出现错误,对生物就有害,这句话是不对的。扩展资料:DNA双螺旋的解旋DNA在复制的时候,在DNA解旋酶的作用下,双链首先解开,形成了复制叉,而复制叉的形成则是由多种蛋白质和酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein,ssbDNA蛋白)ssbDNA蛋白是较牢固结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白和DNA结合时表现出协同效应:如果第一个ssbDNA蛋白结合到DNA上去能力为1,第二个的结合能力可高达103;真核生物细胞里的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白作用是保证解旋酶解开的单链在复制完成前能保持单链结构,以四聚体的形式存在于复制叉处,等待单链复制后才脱下来,重新循环。因此,ssbDNA蛋白仅保持单链的存在,是不起解旋作用。(2)DNA解链酶(DNA helicase)DNA解链酶可以通过水解ATP获得能量以解开双链DNA。这一种解链酶分解ATP的活性依赖于单链DNA的存在。若双链DNA中有单链末端或切口,则DNA解链酶能首先结合在这一部分,然后逐步向双链的方向移动。复制时,大部分DNA解旋酶沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动。因而推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程DNA在复制前不仅为双螺旋而且处于超螺旋状态,而超螺旋状态的存在为解链前的必须结构状态,参与解链的除解链酶外有一些特定蛋白质,比如大肠杆菌中的Dna蛋白等。一旦DNA局部双链被解开,就必须有ssbDNA蛋白以稳定解开单链,保证此局部不会恢复为双链。两条单链DNA复制的引发过程是有所差异,可是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA合成。因此前导链和后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去、不形成冈崎片段、后者则随着复制叉的出现、不断合成长约2—3kb的冈崎片段。参考资料:DNA复制_百度百科
2023-06-30 04:53:413

在细胞中,核外有无参与DNA合成的酶,为什么

核外有参与DNA合成的酶。参与DNA合成主要的酶和蛋白质因子介绍如下:(1)DNA聚合酶:①原核细胞:以大肠杆菌为例,已发现DNA聚合酶Ⅰ,Ⅱ和Ⅲ,都是多功能酶,既有5"→3"聚合酶活性,又有3"→5"外切酶活性,DNA聚合酶Ⅰ还有5"→3"外切酶活性。DNA聚合酶Ⅰ的主要功能是修复DNA的损伤,在复制中还能切除RNA引物并填补留下的空隙。DNA聚合酶Ⅱ的作用是损伤修复。DNA聚合酶Ⅲ是DNA的复制酶。新近研究发现的DNA聚合酶Ⅳ和Ⅴ,它们涉及DNA的错误倾向修复。②真核细胞:DNA聚合酶α,β,γ,δ和ε,其中DNA聚合酶α和δ真正具有合成新链的复制作用;β和ε参与DNA的损伤修复,γ负责线粒体DNA的复制。(2)引物合成酶和引发体:引物合成酶又称引发酶,催化RNA引物的合成,该酶作用时需与另外的蛋白结合形成引发体才具有催化活性。(3)DNA连接酶:催化双链DNA一条链上切口处相邻5"-磷酸基和3"-羟基生成磷酸二酯键的酶。连接酶作用的过程中,在原核细胞中以NAD+提供能量,在真核细胞中以ATP提供能量。(4)DNA解螺旋酶:催化:DNA双螺旋解链的酶。(5)DNA单链结合蛋白(SSB):与DNA分开的单链结合,起稳定DNA的单链、阻止复性和保护单链不被核酸酶降解的作用。(6)拓扑异构酶Ⅰ:消除DNA的负超螺旋,改变DNA的超螺旋数。(7)拓扑异构酶Ⅱ:引入负超螺旋,消除复制叉前进带来的扭曲张力。
2023-06-30 04:54:273

DNA 复制是从多个起点同时复制吗

还是晕是错的,不过原因楼上的都没有讲正确真核生物的DNA复制是多个起点的,同时有很多复制酶复合体结合在一条DNA上,多处开始,一起复制;所以我们才会复制的那么快(我们的DNA链是很长的,却只用几分钟)但是原核生物的DNA复制时一个起点的,由于是这样,所以它又被叫做θ复制,因为复制的时候形状很像;原核的DNA比较短,所以没有必要至于说到楼上有几位提到的后随链的复制中,冈崎片断的合成,这个确实是分开合成,后来再连接的,但是这个不叫多起点复制的;因为从头到尾这段只有一个复制叉在工作
2023-06-30 04:54:367

DNA的双螺旋结构模型,用自己的话解释怎么说?

你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。DNA的复制过程(一)DNA的半保留复制Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。(二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。(三)DNA复制过程 以原核生物DNA复制过程予以简要说明1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。(四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。
2023-06-30 04:55:001

为什么DNA聚合酶需要单链结合蛋白和RNA聚合酶不需要

这个问得好……我觉得主要是因为,RNA的转录量很多,而且RNA酶是没有修复功能的,而复制有。前者错误几率比后者大得多。DNA复制要求十分精细,而转录因为量很大,所以可以弥补。我想降解可能也是和这个类似。
2023-06-30 04:55:081

参与DNA复制的主要有哪些酶类?

参与DNA复制的主要酶类有:DNA聚合酶、拓扑异构酶、解旋酶、单链结合蛋白、引物酶、DNA连接酶。1、DNA聚合酶:催化核苷酸之间生成磷酸二酯键,也具有一定的校正功能;2、拓扑异构酶:催化DNA超螺旋解开,使之变为双螺旋;3、解旋酶:解开DNA双链,使之变为单链;4、单链结合蛋白:和单链DNA结合,使之变为能够作为复制模板的稳定单链;5、引物酶:以解旋后的单链DNA为模板,催化合成一小段带有3'-OH的RNA;6、DNA连接酶:催化DNA双链中的一条单链缺口处游离的3'末端-OH与5'末端磷酸形成磷酸二酯键,从而把两段相邻的DNA链连成完整的链。参考资料来源:百度百科-DNA复制
2023-06-30 04:55:271

DNA复制过程中酶与蛋白因子作用的先后顺序?

先是酶的作用.再在酶的作用下再蛋白因子
2023-06-30 04:55:412

生物什么是DNA的双向复制,不懂啊.

DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。
2023-06-30 04:55:492

【核酸酶】的意思是什么?【核酸酶】是什么意思?

【核酸酶】的意思是什么?【核酸酶】是什么意思? 【核酸酶】的意思是: 核酸酶催化核酸水解生成核苷酸及多核苷酸的一类酶的总称。根据其底物的不同,可分为*核糖核酸酶和*脱氧核糖核酸酶两类。《辞海:1999年缩印本(音序)2》第824页(54字)【汉语词典+现代汉语词典+汉语辞海+国语辞典】累计收录汉语词条74万,繁简版+文字扫描版同步;全文检索,支持反查;同时提供 打包下载。 核酸酶是什么意思 核酸酶 催化核酸水解生成核苷酸及多核苷酸的一类酶的总称。根据其底物的不同,可分为*核糖核酸酶和*脱氧核糖核酸酶两类。 《辞海:1999年缩印本(音序)2》 第 824 页 (54字) 【汉语词典+现代汉语词典+汉语辞海+国语辞典】累计收录汉语词条74万,繁简版+文字扫描版同步;全文检索,支持反查;同时提供 打包下载。 用核酸酶造句 1.BAL 31核酸酶2.核酸酶水解核酸的酶,如核酸内切酶和核酸外切酶3.经单链特异性绿豆芽核酸酶(MBN)分别消化cccDNA及rcDNA样品;4.前进型外切核酸酶>
2023-06-30 04:56:091

什么是核酸酶

你好,很高兴为你解答:能够将聚核苷酸链的磷酸二酯键切断的酶,称为核酸酶。核酸酶属于水解酶,作用于磷酸二酯键的P-O 位置。核酸酶是在核酸分解的第一步中,作用于水解核苷酸之间的磷酸二酯键的一种核酸。在高等动植物中都有作用于磷酸二酯键的。不同来源的核酸酶,其专一性、作用方式都有所不同。有些核酸酶只能作用于RNA,称为核糖核酸酶(RNase),有些核酸酶只能作用于DNA,称为脱氧核糖核酸酶(DNase),有些核酸酶专一性较低,既能作用于RNA也能作用于DNA,因此统称为核酸酶。根据核酸酶作用的位置不同,又可将核酸酶分为核酸外切酶和核酸内切酶
2023-06-30 04:56:161

蛋白质与DNA的关系

蛋白质与DNA的关系主要有:1.DNA指导蛋白质的合成:DNA可以通过转录和翻译过程来控制蛋白质的合成。2.在真核生物细胞核中,DNA和蛋白质共同构成了染色体(或染色质)。3.DNA的复制、表达等过程需要蛋白质的参与(比如酶类)。
2023-06-30 04:44:004