DNA图谱 / 问答 / 问答详情

嘌呤核苷酸合成的基本原料有

2023-07-02 08:33:18
共1条回复
阿啵呲嘚

嘌呤核苷酸合成的基本原料有:磷酸核糖,天冬氨酸,谷氨酸,甘氨酸,一碳单位和二氧化碳。

相关推荐

嘌呤核苷酸合成的交叉作用是什么

核酸的从头合成【定义】:通过利用一些简单的前体物,如 5-磷酸核糖,氨基酸,一碳单位及 CO2等,逐步合成核苷酸的过程称为从头合成途径(de novo synthesis)。嘌呤从头合成主要见于肝脏,其次为小肠和胸腺嘧啶从头合成主要在肝脏的胞液中进行。嘌呤的从头合成嘌呤核苷酸的从头合成主要在胞液中进行,可分为两个阶段:首先合成次黄嘌呤核苷酸(inosine monophosphate IMP);然后通过不同途径分别生成 AMP 和 GMP。u2611AMP的合成:① 5-磷酸核糖的活化;② 在活化的磷酸核糖基础上合成嘌呤环,IMP合成;③ 天冬氨酸的氨基与IMP相连生成腺苷酸代琥珀酸(adenylosuccinate),由腺苷酸代琥珀酸合成酶催化,GTP水解供能。④ 在腺苷酸代琥珀酸裂解酶作用下脱去延胡索酸生成AMP。u2611GMP的合成:1和2步如上③IMP由IMP脱氢酶催化,以NAD+为受氢体,氧化生成黄嘌呤核苷酸(xanthosine monophosphate,XMP)。④谷氨酰胺提供酰胺基取代 XMP中C2上的氧生成 GMP,此反应由GMP 合成酶催化,由ATP水解供能。嘌呤核苷酸从头合成的调节调节方式:反馈调节和交叉调节。u2611正性调节———两个关键酶的促进作用。PRPPK(磷酸核糖焦磷酸合成酶)和 GPAT(谷氨酰胺 PRPP 转酰胺基酶):可以被底物 ATP、5′-磷酸核糖和 PRPP促进其活性,增加 IMP 的合成(底物激活)。u2611反馈抑制:PRPP(磷酸核糖焦磷酸合成酶)可以被终产物 IMP、GMP、AMP 所抑制(产物抑制)。u2611交叉调节:由 ATP 促进 GMP 合成酶;由 GTP 促进腺苷酸代琥珀酸合成酶,增加 GTP 和 ATP 的合成。本调节对于维持 ATP 与 GTP 浓度的平衡有重要意义。u2611产物抑制:由 AMP 反馈抑制 ASS(腺苷酸代琥珀酸合成酶),由 GMP 反馈抑制 IMPD(次黄嘌呤脱氢酶)的活性所进行的反馈抑制来调节嘌呤核苷酸的从头合成。嘌呤核苷酸从头合成的调节细胞生物学——第十四章(一):细胞增殖调控【MPF(maturation- /mitosis- / M-phase-promoting factor)】★★★即(卵细胞)成熟促进因子,或细胞有丝分裂促进因子,也称M期促进因子,在细胞周期调控中起重要作用,由催化亚基CDK激酶和调节亚基Cyclin组成。它通过磷酸化细胞分裂所需的多种蛋白质诱导卵母细胞成熟,是一种蛋白激酶。【MPF 的作用】★★u2611核纤层蛋白磷酸化,核膜破裂。u2611组蛋白 H1 磷酸化,染色体凝集。u2611相关蛋白磷酸化,纺锤体形成。u2611P60c-src 蛋白磷酸化和 C-ab1 蛋白磷酸化,细胞骨架重排及细胞形态调整。【PCC(premature chromosome condensation)】★★★即早熟染色体凝缩,主要是指与 M期细胞融合的间期细胞(G1、S 和 G2)发生的形态各异的染色体凝缩。G1期 PCC 为细单线状(因DNA 未复制),S 期 PCC 为粉末状(因 DNA 由多个部位开始复制),G2期 PCC 为双线染色体状(说明 DNA 复制已完成)。M 期细胞中可能存在细胞有丝分裂促进因子:M 期细胞可以诱导 PCC,暗示在 M 期细胞中可能存在一种诱导染色体凝缩的因子,称为细胞有丝分裂促进因子。周期蛋白★★★u2611【周期蛋白】:指含量随细胞周期进程变化而周期性变化的蛋白质,一般在细胞间期内积累,在细胞分裂期内消失,在下一个细胞周期中又重复这一消长现象。u2611【类型】:M 期周期蛋白:cyclinA、cyclinB(M 期才表现出调节功能)G1 期周期蛋白:cyclinC、cyclinD、cyclinE 等u2611【结构特点】:u2611均含有一段相当保守的氨基酸序列,称为周期蛋白框,其功能是介导周期蛋白与 CDK 结合M 期周期蛋白分子的近 N 端含有一段 9 个氨基酸残基组成的特殊序列,称为破坏框。破坏框后为一段约 40 个氨基酸组成的赖氨酸富集区。破坏框主要参与泛素依赖性 cyclinA 和 B的降解u2611G1 期周期蛋白分子中不含破坏框,但其 C 端含有一段特殊的 PEST 序列。据认为,PEST序列与 G1 期周期蛋白的更新有关。u2611【周期蛋白的周期性表达(哺乳动物)】u2611cyclinA 在 G1 期早期开始表达并逐渐积累,到达 G1/S 期交界处,含量达到最大值并一直维持在 G2/M 期。u2611CyclinB 则从 G1 期晚期开始表达并逐渐积累,到 G2 期后期阶段达到最大值并一直维持到M 期的中期阶段,然后迅速降解。u2611CyclinD 在细胞周期中持续表达。u2611CyclinE 在 M 期晚期和 G1 期早期开始表达并逐渐积累,到达 G1 期的晚期,期含量达到最大值,然后逐渐下降,到 G2 期的晚期,其含量降到最低值。普通生物学——植物对养分的吸收和运输植物根系对水分的吸收★★★u2611【吸水主要部位】根的主要吸水部位是根尖,根尖的主要吸水部位在根毛区。u2611【根系吸收水分的途径】①质外体途径水分通过细胞壁、细胞间隙而没有经过细胞质的移动过程。②跨膜途径水分连续地从细胞一侧进入,从另一侧出来,并依次跨膜进出细胞,最后进入植物体内部。③共质体途径共质体途径是指水分从一个细胞的细胞质通过胞间连丝移动到另一个细胞的细胞质,形成一个细胞质的连续体。u2611【根系吸水的方式与动力】①主动吸水a. 动力:主动吸水的动力是根压。b. 原理:根吸收的离子运送到内皮层内侧的中柱和木质部导管,使中柱和木质部导管中溶质的浓度升高而渗透势降低,水势下降。中柱细胞和导管中的水势低于皮层和土壤的水势时,土壤中的水分即沿着水势梯度从皮层进入本质部导管并向上输送。这种由干水势梯度使水分进入中柱并向上运愉的动力称为根压。②被动吸水a. 动力被动吸水的动力是蒸腾拉力。b. 原理水分蒸发时,细胞间隙的水层进入细胞壁的裂缝或微小孔道中并形成气-液交界面。由于水的表面张力而产生很大的张力或负压,致使细胞从邻近的细胞吸水,与叶脉相邻的细胞又从叶脉木质部的导管吸水,从而引起木质部导管的水势下降。
2023-07-01 21:16:492

嘌呤核苷酸从头合成途径首先合成的是

【答案】:B分析:嘌呤核苷酸的从头合成途径是指利用磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸的途径。嘌呤核苷酸合成部位在胞液,主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。所以选B。A选项 XMP黄嘌呤核苷酸B选项 IMP次黄嘌呤核苷酸C选项 GMP鸟嘌呤核苷酸D选项 AMP腺嘌呤核苷酸E选项 CMP胞嘧啶核苷酸。掌握“核苷酸代谢与调节”知识点。
2023-07-01 21:16:561

嘌呤核苷酸循环的特点

嘌呤核苷酸循环,指的是人体骨骼肌里面的一种氨基酸脱氨基的作用方法,也就是转氨耦联杯amv循环脱氧的作用。在做氨基的作用里,能够生成天冬氨酸和次磺嘌呤核苷酸。这样能够保持人体的腺嘌呤和鸟嘌呤核苷酸的水平保持平衡,这样能够保证核酸合成的需要,对人体具有比较重要的意义。体内核苷酸的合成有两条途径:①利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成核苷酸的过程,称为从头合成途径(denovosynthesis),是体内的主要合成途径。②利用体内游离碱基或核苷,经简单反应过程生成核苷酸的过程,称重新利用(或补救合成)途径(salvagepathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。嘌呤核苷酸的主要补救合成途径是嘌呤碱与5"-PRPP(5"-磷酸核糖焦磷酸)在磷酸核糖转移酶作用下形成嘌呤核苷酸。嘌呤核苷酸的从头合成早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)。随后,由Buchanan和Greenberg等进一步搞清了嘌呤核苷酸的合成过程。出人意料的是,体内嘌呤核苷酸的合成并非先合成嘌呤碱基,然后再与核糖及磷酸结合,而是在磷酸核糖的基础上逐步合成嘌呤核苷酸。嘌呤核苷酸的从头合成主要在胞液中进行,可分为两个阶段:首先合成次黄嘌呤核苷酸(inosinemonophosphateIMP);然后通过不同途径分别生成AMP和GMP。下面分步介绍嘌呤核苷酸的合成过程。从头合成的调节嘌呤核苷酸从头合成的调节从头合成是体内合成嘌呤核苷酸的主要途径。但此过程要消耗氨基酸及ATP。机体对合成速度有着精细的调节。在大多数细胞中,分别调节IMP,ATP和GTP的合成,不仅调节嘌呤核苷酸的总量,而且使ATP和GTP的水平保持相对平衡。IMP途径的调节主要在合成的前二步反应,即催化PRPP和PRA的生成。核糖磷酸焦磷酸激酶受ADP和GDP的反馈抑制。磷酸核糖酰胺转移酶受到ATP、ADP、AMP及GTP、GDP、GMP的反馈抑制。ATP、ADP和AMP结合酶的一个抑制位点,而GTP、GDP和GMP结合另一抑制位点。因此,IMP的生成速率受腺嘌呤和鸟嘌呤核苷酸的独立和协同调节。此外,PRPP可变构激活磷酸核糖酰胺转移酶。第二水平的调节作用于IMP向AMP和GMP转变过程。GMP反馈抑制IMP向XMP转变,AMP则反馈抑制IMP转变为腺苷酸代琥珀酸,从而防正生成过多AMP和GMP。此外,腺嘌呤和鸟嘌呤的合成是平衡。GTP加速IMP向AMP转变,而ATP则可促进GMP的生成,这样使腺嘌呤和鸟嘌呤核苷酸的水平保持相对平衡,以满足核酸合成的需要。
2023-07-01 21:17:131

简述嘌呤核苷酸循环的过程。

【答案】:氨基酸与α-酮戊二酸经转氨基生成α-酮酸和谷氨酸,后者与草酰乙酸经AST催化生成α-酮戊二酸和天冬氨酸,后者与IMP生成腺苷酸代琥珀酸,腺苷酸代琥珀酸裂解为延胡索酸和AMP,AMP在腺苷酸脱氨酶催化下脱氨基并生成IMP所构成的循环称为嘌呤核苷酸循环。
2023-07-01 21:17:201

嘌呤核苷酸从头合成的原料

甘氨酸、天冬氨酸、谷氨酰胺、CO2、一碳单位等。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程。漂呤多肽链从头合成指的是在肝脏和结肠黏膜等人体器官中,以硫酸铵核糖和甘氨酸等物质为原材料开展生成的全过程。漂呤多肽链的关键作用是参加植物体内的微生物化学变化,而且对身体的功能一切正常运行具有尤为重要的功效,另外漂呤多肽链对人体生物学具备一定的缓冲作用。关键反映流程分成两个阶段:最先生成次黄嘌呤多肽链(IMP),随后IMP再转化成腺嘌呤多肽链(AMP)与鸟嘌呤多肽链(GMP)。 漂呤环各原素来源于以下:N1由天冬氨酸出示,C2由N10-甲酰FH4出示、C8由N5,N10-甲炔FH4出示,N3、N9由谷氨酰胺出示,C4、C5、N7由甘氨酸出示,C6由CO2出示。
2023-07-01 21:17:261

核苷酸嘌呤含量

题主是不是想问“正常人核苷酸嘌呤含量可以是多少”?600~1000毫克/日。嘌呤在体内以嘌呤核苷酸的形式存在,是嘌呤核苷酸合成的主要物质,在供应能量、代谢调节及合成辅酶等方面起着十分重要的作用,正常人嘌呤摄入量可多达600~1000毫克/日,。
2023-07-01 21:17:451

嘌呤核苷酸分解部位

正确答案:E解析:嘌呤核苷酸分解代谢主要发生在肝,代谢终产物是尿酸。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤代谢异常导致尿酸过多引起痛风症。别嘌呤与次黄嘌呤结构类似,可以抑制黄嘌呤氧化酶,消耗PRPP,减少嘌呤核苷酸生产,抑制尿酸生成,治疗痛风症。
2023-07-01 21:17:521

嘌呤核苷酸与嘧啶核苷酸的从头合成有何区别

?嘌呤核苷酸与嘧啶核苷酸从头合成过程中,嘌呤核苷酸合成的原料是天冬氨酸、谷氨酰胺、甘氨酸、CO2、一碳单位和PRPP。在5-磷酸核糖分子基础上逐步加合先形成嘌呤环,再逐步形成IMP,再转变成AMP?、GMP。主要在肝脏,其次是小肠黏膜和胸腺细胞合成。终产物IMP?AMP?GMP抑制PRPP合成酶和PRPP酰胺转移酶.?嘧啶核苷酸的合成原料是天冬氨酸、谷氨酰胺、CO2、PRPP、一碳单位、(仅胸苷酸合成),在形成氨基甲酰磷酸的基础上先形成嘧啶环,再与磷酸核糖结合形成嘧啶核苷酸,其产物UMP?反馈抑制氨基甲酰磷酸合成酶II。PRPP合成酶即影响嘌呤核苷酸合成也影响嘧啶核苷酸合成。?
2023-07-01 21:17:591

什么是嘌呤核苷酸循环,名词解释定义是什么?

嘌呤核苷酸循环指骨骼肌和心肌中存在的一种氨基酸脱氨基作用方式,即转氨耦联AMP循环脱氨作用。转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸。后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程。
2023-07-01 21:18:083

嘌呤核苷酸的分解代谢产物(  )。

【答案】:E嘌呤核苷酸的分解代谢产物是尿酸。A项,尿素是氨的代谢产物。B项,胺是氨基酸脱羧的产物。C项,肌酸由甘氨酸、精氨酸及甲硫氨酸合成。D项,B-丙氨酸是胞嘧啶、尿嘧啶的代谢产物。
2023-07-01 21:18:341

可作为嘌呤核苷酸合成原料的氨基酸是什么

嘌呤核苷酸合成的最初原料为5-磷酸核糖焦磷酸;中间产物是次黄嘌呤核苷酸;加入的氨基酸是天冬氨酸,甘氨酸,谷氨酰胺。
2023-07-01 21:18:421

核苷酸的合成有那两条途径

嘌呤核苷酸的合成代谢 体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。 1.嘌呤核苷酸的从头合成 肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。 2.嘌呤核苷酸的补救合成 反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。
2023-07-01 21:19:033

嘌呤是什么?

嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。海鲜,动物的肉的嘌呤含量都比较高,所以,有痛风的病人除用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。
2023-07-01 21:19:322

嘌呤是什么来的,哪些东西里面含有它

摘自“百度百科”,供参考。嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在。嘌呤的来源分为内源性嘌呤80%来自核酸的氧化分解,外源性嘌呤主要来自食物摄取,占总嘌呤的20%。常见的高嘌呤食物(每100克食物含嘌呤150~1000毫克):(1)豆类及蔬菜类:黄豆、扁豆、紫菜、香菇。(2)肉类:家禽家畜的肝、肠、心、肚与胃、肾、肺、脑、胰等内脏,肉脯,浓肉汁,肉馅等。(3)水产类:鱼类(鱼皮、鱼卵、鱼干以及沙丁鱼、凤尾鱼等海鱼)、贝壳类、虾类。(4)其它:酵母粉、各种酒类,尤其是啤酒。
2023-07-01 21:19:401

什么是嘌呤核苷酸补救合成途径?有何意义?

大多数细胞更新其核酸(尤其是RNA)过程中,要分解核酸产生核苷和游离碱基。细胞利用游离碱基或核苷重新合成相应核苷酸的过程称为补救合成。 生理意义:一方面在于可以节省能量及减少氨基酸的消耗。另一方面对某些缺乏主要合成途径的组织,如人的白细胞和血小板、脑、骨髓、脾等,具有重要的生理意义。补救途经能生成AMP、GMP等,可转化为ADP、ATP和GDP、GTP。 补救合成途径salvage pathway 又称再利用途径,再生途径.适应于生物体的需要,将已分解的生物体的一部分物质加以利用,再次进行该物质的生物合成的一个途径,是与从头合成(新生途径)(denovo pathway)相对应的术语。 例如,核苷酸生物合成时,是从核酸分解产物的碱基和核苷在磷酸核糖基转移酶和核苷酸酶的作用下合成的,是又在新的核酸分子的合成中起作用的途径。大多数细胞更新其核酸(尤其是RNA)过程中,要分解核酸产生核苷和游离碱基。细胞利用游离碱基或核苷重新合成相应核苷酸的过程称为补救合成。与从头合成不同,补救合成过程较简单,消耗能量亦较少。由二种特异性不同的酶参与嘌呤核苷酸的补救合成。腺嘌呤磷酸核糖转移酶催化PRPP与腺嘌呤合成AMP.人体由嘌呤核苷的补救合成只能通过腺苷激酶催化,使腺嘌呤核苷生成腺嘌呤核苷酸。嘌呤核苷酸补救合成是一种次要途径。其生理意义一方面在于可以节省能量及减少氨基酸的消耗。另一方面对某些缺乏主要合成途径的组织,如人的白细胞和血小板、脑、骨髓、脾等,具有重要的生理意义。
2023-07-01 21:19:492

生物化学中嘌呤核苷酸的从头合成指什么

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程. 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP). 嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供. 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的. 反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶.PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性.IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反. 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP.
2023-07-01 21:20:251

简述嘌呤核苷酸的分解代谢过程

嘌呤核苷酸分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。1.从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。2.补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。3.自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。.
2023-07-01 21:20:451

体内嘌呤核苷酸的生物合成包括 和 两条途径。

体内嘌呤核苷酸的合成有两条途径:1利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤核苷酸的过程,称为从头合成途径(denovosynthesis),是体内的主要合成途径。2利用体内游离嘌呤或嘌呤核苷,经简单反应过程生成嘌呤核苷酸的过程,称重新利用(或补救合成)途径(saluagepathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。
2023-07-01 21:20:531

嘌呤核苷酸循环的意义

参与心肌、骨骼肌等组织中氨基酸的联合脱氨基作用。嘌呤核苷酸循环指骨骼肌中存在的一种氨基酸脱氨基作用方式。转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸,后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程.原因是骨骼肌中L-谷氨酸脱氢酶活性低的缘故.
2023-07-01 21:21:161

体内嘌呤核苷酸的生物合成包括 和 两条途径。

体内嘌呤核苷酸的合成有两条途径:1利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤核苷酸的过程,称为从头合成途径(denovosynthesis),是体内的主要合成途径。2利用体内游离嘌呤或嘌呤核苷,经简单反应过程生成嘌呤核苷酸的过程,称重新利用(或补救合成)途径(saluagepathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。
2023-07-01 21:21:251

什么是嘌呤核苷酸循环,名词解释定义是什么?

参与心肌、骨骼肌等组织中氨基酸的联合脱氨基作用。嘌呤核苷酸循环指骨骼肌中存在的一种氨基酸脱氨基作用方式。转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸,后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程.原因是骨骼肌中L-谷氨酸脱氢酶活性低的缘故.
2023-07-01 21:21:342

知识点:嘌呤代谢嘌呤核苷酸的分解代谢产物

【答案】:E嘌呤核苷酸的分解代谢产物是尿酸。尿素 是氨的代谢产物。胺是氨基酸脱羧的产物。肌 酸是由甘氨酸精氨酸S-腺苷蛋氨酸合成。B-丙氨酸是胞嘧啶尿嘧啶的代谢产物。
2023-07-01 21:21:521

知识点:嘌呤代谢嘌呤核苷酸的分解代谢产物

【答案】:E嘌呤核苷酸的分解代谢产物是尿酸。尿素 是氨的代谢产物。胺是氨基酸脱羧的产物。肌 酸是由甘氨酸精氨酸S-腺苷蛋氨酸合成。B-丙氨酸是胞嘧啶尿嘧啶的代谢产物。
2023-07-01 21:21:591

嘌呤环元素来源口诀

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及co2等为原料合成嘌呤核苷酸的过程。 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(imp),然后imp再转变成腺嘌呤核苷酸(amp)与鸟嘌呤核苷酸(gmp)。 嘌呤环各元素来源如下:n1由天冬氨酸提供,c2由n10-甲酰fh4提供、c8由n5,n10-甲炔fh4提供,n3、n9由谷氨酰胺提供,c4、c5、n7由甘氨酸提供,c6由co2提供。 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。 反应过程中的关键酶包括prpp酰胺转移酶、prpp合成酶。prpp酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。imp、amp及gmp使活性形式转变成无活性形式,而prpp则相反。 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的prpp合成酶和prpp酰胺转移酶活性可被合成产物imp、amp及gmp等抑制;在形成amp和gmp过程中,过量的amp控制amp的生成,不影响gmp的合成,过量的gmp控制gmp的生成,不影响amp的合成;imp转变成amp时需要gtp,而imp转变成gmp时需要atp。
2023-07-01 21:22:051

嘌呤核苷酸从头合成过程第一个含嘌呤环的核苷酸是什么

在嘌呤核苷酸从头合成途径中合成的第一个嘌呤核苷酸是 A.AMPB.GMPC.XMPD.ADPE.IMP收起答案E 在嘌呤核苷酸从头合成途径中合成的第一个嘌呤核苷酸是 A.AMPB.GMPC.XMPD.ADPE.IMP收起答案E 在嘌呤核苷酸从头合成途径中合成的第一个嘌呤核苷酸是 A.AMPB.GMPC.XMPD.ADPE.IMP收起答案E 在嘌呤核苷酸从头合成途径中合成的第一个嘌呤核苷酸是 A.AMPB.GMPC.XMPD.ADPE.IMP收起答案E
2023-07-01 21:22:121

嘌呤核苷酸循环 名词解释?

嘌呤核苷酸循环指骨骼肌和心肌中存在的一种氨基酸脱氨基作用方式,即转氨耦联AMP循环脱氨作用。转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸。后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程。
2023-07-01 21:22:211

嘌呤核苷酸循环的产物

嘌呤核苷酸循环嘌呤核苷酸循环指骨骼肌和心肌中存在的一种氨基酸脱氨基作用方式,即转氨耦联AMP循环脱氨作用。.转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸,后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程.
2023-07-01 21:22:561

急!!!生物化学。从头合成途径中嘌呤环的元素来源

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及co2等为原料合成嘌呤核苷酸的过程。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(imp),然后imp再转变成腺嘌呤核苷酸(amp)与鸟嘌呤核苷酸(gmp)。嘌呤环各元素来源如下:n1由天冬氨酸提供,c2由n10-甲酰fh4提供、c8由n5,n10-甲炔fh4提供,n3、n9由谷氨酰胺提供,c4、c5、n7由甘氨酸提供,c6由co2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括prpp酰胺转移酶、prpp合成酶。prpp酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。imp、amp及gmp使活性形式转变成无活性形式,而prpp则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的prpp合成酶和prpp酰胺转移酶活性可被合成产物imp、amp及gmp等抑制;在形成amp和gmp过程中,过量的amp控制amp的生成,不影响gmp的合成,过量的gmp控制gmp的生成,不影响amp的合成;imp转变成amp时需要gtp,而imp转变成gmp时需要atp。
2023-07-01 21:23:041

嘌呤核苷酸的代谢终产物是

【答案】:D嘌呤核苷酸的分解代谢主要发生在肝、小肠及肾,代谢终产物是尿酸。
2023-07-01 21:23:171

海天黄豆酱含嘌呤吗

海天黄豆酱含嘌呤。黄豆是中等嘌呤食物宜限量食用。每100克食物中含50~150毫克嘌呤的为中嘌呤:肉类:鸡肉、猪肉、牛肉、羊肉、鱼、虾、螃蟹;豆类:黑豆、绿豆、红豆、花豆、碗豆、菜豆、豆干、豆腐以及笋干、金针、银耳、花生、腰果、芝麻等。如下图嘌呤是存在人体内的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。海鲜,动物的肉的嘌呤含量都比较高,所以,有痛风的病人除用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。扩展资料:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。1、嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。2、嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。参考资料来源:百度百科-嘌呤食物参考资料来源:百度百科-嘌呤
2023-07-01 21:23:261

高嘌呤食物中有肉馅,猪肉肉馅是猪肉做成的,而猪肉不是高嘌呤的,那么在做肉馅过程中嘌呤是哪里来的?

嘌呤定义:一类带碱性有两个相邻的碳氮环的含氮化合物,是核酸的组成成分。DNA和RNA中的嘌呤组成均为腺嘌呤和鸟嘌呤。此外,核酸中还发现有许多稀有嘌呤碱。 嘌呤,是存在人体内的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。海鲜,动物的肉的嘌呤含量都比较高,所以,有痛风的病人除用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。 食物含量每1000克中/毫克嘌呤含量少或不含嘌呤的食品:精白米、玉米、精白面包、馒头、面条、通心粉、苏打饼干、卷心菜、胡萝卜、芹菜、黄瓜、茄子、甘蓝、莴苣、南瓜、西红柿、萝卜、山芋、土豆、泡菜、咸菜、龙眼、卷心菜、各种蛋类、牛奶、炼乳、酸奶、麦乳精、各种水果及干果类、糖果、各种饮料包括汽水、茶、巧克力、咖啡、可可等,各种油脂、花生酱、花生、杏仁、核桃、果酱等。每100克中嘌呤含量<75毫克的食品:芦笋、菜花、四季豆、青豆、豌豆、菜豆、菠菜、蘑菇、麦片、鲱鱼、鲥鱼、鲑鱼、金枪鱼、白鱼、龙虾、蟹、牡蛎、鸡、火腿、羊肉、牛肉汤、麦麸、面包等。每100克中嘌呤含量75毫克~150毫克的食品:扁豆、鲤鱼、鲈鱼、梭鱼、鲭鱼、贝壳类水产、熏火腿、猪肉、牛肉、牛舌、小牛肉、鸡汤、鸭、鹅、鸽子、鹌鹑、野鸡、兔肉、鹿肉、肉汤、肝、火鸡、鳗鱼、鳝鱼。每100克中嘌呤含量150毫克~1000毫克的食品:胰脏825mg、凤尾鱼363mg、沙丁鱼295mg、牛肝233mg、牛肾200mg、脑195mg、肉汁160~400mg 。三类嘌呤根据食物中嘌呤的含量,我们可将食物分为低嘌呤食物(每100克食物含嘌呤小于25毫克)、中等嘌呤食物(每100克食物含嘌呤25~150毫克)和高嘌呤食物(每100克食物含嘌呤150~1000毫克)三类。[3]1.常见的低嘌呤食物(每100克食物含嘌呤小于25毫克):(1)主食类:米、麦、面类制品、淀粉、高粱、通心粉、马铃薯、甘薯、山芋等。(2)奶类:牛奶、乳酪、冰琪琳等。(3)荤食:蛋类以及猪血、鸡鸭血等。(4)蔬菜类:大部分蔬菜均属低嘌呤食物。(5)水果类:水果基本上都属于低嘌呤食物,可放心食用。(6)饮料:苏打水、可乐、汽水、矿泉水、茶、果汁、咖啡、麦乳精、巧克力、可可、果冻等。(7)其它:酱类、蜂蜜。油脂类(瓜子、植物油、黄油、奶油、杏仁、核桃、榛子)、薏苡仁、干果、糖、蜂蜜、海蜇、海藻、动物胶或琼脂制的点心及调味品。2.常见的中等嘌呤食物(每100克食物含嘌呤25~150毫克:(1)豆类及其制品:豆制品(豆腐、豆腐干、乳豆腐、豆奶、豆浆)、干豆类(绿豆、红豆、黑豆、蚕豆)、豆苗、黄豆芽。(2)肉类:家禽家畜肉。(3)水产类:草鱼、鲤鱼、鳕鱼、比目鱼、鲈鱼、螃蟹、鳗鱼、鳝鱼、香螺、鲍鱼、鱼丸、鱼翅。(4)蔬菜类:菠菜、笋(冬笋、芦笋、笋干)、豆类(四季豆、青豆、菜豆、豇豆、豌豆)、海带、金针、银耳、蘑菇、菜花。(5)油脂类及其它:花生、腰果、芝麻、栗子、莲子、杏仁。3.常见的高嘌呤食物(每100克食物含嘌呤150~1000毫克):(1)豆类及蔬菜类:黄豆、扁豆、紫菜、香菇。(2)肉类:家禽家畜的肝、肠、心、肚与胃、肾、肺、脑、胰等内脏,肉脯,浓肉汁,肉馅等。(3)水产类:鱼类(鱼皮、鱼卵、鱼干以及沙丁鱼、凤尾鱼等海鱼)、贝壳类、虾类、海参。(4)其它:酵母粉、各种酒类,尤其是啤酒。 希望对你有用!
2023-07-01 21:24:144

关于嘌呤核苷酸的说法错误的是什么

嘌呤核苷酸的说法错误的是四氢叶酸是甲酰基供体。嘌呤核苷酸是磷酸核苷酸胺为构型,重氮丝氨酸是竞争性抑制剂,最先合成的嘌呤核苷酸是IMPE.IMP,与谷氨酰胺反应可生成GMP。
2023-07-01 21:24:261

什么叫 嘌呤代谢

  嘌呤,是存在人体内的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。  嘌呤(purine,又称普林)经过一系列代谢变化,最终形成的产物(2,6,8-三氧嘌呤)又叫尿酸。嘌呤的来源分为内源性嘌呤80%来自核酸的氧化分解,外源性嘌呤主要来自食物摄取,占总嘌呤的20%,尿酸在人体内没有什么生理功能,在正常情况下,体内产生的尿酸,2/3由肾脏排出,余下的1/3从肠道排出。  体内尿酸是不断地生成和排泄的,因此它在血液中维持一定的浓度。正常人每升血中所含的尿酸,男性为0.42毫摩尔/升以下,女性则不超过0.357毫摩尔/升。在嘌呤的合成与分解过程中,有多种酶的参与,由于酶的先天性异常或某些尚未明确的因素,代谢发生紊乱,使尿酸的合成增加或排出减少,结果均可引起高尿酸血症。当血尿酸浓度过高时,尿酸即以钠盐的形式沉积在关节、软组织、软骨和肾脏中,引起组织的异物炎症反应,成了引起痛风的祸根。而痛风又会引起关节肿大。 这个属于生物化学的范畴,希望以上内容对你有用!
2023-07-01 21:24:353

鸟嘌呤和腺嘌呤有啥区别?

一、分子结构不同1、鸟嘌呤:由一个嘧啶环和一个咪唑环稠和而成的,是嘌呤的一种,由碳和氮原子组成具有特征性双环结构,并与胞嘧啶(cytosine)以三个氢键相连。2、腺嘌呤:通过两个氢键与胸腺嘧啶结合。二、类型不同1、鸟嘌呤:是嘌呤类有机化合物。2、腺嘌呤:是一种含氮杂环衍生物。三、作用不同1、鸟嘌呤:鸟嘌呤不仅自身可以有多种异构体,还具有4种DNA碱基中最小的绝热电离势,以游离或结合态存在于海鸟粪中,是五种不同核碱中的其中之一,并同时存在于脱氧核醣核酸及核醣核酸中。2、腺嘌呤:腺嘌呤及其衍生物具有多种生化功能,参与细胞呼吸,参与合成能量丰富的三磷酸腺苷(ATP)、辅酶烟酰胺腺嘌呤二核苷酸(NAD)和黄素腺嘌呤二核苷酸(FAD)。它还参与蛋白质、DNA和RNA的合成。参考资料来源:百度百科-腺嘌呤百度百科-鸟嘌呤
2023-07-01 21:24:443

尿酸高是吃玉米须降下来的吗?

玉米须具有健脾利尿的功效,能将尿酸降下来,还能起到调节尿液酸碱度的作用,还能帮助排出尿酸。病人如果出现尿酸升高的情况,就会出现痛风的症状,所以不推荐单纯靠喝玉米须来控制尿酸,患者需要遵医嘱服用降尿酸的药物,比如非布司他等,将自己的尿酸控制在正常范围之内,避免痛风反复发作。平时要注意保持有规律的作息习惯玉米须有一定的降尿酸的功效。降尿酸的食物中有很多都是平时大家爱吃的,像玉米须能起到很好的降尿酸的作用,所以如果是有高尿酸血症的患者,一般会建议经常是吃玉米须泡水,起到降尿酸的辅助作用。如果是要正规的治疗高尿酸血症,还是要到内分泌科就诊,由医生开嘱降尿酸和抑制尿酸形成的药物来治疗。高尿酸可由人体嘌呤核苷酸及嘌呤类食物代谢产生,因此,病人要控制嘌呤类食品的摄入量,抑制黄嘌呤氧化酶的产生,从而降低尿酸的产生。在日常生活中要避免吃高嘌呤类或者是中嘌呤类的食物,不要吃动物内脏、肉类食物、酵母、紫菜、香菇、菠菜等。可通过促进尿酸排出的药物,也可以通过多喝水,碱化尿来促进尿酸的排泄 1、饮食治疗。饮食与尿酸高之间有着密不可分的关系,如果长期进食大肉类食物或是火锅类食物等,均会导致体内的尿酸逐渐升高,给身体健康带来不利的影响。可见饮食是非常重要的,应当坚持清淡的饮食原则,多补充绿叶的蔬菜或是粗粮等,均可以降低体内的尿酸。2、合理使用降尿酸药物。临床方面治疗尿酸高的药物有很多,比如苯溴马隆、非布司他、别嘌呤醇等,都可以抑制尿酸的生成,还可以促进尿酸的排泄。医生会结合患者的身体状况,选择适宜的降尿酸药物。遵医嘱用药可以将尿酸控制在正常范围,缓解患者尿酸过高的症状。3、碱化尿液治疗。发病期间多进食一些碳酸氢钠片,能够有效碱化尿液,促使患者的尿液ph值控制在正常的范围内。注意在碱化尿液期间,应当大量饮水,适当进行一些有氧运动,可以改善体内的内分泌环境,有助于尿酸的降低。4、排尿酸功效茶。经常饮用降酸茶的话,可以提高肾脏对于尿酸的排泄能力,改善尿酸高患者的病情。尿酸高的危害性严重,困扰到较多的患者,为此尿酸高需要及时处理,以免给身体健康带来更大的危害。对于病情严重的患者,需遵医嘱服用治疗药物,这样才能控制体内的尿酸,缓解患者的不适。日常饮食方面以清淡为主,不宜进食过于油腻的食物。
2023-07-01 21:25:361

嘌呤核苷酸分解的最终产物是什么

人体内嘌呤核苷酸分解代谢的最终产物是:腺嘌呤、脱氧核糖和磷酸。
2023-07-01 21:25:451

嘌呤核苷酸分解的终产物是

【答案】:B分析:体内嘌呤核苷酸的分解代谢终产物是尿酸。掌握“核苷酸代谢与调节”知识点。
2023-07-01 21:25:511

XMP什么核苷酸?

黄嘌呤核苷酸。这个物质是在生化第九版书里核苷酸代谢那一章里提到的
2023-07-01 21:26:016

ATP与腺嘌呤脱氧核苷酸的区别

ATP三磷酸腺苷结构简式A—P~P~P,P为磷酸分子,“~”为高能磷酸键腺嘌呤脱氧核苷酸由一份子五碳糖,一份子含氮碱基,一份子磷酸基团构成ATP断裂高能磷酸键,释放里面的能量供给生命活动需要腺嘌呤脱氧核苷酸是遗传物质DNA的构成单位之一。腺嘌呤核糖核苷酸是RNA分子构成单位之一.楼主也未免吝啬了点吧,0分....这都是自己打的。
2023-07-01 21:26:292

嘌呤核苷酸参与的核苷酸有

漂呤核苷酸由嘧啶环与咪挫环合并而成。嘌呤核苷酸是一种嘌呤碱的核苷酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸。四种核苷酸组成核酸,嘌呤核苷酸在循环中参与的物质有四种。
2023-07-01 21:26:361

核苷酸的抗代谢物对核苷酸代谢调节作用的机制是什么

嘌呤核苷酸的抗代谢物   ①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。   ②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。   ③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。
2023-07-01 21:26:441

核苷酸表示方法 比如鸟嘌呤脱氧核苷酸。。要全部8个用符号简示

鸟嘌呤脱氧核苷酸:dGMA腺嘌呤脱氧核苷酸:dAMA胞嘧啶脱氧核苷酸:dCMA胸腺嘧啶脱氧核苷酸:dTMA胞嘧啶核苷酸:CMA尿嘧啶核苷酸:UMA鸟嘌呤核苷酸:GMA腺嘌呤核苷酸:AMA
2023-07-01 21:26:521

关于嘌呤核苷酸的分解代谢描述错误的是

关于嘌呤核苷酸的分解代谢描述错误的是嘌呤碱最终的分解代谢产物不能随尿排出体外。嘌呤核苷酸是人体内构成核酸的基本单元之一,其分解代谢的目的是在维持人体正常代谢过程中,产生必需物质,如尿酸、氨基甲酸和二氧化碳,以及通过尿液和大便将代谢废物排出体外。嘌呤核苷酸的分解代谢主要发生在肝脏和肠道中,其代谢过程中涉及多种酶的参与。首先,ADE(腺苷脱酸酶)将腺苷酸水解为腺嘌呤酸,接着,GMP酶和IMP酶将腺苷酸分解为鸟嘌呤酸和肌苷酸,最终鸟嘌呤酸和肌苷酸被肝脏中的XO(氧化酶)氧化成为尿酸和氨基甲酸。尿酸是嘌呤代谢的最终代谢产物之一,在正常情况下通过肾脏滤过器从血液中排出,并通过尿液排泄出体外。当尿酸排泄受阻或产生过多时,尿酸就会在全身沉积,例如在关节中就可能形成痛风;在近端肾小管中沉积,就可能形成肾结石和尿酸性肾病等疾病。如果尿酸不能有效排除,就会导致尿酸血症,加重下尿路疾病的病情。嘌呤代谢相关疾病1、痛风:是嘌呤代谢紊乱所致的一种慢性关节病。当体内尿酸生成和排泄失衡时,尿酸便会在关节和软组织中沉积,形成痛风石,导致关节疼痛、炎症和肿胀等症状。2、尿酸性肾病:是由于尿酸在肾脏中沉积形成尿酸盐结晶,引起肾小管堵塞和肾间质炎症而导致的慢性肾脏病。该疾病临床表现主要为间歇性肉眼血尿、蛋白尿、肾功能不全等。3、尿酸性肾结石:与尿酸形成的结晶沉积在肾脏中,逐渐形成结石,堵塞尿路而引发的疼痛和血尿。4、肥胖病:肥胖是嘌呤代谢紊乱的一种表现形式,超重或肥胖与尿酸水平升高密切相关。肥胖者更容易发生尿酸盐的沉淀形成尿酸结晶,并导致尿酸代谢过程不正常。保持健康的饮食和生活习惯、合理使用药物、纠正代谢紊乱等方法,可以降低嘌呤代谢相关疾病的发生率,并保持身体健康。
2023-07-01 21:26:591

活在仙山上的郑钧,为何却娶了如此“俗气”的刘芸?

因为俗气的刘芸更加适合他。以前的郑钧放荡不羁,恃才傲物,让他事业跌落谷底,也让他因为和前妻孙锋的感情危机失去了家庭,后来他沉寂了很长时间,直到遇到了刘芸,一个给他带来全新感觉的女孩子,他才彻底从痛苦中走了出来。曾经年少轻狂的郑钧很有才华也很有个性,个性傲慢,唯我独尊的他,也因此给自己的人生路上埋了很多雷,让他的事业曾遭遇滑铁卢,这让他的人生有了悲情的色彩,但是刘芸的出现给他的人生带来一丝亮光,所以郑钧一直说刘芸是他的天使,是上天派她来拯救他的,今天我们来说一下郑钧为何娶了俗气的刘芸。一、刘芸的俗气更接地气刘芸是一个很俗气的人,但是她有什么话就说不喜欢憋在心里面的直爽个性,在很多人认为是很俗,甚至低情商 ,但对于他们的感情是非常有好处的。之前郑钧就是因为和妻子沟通不畅,造成了他们两个人离婚的结局,守候多年的妻子孙锋对他彻底失望也离开了他,现在他和刘芸的打打闹闹反而让彼此没有了隔阂,也更容易沟通。二、刘芸的俗气让他焕发生机刘芸是一个活泼美丽的女孩,和郑钧认识以后,虽然他们两个人的性格有很大的不同,但是骨子里同样也是桀骜不驯,他们两个人的碰撞产生了更多的火花,也更能吸引彼此的目光,所以郑钧毫不犹豫的娶了这个能够让他焕发出生机的女孩。三、刘芸对他没有过多的谦让虽然在婚姻生活中谦让很重要,但过度的谦让,只会让对方变得肆无忌惮,默默的付出也被认为是理所当然,而刘芸就不会这样惯着郑钧,她以自己的方式调教着郑钧,让郑钧不得不接受,也增加了他的责任感,他才会娶这样俗气的刘芸。
2023-07-01 21:23:124

甄嬛传:甄嬛至死不知,她的封号比安陵容的“鹂妃”更加讽刺吗?

甄嬛传发生在特定的历史背景之下,作者以其精雕细琢的功夫,完美地塑造出了一批活泼生动,而富有味道的艺术笼统,无论是皇帝还是妃嫔,下到宫女太监,每一个人都有血有肉,形象特别的鲜活欲出,而且每个人都是典范,他们代表着一个群体,但是,又都特别的怪异。看过甄嬛传的你一定记得这样的一幕,当时,甄嬛,安陵容和沈眉庄的人一起等待着进宫选秀。由于安陵容的家世比较低微,再加上夏冬生本身就比较跋扈,所以被欺负是理所当然的事情,当时多亏了甄嬛出手拉了她一把,让她在得救的同时还能够进宫。不得不说的是,安陵容能够进宫,多亏了甄嬛的提携。安陵容,沈眉庄和甄嬛进宫之后,相互约定在后宫之内相互扶持,但是,由于安陵容,家境本来就比较地位,再加上她的自卑心理在作祟。恰逢家里的父亲又出了事,所以就父心切的她便选择了背叛,甄嬛投靠到皇后那里,安陵容害甄嬛第一胎流产之后,甄嬛初识安陵容的真面目,后来皇后为了扳倒甄嬛,假借纯元皇后的旧衣令甄嬛出宫修行。但不得不说甄嬛真是好本事,后来竟然还能再次回宫。皇后为了能够再次扳倒甄嬛,于是让安陵容“怀孕”。得知安陵容怀孕之后,雍正皇帝高兴不已,便想着晋一下她的位份。于是,内务府便拟了,文,肃,俪这三个很是诗意的字号,让皇上为安陵容挑选。但是,甄嬛,为了报复他,把这三个字全都给否定了,而且还亲自为她取了一个“鹂”为封号。聪明的人都能够听出来,知道这个鹂是什么意思,大家都知道安陵容能够得宠,就是因为她能够唱小曲,哄得皇上开心。而甄嬛的意思已经很明白了,就是为了让安陵容明白,她只是皇上身边的一只小小的宠物而已。聪明如安陵容,她怎么能不知道这其中的意思,所以当她得知要用这个字给自己做封号的时候,直接气急败坏,而且还让宝娟把苏培盛送来道贺的黄鹂鸟,全都给赶走了。因为她知道,这个封号是对自己莫大的讽刺。然而她不知道的是,其实这这个人封号,要比她的还要挖苦很多。小伙伴们,你们都知道是谁吗?其实在理论上来说,甄嬛的封号也好不到哪里去,所以甄嬛是没有资格取消安陵容的。大家应该都知道,皇上之所以能够看上甄嬛,主要是由于她和纯元皇后有一些相似,所以雍正才会注意到她,而且在定封号的时候,还记得甄嬛刚入宫时莞常在这个称号吗?这是皇上亲自给她定的封号。其实,这个莞字,无非也就是用了纯元皇后的闺名婉婉的谐音罢了。聪明如甄嬛,当时她知道自己是纯元皇后的替身之后,就明白了这个罐子的由来,所以她伤心欲绝,一定要离宫修行。综上所述,其实甄嬛的这个封号比安陵容的还要讽刺十倍,当然这只是小编的个人见解。
2023-07-01 21:23:155

对魔忍action雪风什么武器好

皮带断裂罪隐忍是个游戏名。在做水城雪风号驱逐舰的任务时,最好以破罪为辅助。动作是2019年12月24日发布的角色扮演游戏。游戏简介:是由开发商LilithGames开发的一款精致卡通风格、二次元忍者题材的角色扮演游戏。
2023-07-01 21:23:161

cad如何把已有图案进行填充

1、启动填充命令的方法,有三个途径- “绘图”工具栏 -“填充”命令图标- “绘图”菜单 - “图案填充”命令- 命令栏里面直接输入命令“HATCH”并回车图案填充命令启动2、跳出窗口“图案填充及渐变色”,包含两个插页-图案填充,渐变色我们主要介绍图案填充,渐变色因为与填充功能大体相当,最后我们稍微花些篇幅来介绍。让我们逐个梳理下“图案填充”每个设置和输入栏的功能。第一个命令栏组是“类型和图案”。3、点击第一个“类型”的下拉选框,滑出三个选项 - 预定义,用户定义和自定义。预定义是CAD提供的填充图案,保存在acadiso.pat文件内。用户定义是用户自己编写的填充图案,保存在acadiso.pat文件内。自定义是用户自己编写的填充图案,保存在其他pat文件内(放到支持路径下)。4、既然能够自定义填充图案,那让我们赶紧来体验一下吧。其实我一直都对Autodesk公司提供的填充图案有小小不满。其中一个问题就是没有提供钢筋混凝土的填充图案。一般建筑制图要求的钢筋混凝土填充图案应该如附图所示,混凝土加斜线(钢筋)。所以我每次填充钢筋截面,都要填充两次,而且斜线的比例不合适,还要调整,很麻烦。5、趁着这个介绍自定义填充图案的机会,我来把“钢筋混凝土”填充样式定义好,一面让大家熟悉如何自定义填充图案,另一方面为我以后的制图效率提高创造有利条件。CAD所有的支持文件都放到了系统盘内,我们通过使用*.pat搜索系统盘,很快就找到了两个文件。我们一般使用的是acadiso.pat。双击打开它6、文档打开是不是有点眼熟?和线型定义的文件很类似。需要了解线型定义的朋友,请移步我的经验引用。根据文档提示,用户自定义填充样式推荐放在最后。我们将文档向下滑,找到混凝土的填充定义(因为我们要制作的钢筋混凝土,可以在这个定义上修改,省很多事儿),选中并复制。33AUTOCAD如何自定义普通线型7、移动到文档的底部,将刚才复制的内容粘贴进来。- 修改填充名字。(自由发挥)- 在定义主体内容里面加上一行“45, 0,0, 0,10”(这就是代表钢筋的45度斜线)- 定义文件底部至少有一个空行,否则定义不生效。好了,重启CAD,是不是看到你定义的填充样式已经在列表里面了?AUTOCAD填充命令技巧 (一)AUTOCAD填充命令技巧 (一)8、填充定义的主体格式AA, BB,BB, CC,DD, EE,FF ......AA-直线角度BB-起点坐标CC-沿直线长方向偏移量DD-沿直线垂直方向偏移量EE-如果为虚线的话,才涉及到这个值,为直线长度FF-线段间的间隔。好了,掌握这些,你可以自由定义你想要的填充样式了。
2023-07-01 21:23:161

手办是什么材质 手办是什么意思

1、手办材质:大部分都是以PVC为主,PVC材料就是聚氯乙烯,它是世界上产量最大的塑料产品之一,不过主要是因为价格便宜,被广泛应用在了手办上。 2、黏土,一般常见于日系手办的制作, 同样是常温下需要时间固化,固化后可以用笔刀切削,然后再上砂纸精细打磨,缺点是不太适合用于特别精细的部件制作。所以初学者如果用于制作大体块的手办(如皮卡丘,大白等),可以购买石粉黏土来进行制作。 3、油泥,适用于各类手办制作,无论是简单的还是复杂的都可以胜任,所以应用面非常广泛。如果使用量较大,建议购买一个专门用于软化油泥的恒温加热锅,方便使用。
2023-07-01 21:23:091

对魔忍雪风怎么跳过

Action对魔忍新手玩法分享   对于新入坑的小伙伴来说,刷一个比较好的初始可以让我们前期过的相当顺利。  自己刷初始号11票+活动10抽至少要有一个ur,ur武器前期可以提前通过高难度关发育更快后期会被竞技场武器淘汰,红蓝ur支援是后期竞技场主力,蓝色ur对单人也提升很大,绿色一般但是也比sr好很多,最好是ur武器支援各一个,有ur支援和sr武器也可以,没有sr武器就继续刷,sr支援也越多越好,特别是凑齐每种颜色的三个组队。  日服前3周的签到奖励会有3张ur保底。多余的支援武器都不要合并或者卖做季度任务要用,而且战斗力强的至少保留3个同款给竞技场3人用以及升级设施缩短收菜时间。活动池首抽减半200钻建议抽,每周签到任务110+竞技场75稳定回本。  游戏中,活动大概3周1次,每次3个难度共150钻,支援满亲密度回50钻。各种券最好不要急着抽,等后面角色都出了再抽否则没武器,ur支援票可以考虑马上抽,红蓝都是日服竞技场最强,后期池子大了影响概率。  对角色没有偏好的情况下最强角色艾米莉,凛子,雪风,樱,阿莎姬。艾米莉凛子刷单人和竞技场都是1流。  除了金块和n级武器其他任何物品都强烈不建议卖,也不建议强行锻造高级升级素材,刷低级素材也很费事,最好练级打最高级的日常。武器和支援升级消耗资源和本身等级以及消耗材料数量成正比,所以最理想的情况是一次用10个上级材料升级,否则用低级材料多次升级要多花很多钱。  勾玉建议初期用n级红黄吃4个n或者2个r升级,n级勾玉和sr附加效果一样只是少一些攻击力但是省很多资源,前期根本养不起sr勾玉,但是要保留红黄sr。没有20-30个高级资源时不要突破主武器支援,会降级。  战斗力提升到中等之后,马上刷竞技场低等,每次4%,刷到100%就可以解锁竞技场了,每5小时打5次升到6000分领每周低保换绿色ur武器,目前性价比最高的打法是集中资源堆凛子3蓝辅助,打流星群风切。  升级设施优先升级物品锻造,70级需要4级锻造素材,其次武器,武器升级后可以一次升3把效率*3,锻造高级素材不建议常用,锻造消耗的资源影响其他设施升级。  新手优先打日常,能打上级之后打活动的最终关刷10轮箱子,抽到大奖马上换箱子,新人不要被小奖分神,优先拿满5张ur卡最少留3张备用。
2023-07-01 21:23:091

鹂妃小产是哪一集

53集。鹂妃是电视剧《甄嬛传》中的角色,她前期温婉善良,内心自卑,爱钻牛角尖,后期嫉妒心强,阴险狠辣,在第53集被陷害导致小产。小产,中医病名,也就是自然流产,指妊娠12~28周以内,胎儿已成形而因为种种原因导致自然殒堕为主要表现的疾病。
2023-07-01 21:23:071