- ardim
-
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限。一元函数,一个y对应一个x,导数只有一个。二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导。
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y", f"(x), dy/dx, df(x)/dx。导函数简称导数。
扩展资料
一.早期导数概念----特殊的形式
大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f"(A)。
二.17世纪----广泛使用的“流数术”
17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三.19世纪导数----逐渐成熟的理论
1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四.实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
参考资料:导数的百度百科偏导数的百度百科
- tt白
-
一、定义不同
导数,是对含有一个自变量的函数进行求导。
偏导数,是对含有两个自变量的函数中的一个自变量求导。
二、几何意义不同
函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 f"x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f"y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f"x(x,y) 与 f"y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
三、求法不同
导数
1、直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2、高阶导数的运算法则:
3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f"x(x0,y0) 与 f"y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
扩展资料:
幂函数同理可证。
导数说白了它其实就是曲线一点切线的斜率,函数值的变化率。
上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。
设y=x/x,若这里让x趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1。
连续不可导的曲线
例如,魏尔斯特拉斯函数(Weierstrass function)就是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。
魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯(Karl Theodor Wilhelm Weierstrass,1815–1897)。历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。
许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。
参考资料:百度百科——导数
参考资料:百度百科——偏导数
- 可可科科
-
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话).
一元函数,一个y对应一个x,导数只有一个.
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导.
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了
- u投在线
-
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话)。
一元函数,一个y对应一个x,导数只有一个。
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导。
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了。
- 不白九百
-
一、定义不同
导数,是对含有一个自变量的函数进行求导。
偏导数,是对含有两个自变量的函数中的一个自变量求导。
二、几何意义不同
函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 f"x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f"y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f"x(x,y) 与 f"y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
扩展资料:
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f"x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f"y(x0,y0)。
参考资料:百度百科-导数 百度百科-偏导数
- 安徽路人假
-
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话).
一元函数,一个y对应一个x,导数只有一个.
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导.
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了.
- 陶小凡
-
偏导数是只对其中一个变量求导数,物理几何意义是一个平面(平行于x或y或z轴)上的一条线
全导数是对各个变量求偏导后叠加
- 黑桃花
-
一、对象不同
导数是针对一个自变量进行求导,偏导数是针对两个或者多个变量进行求导。
二、求法不同
导数求法略(太常见)。偏导数求法是对一个自变量求导,另外一个变量看做常数。例如对x求偏导,即是对x求导,y看做常数,z看做复合函数,用复合函数求导法则。
- 西柚不是西游
-
偏导数主要是研究多元函数的导数,即多元函数因变量与其中一个自变量的的导数为偏导数。
- 床单格子
-
倒数是二位平面中某一点的斜率(切线),而偏导数是三维立体图形中某个曲面的切面。
- 莫妮卡住了
-
导数是只含一个自变量的方程中,当自变量有了一个很小的变化时函数的变化率.
偏导数是含有2个或者2个以上的自变量的方程中,当这些自变量中的其中一个产生了一个微小的变化并且另外的变量都不变时整个函数的变化率.
这两个的区别在于导数的概念是伴随着1维方程(就是只含有一个未知数的方程)存在的,偏导数是伴随着多维方程存在的.
- volcanoVol
-
我只说我的理解,导数可以将整个一元函数的变化率等概括完,因为一元函数仅仅只有两个方向的变化,而多元函数变化很多样,不是你所能概括完的,所以偏导数仅仅概括了一部分,并且是最简单的一部分。(概括你可以理解为解释)
我也才学而已,望大家指摘。