- 寸头二姐
-
雅可比行列式通常称为雅可比式(Jacobian) 它是以n个n元函数的偏导数为元素的行列式 。 事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。 若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。这可用行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则。偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。 如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负。如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。
分析力学中用以求解正则方程的一个偏微分方程 。由CGJ雅可比在W.R.哈密顿研究工作基础上给出而得名 。对于 N 个自由度的完整系统 ,此方程可写为 :+H(q1,q2,…,qN;,,…,;t)=0,式中H=T2-T0+V为哈密顿函数 ,其中V是用广义坐标qi (i=1,2,…,N)和时间t表示的势函数,T2和T0分别为动能T 中用广义动量表示的二次齐次式和零次齐次式(即不含pi,仅含qi和t之式);S为哈密顿主函数。若自方程求出包含N个任意常数( a1,a2,…,aN)的一个解(称全积分)S(q1,q2,…,qN;a1,a2,…,aN;t),则由=-βi(β是常量),=pi(i=1,2,…,N)就能求出该系统正则方程的通解:pi=pi(t;a1,…,aN ;β1,…,βN),qi=qi(t;a1,…,aN;β1,…,βN)(i=1,2,…,N)。对许多力学实际问题,可以通过分离变 量法求出哈密顿-雅可比方程的全积分。对于工程上的保守系统,用此法计算繁琐,但它对天体力学的摄动法却大有帮助。哈
- bikbok
-
雅可比行列式通常称为雅可比式(Jacobian) 它是以n个n元函数的偏导数为元素的行列式 。 事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。 若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。这可用行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则。偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负。如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。哈密顿-雅可比方程 Hamilton-Jacobi equation 分析力学中用以求解正则方程的一个偏微分方程 。由CGJ雅可比在W.R.哈密顿研究工作基础上给出而得名 。对于 N 个自由度的完整系统 ,此方程可写为 :+H(q1,q2,…,qN;,,…,;t)=0,式中H=T2-T0+V为哈密顿函数 ,其中V是用广义坐标qi (i=1,2,…,N)和时间t表示的势函数,T2和T0分别为动能T 中用广义动量表示的二次齐次式和零次齐次式(即不含pi,仅含qi和t之式);S为哈密顿主函数。若自方程求出包含N个任意常数( a1,a2,…,aN)的一个解(称全积分)S(q1,q2,…,qN;a1,a2,…,aN;t),则由=-βi(β是常量),=pi(i=1,2,…,N)就能求出该系统正则方程的通解:pi=pi(t;a1,…,aN ;β1,…,βN),qi=qi(t;a1,…,aN;β1,…,βN)(i=1,2,…,N)。对许多力学实际问题,可以通过分离变 量法求出哈密顿-雅可比方程的全积分。对于工程上的保守系统,用此法计算繁琐,但它对天体力学的摄动法却大有帮助。
- u投在线
-
概念:雅可比行列式通常称为雅可比式(Jacobian)
它是以n个n元函数的偏导数为元素的行列式 。
事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。 若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。这可用行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则。偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负。如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。