DNA图谱 / 问答 / 问答详情

FFT原理的FFT基本原理

2023-07-11 13:01:55
共1条回复
床单格子

FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。

DFT的运算为:

式中

由这种方法计算DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中

的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。

FFT基本上可分为两类,时间抽取法和频率抽取法,而一般的时间抽取法和频率抽取法只能处理长度N=2^M的情况,另外还有组合数基四FFT来处理一般长度的FFT 设N点序列x(n),,将x(n)按奇偶分组,公式如下图

改写为:

一个N点DFT分解为两个 N/2点的DFT,继续分解,迭代下去,其运算量约为

其算法有如下规律

两个4点组成的8点DFT

四个2点组成的8点DFT

按时间抽取的8点DFT

原位计算

当数据输入到存储器中以后,每一级运算的结果仍然储存在同一组存储器中,直到最后输出,中间无需其它存储器

序数重排

对按时间抽取FFT的原位运算结构,当运算完毕时,这种结构存储单元A(1)、A(2),…,A(8)中正好顺序存放着X(0),X(1),X(2),…,X(7),因此可直接按顺序输出,但这种原位运算的输入x(n)却不能按这种自然顺序存入存储单元中,而是按X(0),X(4),X(2),X(6),…,X(7)的顺序存入存储单元,这种顺序看起来相当杂乱,然而它也是有规律的。当用二进制表示这个顺序时,它正好是“码位倒置”的顺序。

蝶形类型随迭代次数成倍增加

每次迭代的蝶形类型比上一次蝶代增加一倍,数据点间隔也增大一倍 频率抽取2FFT算法是按频率进行抽取的算法。

设N=2^M,将x(n)按前后两部分进行分解,

按K的奇偶分为两组,即

得到两个N/2 点的DFT运算。如此分解,并迭代,总的计算量和时间抽取(DIT)基2FFT算法相同。

算法规律如下:

蝶形结构和时间抽取不一样但是蝶形个数一样,同样具有原位计算规律,其迭代次数成倍减小 时,可采取补零使其成为

,或者先分解为两个p,q的序列,其中p*q=N,然后进行计算。 前面介绍,采用FFT算法可以很快算出全部N点DFT值,即z变换X(z)在z平面单位圆上的全部等间隔取样值。实际中也许①不需要计算整个单位圆上z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,②或者对其它围线上的z变换取样感兴趣,例如语音信号处理中,需要知道z变换的极点所在频率,如极点位置离单位圆较远,则其单位圆上的频谱就很平滑,这时很难从中识别出极点所在的频率,如果采样不是沿单位圆而是沿一条接近这些极点的弧线进行,则在极点所在频率上的频谱将出现明显的尖峰,由此可较准确地测定极点频率。③或者要求能有效地计算当N是素数时序列的DFT,因此提高DFT计算的灵活性非常有意义。

螺旋线采样是一种适合于这种需要的变换,且可以采用FFT来快速计算,这种变换也称作Chirp-z变换。

相关推荐

蝶形运算蝶距怎么求

蝶形运算蝶距用公式求。公式为k等于xr。蝶距有专用的运算公式。输出就是频谱,是蝶形运算,得出的是以2点为周期的幅值,以4点为周期的幅值,以6点为周期的幅值,以8点为周期的幅值,以此类推。
2023-07-10 20:38:571

蝶形运算的旋转因子怎么算

蝶形运算的旋转因子计算:旋转因子是WnkN(nk是上标,N是下标),n是原序列里的某一点,k是DFT(或FFT)后的序列某一点,N为变换的点数。WnkN=e^[-j*2pi*n*k/N],这是一个复指数项。do_fft函数:如果需要计算的序列长为2,两个位置分别写为x[0]+x[1]和x[0]-x[1]然后返回。对需要计算的序列前半部分调用do_fft函数。对需要计算的序列后半副本调用do_fft函数。for (int i=0; i<length/2; ++i) 。x[i+length/2] *= Wi;注意这里需要先确定需要的是哪个W。x[i]和x[i+length/2] 分别改写为 x[i]+x[i+length/2]和x[i]-x[i+length/2]。蝶形结此词汇仍最常使用于库利-图基快速傅立叶变换算法中,利用递回的方式将n点离散傅立叶运算中的n点输入分解为 n=r*m,转换输入信号为r点的m组信号分别进行r点离散傅立叶运算(换句焕说就是r点DFT做m次)。而r点的离散傅立叶运算基本上为转换后的输入信号乘上旋转因子以蝶形结架构做加法运算。(前述为时域抽取法的运算方式,逆向操作先进行蝶形结架构做加法运算,再乘上旋转因子,则为频域抽取法运算方式)。
2023-07-10 20:39:031

蝶形运算的公式

Wnk =e^-j (2Π/n) *k =cos(-(2Π/n)* k)-j*sin((2Π/n)* k)
2023-07-10 20:39:181

一个蝶形运算包含的复乘数和复加数分别是()。

一个蝶形运算包含的复乘数和复加数分别是()。 A.1次,1次B.1次,2次C.2次,1次D.2次,2次正确答案:1次,2次
2023-07-10 20:39:301

4点ditfft蝶形运算图怎么画

16点以此类推,两个8点。图像运算指以图像为单位进行的搡作(该操作对图像中的所有像素同样进行),运算的结果是一幅其灰度分布与原来参与运算图像灰度分布不同的新图像。具体的运算主要包括算术和逻辑运算,它们通过改变像素的值来得到图像增强的效果。算术和逻辑运算中每次只涉及一个空间像素的位置,所以可以“原地”完成,即在(x,y)位置做一个算术运算或逻辑运算的结果可以存在其中一个图像的相应位置,因为那个位置在其后的运算中不会再使用。换句话说,设对两幅图像f(x,y) 和h(x,y)的算术或逻辑运算的结果是g(x,y),则可直接将g(x,y)覆盖f(x,y)或h(x,y),即从原存放输入图像的空间直接得到输出图像。
2023-07-10 20:39:361

蝶距是什么

蝶距是蝶形输入信号节点数。根据查询相关资料可知,在蝶形运算中,蝶距是蝶形输入两信号点间的节点数,各类蝶形运算两个点相距的距离称蝶距,蝶距规律为最后一级的蝶距为N2,依次向左为N4、N8。蝶形蝶距运算为任何一个N为2整数幂的DFT,可以通过M次分解,成为2点DFT来计算。
2023-07-10 20:39:431

按时间抽取的蝶形运算是先相乘还是先加减?

先向,呈现相承,现在都是先相乘然后再加减,如果加减法就算出来就结果就不对
2023-07-10 20:39:502

以2为基的FFT算法的基本运算单元是什么?

T/FFT的发展历史离散傅里叶变换(Discrete Fourier Transform,DFT)是数字信号处理最重要的基石之一,也是对信号进行分析和处理时最常用的工具之一。在200多年前法国数学家、物理学家傅里叶提出后来以他名字命名的傅里叶级数之后,用DFT这个工具来分析信号就已经为人们所知。历史上最伟大的数学家之一。 欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = f(x)。他是把微积分应用于物理学的先驱者之一。 给出了一个用实变量函数表示傅立叶级数系数的方程; 用三角级数来描述离散声音在弹性媒介中传播,发现某些函数可以通过余弦函数之和来表达。 但在很长时间内,这种分析方法并没有引起更多的重视,最主要的原因在于这种方法运算量比较大。直到1965年,Cooley和Tukey在《计算机科学 》发表著名的《机器计算傅立叶级数的一种算法》论文,FFT才开始大规模应用。那个年代,有个肯尼迪总统科学咨询委员会。其中有项研究主题是,对苏联核测试进行检测,Tukey就是其中一员。美国/苏联核测试提案的批准,主要取决于不实地访问核测试设施而做出检测的方法的发展。其中一个想法是,分析离海岸的地震计情况,这种计算需要快速算法来计算DFT。其它应用是国家安全,如用声学探测远距离的核潜艇。所以在军事上,迫切需要一种快速的傅立叶变换算法,这也促进了FFT的正式提出。FFT的这种方法充分利用了DFT运算中的对称性和周期性,从而将DFT运算量从N2减少到N*log2N。当N比较小时,FFT优势并不明显。但当N大于32开始,点数越大,FFT对运算量的改善越明显。比如当N为1024时,FFT的运算效率比DFT提高了100倍。在库利和图基提出的FFT算法中,其基本原理是先将一个N点时域序列的DFT分解为N个1点序列的DFT,然后将这样计算出来的N个1点序列DFT的结果进行组合,得到最初的N点时域序列的DFT值。实际上,这种基本的思想很早就由德国伟大的数学家高斯提出过,在某种情况下,天文学计算(也是现在FFT应用的领域之一)与等距观察的有限集中的行星轨道的内插值有关。由于当时计算都是靠手工,所以产生一种快速算法的迫切需要。 而且,更少的计算量同时也代表着错误的机会更少,正确性更高。高斯发现,一个富氏级数有宽度N=N1*N2,可以分成几个部分。计算N2子样本DFT的N1长度和N1子样本DFT的N2长度。只是由于当时尚欠东风——计算机还没发明。在20世纪60年代,伴随着计算机的发展和成熟,库利和图基的成果掀起了数字信号处理的革命,因而FFT发明者的桂冠才落在他们头上。之后,桑德(G.Sand)-图基等快速算法相继出现,几经改进,很快形成了一套高效运算方法,这就是现在的快速傅立叶变换(FFT)。这种算法使DFT的运算效率提高1到2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了良好的条件,大大推进了数学信号处理技术。1984年,法国的杜哈梅(P.Dohamel)和霍尔曼(H.Hollamann)提出的分裂基块快速算法,使运算效率进一步提高。库利和图基的FFT算法的最基本运算为蝶形运算,每个蝶形运算包括两个输入点,因而也称为基-2算法。在这之后,又有一些新的算法,进一步提高了FFT的运算效率,比如基-4算法,分裂基算法等。这些新算法对FFT运算效率的提高一般在50%以内,远远不如FFT对DFT运算的提高幅度。从这个意义上说,FFT算法是里程碑式的。可以说,正是计算机技术的发展和FFT的出现,才使得数字信号处理迎来了一个崭新的时代。除了......
2023-07-10 20:41:092

C语言编写一个一维傅里叶函数

#include<stdio.h>#include <math.h>class complex //定义一个类,实现复数的所有操作{double Real,Image; //实部与虚部public:complex(double r="0",double i="0"){Real=r;Image=i;} double GetR(){return Real;} //取出实部double GetI(){return Image;} //取出虚部complex operator + (complex &); //复数加法complex operator - (complex &); //复数减法 complex operator * (complex &); //复数乘法void operator =(complex &); //复数 赋值};complex complex::operator + (complex &c) //复数加法{complex t;t.Real=Real+c.Real;t.Image=Image+c.Image;return t;}complex complex::operator - (complex &c) //复数减法{complex t;t.Real=Real-c.Real;t.Image=Image-c.Image;return t;}complex complex::operator * (complex &c) //复数乘法{complex t;t.Real=Real*c.Real-Image*c.Image;t.Image=Real*c.Image+Image*c.Real;return t;}void complex::operator = (complex &c) //复数 赋值{Real=c.Real;Image=c.Image;}void fft(complex a[],int length,int jishu) //实现fft的函数{const double PI="3".141592653589793;complex u,Wn,t;int i,j,k,m,kind,distance,other; double tmp; for(i=0;i<length;i++) //实现倒叙排列{ k="i"; j=0; for(m=0;m<jishu;m++) { j="j"*2+k%2; k/=2; } if(i<j) { t="a"; a=a[j]; a[j]=t; }} for(m=1;m<=jishu;m++) //第m级蝶形运算,总级数为jishu{ kind = (int)pow(2,m-1); //第m级有2^(m-1)种蝶形运算 distance = 2*kind; //同种蝶形结相邻距离为2^m u=complex(1,0); //旋转因子初始值为 1 tmp=PI/kind; Wn=complex(cos(tmp),-sin(tmp));//旋转因子Wn for(j=0;j<kind;j++) //每种蝶形运算的起始点为j,共有kind种 { for(i=j;i<length;i+=distance) //同种蝶形运算 { other=i+kind;//蝶形运算的两个因子对应单元下标的距离为2^(m-1) t=a[other]*u; // 蝶形运算的乘积项 a[other]=a-t; //蝶形运算 a=a+t; //蝶形运算 } u="u"*Wn; //修改旋转因子,多乘一个基本DFT因子WN }}}void main(void){ double a,b;complex x[8]; //此程序以8点序列测试printf("8点序列: ");for(int i="0";i<8;i++) //初始化并输出原始序列{ x=complex(i,i+1); printf("x(%d) = %lf + %lf i ",i+1,x.GetR(),x.GetI());} fft(x,8,3); //调用fft函数printf("fft变换的结果为: ");for(i=0;i<8;i++) //输出结果 printf("X(%d)= %lf + %lf i ",i+1,x.GetR(),x.GetI());}
2023-07-10 20:41:241

如何实现128点的基2-FFT算法,并与MATLAB的fft算法作对比分析.

我给你我写的程序吧: x=ones(1,128); %输入的信号,自己可以改变 %整体运用原位计算 m=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次m if length(x)<N x=[x,zeros(1,N-length(x))]; % 若x的长度不是2的幂,补零到2的整数幂 end nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; % 求1:2^m数列序号的倒序 y=x(nxd); % 将x倒序排列作为y的初始值 for mm=1:m % 将DFT作m次基2分解,从左到右,对每次分解作DFT运算,共做m级蝶形运算,每一级都有2^(mm-1)个蝶形结 Nz=2^mm;u=1; % 旋转因子u初始化为WN^0=1 WN=exp(-i*2*pi/Nz); % 本次分解的基本DFT因子WN=exp(-i*2*pi/Nz) for j=1:Nz/2 % 本次跨越间隔内的各次蝶形运算,在进行第mm级运算时需要2^(mm-1)个 蝶形 for k=j:Nz:N % 本次蝶形运算的跨越间隔为Nz=2^mm kp=k+Nz/2; % 蝶形运算的两个因子对应单元下标的关系 t=y(kp)*u; % 蝶形运算的乘积项 y(kp)=y(k)-t; % 蝶形运算 y(k)=y(k)+t; % 蝶形运算 end u=u*WN; % 修改旋转因子,多乘一个基本DFT因子WN end end y y1=fft(x) %自己编的FFT跟直接调用的函数运算以后的结果进行对比因为输入是128个1所以结果就是这样,我最后不是有结果比对么?相减是全0的话不就对了么!?,你可以改变输入,多选择几组值来检验.
2023-07-10 20:41:311

请教高手:如何用Matlab自己编写基2的fft函数

按时间抽取 我有function ret_val = fft1(vector)%======================================%ret_val 为fft变换后返回的频域序列%N 为点数%vector 为变换前的序列%======================================vector_size = size(vector);N = vector_size(2);c = zeros(1,N);%%变址运算%j1 = 0;for i = 1 : N if i < j1 + 1 tmp = vector(j1 + 1); vector(j1 + 1) = vector(i); vector(i) =tmp; end k = N / 2; while k <= j1 j1 = j1 - k; k = k / 2; end j1 = j1 + k;end%%蝶形运算%%%%%%%%计算 N 的dig = 0;k = N;while k > 1 dig = dig + 1; k = k / 2;end%%%%%%% m 为级; dist 为蝶形运两点的距离; n 为蝶形运算组数%n = N / 2;for m = 1 : dig dist = 2 ^ (m - 1); idx = 1; for i = 1 : n idx1 = idx; for j1 = 1 : N / (2 * n) r = (idx - 1) * 2 ^ (dig - m); coef = exp(j * (-2 * pi * r / N)); tmp = vector(idx); vector(idx) = tmp + vector(idx + dist) * coef; vector(idx + dist) = tmp - vector(idx + dist) * coef; idx = idx + 1; end idx = idx1 + 2 * dist; end n = n / 2;endret_val = vector;
2023-07-10 20:41:401

单片机实现傅立叶变换

用FPGA这种单片机在对FFT(快速傅立叶变换)算法进行研究的基础上,描述了用FPGA实现FFT的方法,并对其中的整体结构、蝶形单元及性能等进行了分析。关键词:FPGA FFT傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。1 整体结构一般情况下,N点的傅立叶变换对为:其中,WN=exp(-2 pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。N=8192点DFT的运算表达式为:式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。2 蝶形运算器的实现基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有:A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)] (4)B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5)C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)] (7)看明白了吗?
2023-07-10 20:41:492

如何实现128点的基2-FFT算法,并与MATLAB的fft算法作对比分析.

我只能给你一个fft算法,流程图说起来有点复杂,可以matlab里面的函数tic(开启时钟)t=toc(关闭时钟)t就是运算过程的时间当然tic放程序开始,toc放结尾,来分析之即可function d=lxfft(x)n=length(x);if n>2 for i=0:n/2-1 x1(i+1)=x(2*i+1); x2(i+1)=x(2*i+2); end X1=lxfft(x1); X2=lxfft(x2); for i=0:n/2-1 X2(i+1)= X2(i+1)*exp(-j*2*pi/n*i);//旋转因子 d(i+1)=X1(i+1)+X2(i+1); d(i+n/2+1)=X1(i+1)-X2(i+1); end else d(1)=x(1)+x(2); d(2)=x(1)-x(2);endend
2023-07-10 20:41:562

快速傅里叶变换的计算方法

计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。时间抽取算法  令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。因为于是由式⑶和式⑷得到(5a)(5b)因此,一个抽样点数为N 的信号序列x(n)的离散傅里叶变换,可以由两个 N/2抽样点序列的离散傅里叶变换求出。依此类推,这种按时间抽取算法是将输入信号序列分成越来越小的子序列进行离散傅里叶变换计算,最后合成为N点的离散傅里叶变换。通常用图1中蝶形算法的信号流图来表示式⑸的离散傅里叶变换运算。例如,N=8=2的抽样点的信号序列x(n)的离散傅里叶变换,可用如图2所示的FET算法的信号流图来计算。① N=2点的离散傅里叶变换的计算全由蝶形运算组成,需要M级运算,每级包括N/2个蝶形运算,总共有 个蝶形运算。所以,总的计算量为次复数乘法运算和N log2N次复数加法运算。② FFT算法按级迭代进行,计算公式可以写成⑹N抽样点的输入信号具有N个原始数据x0(n),经第一级运算后,得出新的N个数据x1(n),再经过第二级迭代运算,又得到另外N个数据x2(n),依此类推,直至最后的结果x(k)=xM(k)=X(k)在逐级迭代计算中,每个蝶形运算的输出数据存放在原来存贮输入数据的单元中,实行所谓“即位计算”,这样可以节省大量存放中间数据的寄存器。③ 蝶形运算中加权系数随迭代级数成倍增加。由图2可以看出系数的变化规律。对于N=8,M=3情况,需进行三级迭代运算。在第一级迭代中,只用到一种加权系数;蝶形运算的跨度间隔等于1。在第二级迭代中,用到两种加权系数即、;蝶形运算的跨度间隔等于2。在第三级迭代中,用到4种不同的加权系数即、、、;蝶形运算的跨度间隔等于4。可见,每级迭代的不同加权系数的数目比前一级迭代增加一倍;跨度间隔也增大一倍。④ 输入数据序列x(n)需重新排列为x(0)、x⑷、x⑵、x⑹、x⑴、x⑸、x⑶、x⑺,这是按照二进制数的码位倒置所得到的反序数,例如N=8中数“1”的二进制数为“001”,将其码位倒转变为“100”,即为十进制数“4”。频率抽取算法 按频率抽取的 FFT算法是将频域信号序列X(k)分解为奇偶两部分,但算法仍是由时域信号序列开始逐级运算,同样是把N点分成N/2点计算FFT,可以把直接计算离散傅里叶变换所需的N次乘法缩减到次。在N=2的情况下,把N点输入序列x(n)分成前后两半⑺时间序列x1(n)±x2(n)的长度为N/2,于是N点的离散傅里叶变换可以写成(8a)(8b)频率信号序列X(2l)是时间信号序列x1(n)+x2(n)的N/2点离散傅里叶变换,频率信号序列X(2l+1)是时间信号序列【x1(n)-x2(n)】的N/2点离散傅里叶变换,因此,N点离散傅里叶变换的计算,通过两次加(减)法和一次乘法,从原来序列获得两个子序列,所以,频率抽取算法也具有蝶形运算形式。以2为基数的FFT基本蝶形运算公式为⑼其计算量完全和时间抽取算法一样,即只需次乘法运算和Nlog2N次加(减)法运算。图3 表示N=8=2点的离散傅里叶变换的信号流图。由图可见,它以三级迭代进行即位计算,输入数据是按自然次序存放,使用的系数也是按自然次序,而最后结果则以二进制反序存放。实际上,频率抽取算法与时间抽取算法的信号流图之间存在着转置关系,如将流图适当变形,可以得出多种几何形状。除了基2的FFT算法之外,还有基4、基8等高基数的FFT算法以及任意数为基数的FFT算法。
2023-07-10 20:42:041

matlab计算结果问题

推荐答案傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。目录定义中文译名应用概要介绍基本性质线性性质频移性质微分关系卷积特性Parseval定理傅里叶变换的不同变种连续傅里叶变换傅里叶级数离散傅里叶变换时频分析变换数学领域整体结构蝶形运算器的实现FFT的地址旋转因子存储器的控制硬件的选择相关书籍推荐定义 中文译名应用 概要介绍 基本性质 线性性质 频移性质 微分关系 卷积特性 Parseval定理傅里叶变换的不同变种 连续傅里叶变换 傅里叶级数 离散傅里叶变换 时频分析变换数学领域 整体结构 蝶形运算器的实现 FFT的地址 旋转因子 存储器的控制 硬件的选择相关书籍推荐展开 编辑本段定义 f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。 傅里叶变换① 傅里叶逆变换②中文译名 Fourier transform 或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“傅里叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。编辑本段应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。编辑本段概要介绍 概要参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).编辑本段基本性质线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符;频移性质 若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt;微分关系 若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 u2212 iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( u2212 iω)k。卷积特性 若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积,同时还有两个函数卷积的傅里叶逆变换等于它们各自的傅里叶逆变换的乘积。Parseval定理 若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。编辑本段傅里叶变换的不同变种连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(u2212ω) = F(ω)*成立.傅里叶级数 主条目:傅里叶级数 连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: f(x) = sum_{n=-infty}^{infty} F_n ,e^ , 其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: f(x) = fraca_0 + sum_{n=1}^inftyleft[a_ncos(nx)+b_nsin(nx) ight], 其中an和bn是实频率分量的振幅。 离散时间傅里叶变换 主条目:离散时间傅里叶变换 离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。离散傅里叶变换 主条目:离散傅里叶变换 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: x_n = frac1 sum_{k=0}^ X_k e^{ifrac{2pi} kn} qquad n = 0,dots,N-1 其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为mathcal(n log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 在阿贝尔群上的统一描述 以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。时频分析变换 主条目:时频分析变换 小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 傅里叶变换家族 下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 变换 时间 频率 连续傅里叶变换 连续, 非周期性 连续, 非周期性 傅里叶级数 连续, 周期性 离散, 非周期性 离散时间傅里叶变换 离散, 非周期性 连续, 周期性 离散傅里叶变换 离散, 周期性 离散, 周期性 傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。编辑本段数学领域 尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 有関傅立叶变换的FPGA实现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。整体结构 一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。 N=8192点DFT的运算表达式为: 式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。 由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。 图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。蝶形运算器的实现 基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有: A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? (4) B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5) C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6) D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7) 而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有: A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8) B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9) C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10) D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11) 在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。 以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好?便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。 图2 基2和基4蝶形算法的信号流图FFT的地址 FFT变换后输出的结果通常为一特定的倒序,因此,几级变换后对地址的控制必须准确无误。 倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下: 基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X?011 → x?110 ,即输入顺序为3,输出时顺序变为6。 更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如: X?0111 → x?1101 。即输入顺序为7,输出时顺序变为13。 在2k/4k/8k的傅立叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。旋转因子 N点傅立叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为: FFT之所以可使运算效率得到提高,就是利用 FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。 根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。 实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅立叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。存储器的控制 因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。 为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样?FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。 为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。 在2k/4k/8k傅立叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。硬件的选择 本设计的硬件实现选用的是现场可编程门阵列(FPGA)来满足较高速度的需要。本系统在设计时选用的是ALTERA公司的STRATIX芯片,该芯片中包含有DSP单元,可以完成较为耗费资源的乘法器单元。同时,该器件也包含有大量存储单元,从而可保证旋转因子的精度。 除了一些专用引脚外,FPGA上几乎所有的引脚均可供用户使用,这使得FPGA信号处理方案具有非常好的I/O带宽。大量的I/O引脚和多块存储器可使设计获得优越的并行处理性能。其独立的存储块可作为输入/工作存储区和结果的缓存区,这使得I/O可与FFT计算同时进行。在实现的时间方面,该设计能在4096个时钟周期内完成一个4096点的FFT。若采用10MHz的输入时钟,其变换时间在200μs左右。而由于最新的FPGA使用了MultiTrack互连技术,故可在250MHz以下频率稳定地工作,同时,FFT的实现时间也可以大大缩小。 FFT运算结果的精度与输入数据的位数及运算过程中的位数有关,同时和数据的表示形式也有很大关系。一般来说,浮点方式比定点方式精度高。而在定点计算中,存储器数据的位数越大,运算精度越高,使用的存储单元和逻辑单元也越多。在实际应用中,应根据实际情况折衷选择精度和资源。本设计通过MATLAB进行仿真证明:其实现的变换结果与MATLAB工具箱中的FFT函数相比,信噪比可以达到65db以上,完全可以满足一般工程的实际应用要求
2023-07-10 20:42:203

急!!求x(2n+1)的傅里叶变换。

如果题目是求x(2t+1)的FT,答案为:(1/2)exp[(1/2)jw]X(w/2)傅里叶变换是针对于连续时间信号的。x(2n+1)是一个离散信号应该求的是z变换,题目如果是已知x(n)的Z变换是X(Z)求x(2n+1)的z变换。但是离散信号压缩或拉伸没什么意思,容易导致信号丢失,所以这个题目不对。
2023-07-10 20:42:305

卷积怎么计算

问题一:二维卷积如何运算? A=[100,100,100 100,100,100 100,100,100] B=[1/9,1/9,1/9 1/9,1/9,1/9 1/9,1/9,1/9] c=conv2(A,B) 问题二:两个函数的卷积怎么算 你好。 只要使用conv函数就可以了。 例子: u=ones(1,100); v=2*u; w = conv(u,v); plot(w); 问题三:什么是卷积?要怎么求两个函数的卷积? 15分 简介 褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。 2基本内涵 简单定义:卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。 容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 3定义 卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。 如果卷积的变量是函数x(t)和h(t),则卷积的计算变为 , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。 4性质 各 perfect spaces卷积混响 种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。 5卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 F(g(x)*f(x)) = F(g(x))F(f(x)) 其中F表示的是傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 6群上卷积 卷积与相关分析......>> 问题四:信号与系统,这个卷积按定义怎么算?求详细过程,谢谢。 卷积计算方法如上。 你的题里面 f1(tau)=e^(-2tau) (tau>0), =0 (tau0) =0 (tau 问题五:请问u(t)*u(t-1)卷积怎么算??? u(t)*u(t-1)=u(t)*u(t)*δ(t-1) =tu(t)*δ(t-1) =(t-1)u(t-1) 问题六:遥感图像卷积计算怎么搞? 通过对信号与线性系统中离散卷积及其运算方法的分析,研究序列形式的离散信号的卷积运算过程,在图解法基础上提出了较为简便的运算方法―――列表法.此列表法与图解法所得结果完全相同,却使运算过程大为简化 问题七:怎样理解卷积积分 对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。 在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式) 有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。 所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。 复频域。 s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。 负的频率。 之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
2023-07-10 20:42:561

Matlab 对函数中的系数作傅里叶变换 求助

看一下积分变换吧。
2023-07-10 20:43:075

想用C语言实现一个1024点的FFT,找到的基2-FFT的程序能实现128以内的FFT,运行结果和matlab的fft()是一样的

我也写了个fft程序,256点时计算还正确,但是512和1024点结果就错了,希望楼主答案的话能告知,
2023-07-10 20:43:241

什么是FFT算法?DSP是什么?

FFT是快速傅里叶变换( Fast Fourier Transform )DSP是数字信号处理 ( Digital Signal Processing )
2023-07-10 20:43:311

数字信号处理 判断题

1.正确 2错误 3错误
2023-07-10 20:43:371

8点ditfft蝶形图的对应关系

8点ditfft蝶形图的对应关系是:1. 原位运算 在DIT-FFT的蝶形图中,取第m级且两输入节点分别在第k、j行的蝶形为例,讨论DIT-FFT的原位运算规律。2. . 倒序规律 从图3.5可以看出,按原位计算时,蝶形图的输出正好是自然顺序X(0),X(1),...,X(7),
2023-07-10 20:43:501

DSP芯片和DSP技术的问题

你说的是其中的一部分知识,是DSP处理的信息的原理。要向学习DSP的硬件开发,还要学习微机原理,由单片机系统的设计经验最好。还有就是DSP的开发环境,也就是CCS,要掌握常用的编程语言,有汇编语言和C语言的编程经验最好.首先要了解DSP的特点。数字信号处理相对于模拟信号处理有很大的优越性,表现在精度高、灵活性大、可靠性好、易于大规模集成等方面。随着人们对实时信号处理要求的不断提高和大规模集成电路技术的迅速发展,数字信号处理技术也发生着日新月异的变革。实时数字信号处理技术的核心和标志是数字信号处理器。自第一个微处理器问世以来,微处理器技术水平得到了十分迅速的提高,而快速傅立叶交换等实用算法的提出促进了专门实现数字信号处理的一类微处理器的分化和发展。数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:(1) 算术单元具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。新一代的DSP内部甚至还包含多个并行的运算单元。以提高其处理能力。针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。近年出现的某些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。(2) 总线结构传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯u2022诺依曼结构。DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大的提高了指令执行速度。片内的多套总线可以同时进行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。 如TI公司的C6000系列的DSP采用改进的哈佛结构,内部有一套256位宽度的程序总线、两套32位的数据总线和一套32位的DMA总线。ADI公司的SHARC系列DSP采用超级哈佛结构(Super Harvared Architecture Computer),内部集成了三套总线,即程序存储器总线、数据存储器总线和输入输出总线。(3) 专用寻址单元DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。地址的修改和更新与算术单元并行工作,不需要额外的时间。DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。(4) 片内存储器针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据的访问存储器的速度。如TI公司的C6000系列的DSP内部集成有1M~7M位的程序和数据RAM;ADI公司的SHARC系列DSP内部集成有0.5M~2M位的程序和数据RAM,Tiger SHARC系列DSP内部集成有6M位的程序和数据RAM。(5) 流水处理技术 DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。 (6) DSP与其它处理器的差别数字信号处理器(DSP)、通用微处理器(MPU)、微控制器(MCU)三者的区别在于:DSP面向高性能、 重复性、数值运算密集型的实时处理;MPU大量应用于计算机;MCU则适用于以控制为主的处理过程。DSP的运算速度比其它处理器要高得多,以FFT、相关为例,高性能DSP不仅处理速度是MPU的 4~10倍,而且可以连续不断地完成数据的实时输入/输出。DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。以一个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。因此,在相同的指令周期和片内指令缓存条件下,DSP的运算送到可以超过MPU运算速度的4倍以上。正是基于 DSP的这些优势,在新推出的高性能通用微处理器(如Pentium、Power PC 604e等)片内已经融入了 DSP的功能,而以这种通用微处理器构成的计算机在网络通信、语音图像处理、实时数据分析等方面的效率大大提高。
2023-07-10 20:44:004

画出4点按时间抽取的基2FFT的蝶形图

基2FFT的蝶形图对信号进行分析和处理时最常用的工具之一。在200多年前法国数学家、物理学家傅里叶提出后来以他名字命名的傅里叶级数之后,用DFT这个工具来分析信号就已经为人们所知。历史上最伟大的数学家之一。它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。扩展资料:FFT的基本思想是把原始的N点序列,依次分解成一系列的短序列。充分利用DFT计算式中指数因子 所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,减少乘法运算和简化结构的目的。此后,在这思想基础上又开发了高基和分裂基等快速算法,随着数字技术的高速发展,1976年出现建立在数论和多项式理论基础上的维诺格勒傅里叶变换算法(WFTA)和素因子傅里叶变换算法。它们的共同特点是,当N是素数时,可以将DFT算转化为求循环卷积,从而更进一步减少乘法次数,提高速度。
2023-07-10 20:44:221

一个关于128点的快速傅立叶的C语言程序

这是我写的1024点的快速傅里叶变换程序,下面有验证,你把数组doubleA[2049]={0};doubleB[1100]={0};doublepowerA[1025]={0};改成A[256]={0};B[130]={0};power[129]={0};就行了,voidFFT(doubledata[],intnn,intisign)的程序可以针对任何点数,只要是2的n次方具体程序如下:#include<iostream.h>#include"math.h"#include<stdio.h>#include<string.h>#include<stdlib.h>#include<fstream.h>#include<afx.h>voidFFT(doubledata[],intnn,intisign){//复数的快速傅里叶变换intn,j,i,m,mmax,istep;doubletempr,tempi,theta,wpr,wpi,wr,wi,wtemp;n=2*nn;j=1;for(i=1;i<=n;i=i+2)//这个循环进行的是码位倒置。{if(j>i){tempr=data[j];tempi=data[j+1];data[j]=data[i];data[j+1]=data[i+1];data[i]=tempr;data[i+1]=tempi;}m=n/2;while(m>=2&&j>m){j=j-m;m=m/2;}j=j+m;}mmax=2;while(n>mmax){istep=2*mmax;//这里表示一次的数字的变化。也体现了级数,若第一级时,也就是书是的第0级,其为两个虚数,所以对应数组应该增加4,这样就可以进入下一组运算theta=-6.28318530717959/(isign*mmax);wpr=-2.0*sin(0.5*theta)*sin(0.5*theta);wpi=sin(theta);wr=1.0;wi=0.0;for(m=1;m<=mmax;m=m+2){for(i=m;i<=n;i=i+istep){j=i+mmax;tempr=double(wr)*data[j]-double(wi)*data[j+1];//这两句表示蝶形因子的下一个数乘以W因子所得的实部和虚部。tempi=double(wr)*data[j+1]+double(wi)*data[j];data[j]=data[i]-tempr;//蝶形单元计算后下面单元的实部,下面为虚部,注意其变换之后的数组序号与书上蝶形单元是一致的data[j+1]=data[i+1]-tempi;data[i]=data[i]+tempr;data[i+1]=data[i+1]+tempi;}wtemp=wr;wr=wr*wpr-wi*wpi+wr;wi=wi*wpr+wtemp*wpi+wi;}mmax=istep;}}voidmain(){//本程序已经和MATLAB运算结果对比,准确无误,需要注意的的是,计算中数组都是从1开始取得,丢弃了A[0]等数据doubleA[2049]={0};doubleB[1100]={0};doublepowerA[1025]={0};charline[50];chardataA[20],dataB[20];intij;charch1[3]=" ";charch2[3]=" ";intstrl1,strl2;CStringstr1,str2;ij=1;//********************************读入文件data1024.txt中的数据,其中的数据格式见该文件FILE*fp=fopen("data1024.txt","r");if(!fp){cout<<"Openfileisfailing!"<<endl;return;}while(!feof(fp))//feof(fp)有两个返回值:如果遇到文件结束,函数feof(fp)的值为1,否则为0。{memset(line,0,50);//清空为0memset(dataA,0,20);memset(dataB,0,20);fgets(line,50,fp);//函数的功能是从fp所指文件中读入n-1个字符放入line为起始地址的空间内sscanf(line,"%s%s",dataA,dataB);//我同时读入了两列值,但你要求1024个,那么我就只用了第一列的1024个值//dataA读入第一列,dataB读入第二列B[ij]=atof(dataA);//将字符型的dataA值转化为float型ij++;}for(intmm=1;mm<1025;mm++)//A[2*mm-1]是实部,A[2*mm]是虚部,当只要输入实数时,那么保证虚部A[mm*2]为零即可{A[2*mm-1]=B[mm];A[2*mm]=0;}//*******************************************正式计算FFTFFT(A,1024,1);//********************************************写入数据到workout.txt文件中for(intk=1;k<2049;k=k+2){powerA[(k+1)/2]=sqrt(pow(A[k],2.0)+pow(A[k+1],2.0));//求功率谱FILE*pFile=fopen("workout.txt","a+");//?a+只能在文件最后补充,光标在结尾。没有则创建memset(ch1,0,15);str1.Format("%.4f",powerA[(k+1)/2]);if(A[k+1]>=0)str2.Format("%d %6.4f%s%6.4f%s",(k+1)/2,A[k],"+",A[k+1],"i");//保存fft计算的频谱,是复数频谱elsestr2.Format("%d %6.4f%6.4f%s",(k+1)/2,A[k],A[k+1],"i");strl1=strlen(str1);strl2=strlen(str2);//用法:fwrite(buffer,size,count,fp);//buffer:是一个指针,对fwrite来说,是要输出数据的地址。//size:要写入的字节数;//count:要进行写入size字节的数据项的个数;//fp:目标文件指针。fwrite(str2,1,strl2,pFile);fwrite(ch1,1,3,pFile);fwrite(ch1,1,3,pFile);fwrite(str1,1,strl1,pFile);fwrite(ch2,1,3,pFile);fclose(pFile);}cout<<"计算完毕,到fft_testworkout.txt查看结果"<<endl;}
2023-07-10 20:45:162

化油器与电喷的区别

动力方面,电喷比化油器更大一些。电喷最主要的作用就是控制空燃比和油气混合,使得燃烧更充分,释放出更大的功率。电喷喷油量精确省油,雾化好燃烧好动力强排放好,适应性好,海拔升高自动降低喷油量点火时间。而化油器排放无法支持最新标准,费油,冬天启动困难,操作不当有几率淹火花塞,无法根据需求调整喷油浓度,雾化效果差燃烧容易不充分。扩展资料:简单的化油器由上中下三部分组成,上部分有进气口和浮子室,中间部分有喉管、量孔和喷管,下部分有节气门等。浮子室是一个矩形容器,存储着来自汽油泵的汽油,容器里面有一只浮子利用浮面(油面)高度控制着进油量。中部的喷管一头进油口与浮子室的量孔相通,另一头出油口在喉管的咽喉处。喉管呈蜂腰状,两头大中间小,其中间咽喉处的截面积最小。当发动机启动时活塞下行产生吸力,吸入的气流经过咽喉处时速度最大,静压力却最低,故喉管压力小于大气压力,也就是说喉管咽喉处与浮子室之间产生了压力差,即有了人们常说的"真空度",压力差愈大真空度愈大。汽油在真空度的作用下从喷管出油口喷出,因为喉管咽喉处的空气流速是汽油流速的25倍,因此喷管喷出的油流即被高速的空气流冲散,形成大小不等的雾状颗粒,即“雾化”。初步雾化的油粒与空气混合成“混合气”,经节气门、进气管道(4)和进气门(5)进入气缸的燃烧室。在这里,节气门的开度大小和发动机的转速决定了喉管处的真空度,而节气门的开度变化直接影响着混合气的比例成份,这些都是影响发动机运行的重要原因。参考资料:化油器-百度百科
2023-07-10 20:45:2514

谁知道DFT和FFT的发展历史啊

  DFT/FFT的发展历史  离散傅里叶变换(Discrete Fourier Transform,DFT)是数字信号处理最重要的基石之一,也是对信号进行分析和处理时最常用的工具之一。在200多年前法国数学家、物理学家傅里叶提出后来以他名字命名的傅里叶级数之后,用DFT这个工具来分析信号就已经为人们所知。历史上最伟大的数学家之一。  欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = f(x)。他是把微积分应用于物理学的先驱者之一。 给出了一个用实变量函数表示傅立叶级数系数的方程; 用三角级数来描述离散声音在弹性媒介中传播,发现某些函数可以通过余弦函数之和来表达。 但在很长时间内,这种分析方法并没有引起更多的重视,最主要的原因在于这种方法运算量比较大。直到1965年,Cooley和Tukey在《计算机科学 》发表著名的《机器计算傅立叶级数的一种算法》论文,FFT才开始大规模应用。  那个年代,有个肯尼迪总统科学咨询委员会。其中有项研究主题是,对苏联核测试进行检测,Tukey就是其中一员。美国/苏联核测试提案的批准,主要取决于不实地访问核测试设施而做出检测的方法的发展。其中一个想法是,分析离海岸的地震计情况,这种计算需要快速算法来计算DFT。其它应用是国家安全,如用声学探测远距离的核潜艇。所以在军事上,迫切需要一种快速的傅立叶变换算法,这也促进了FFT的正式提出。  FFT的这种方法充分利用了DFT运算中的对称性和周期性,从而将DFT运算量从N2减少到N*log2N。当N比较小时,FFT优势并不明显。但当N大于32开始,点数越大,FFT对运算量的改善越明显。比如当N为1024时,FFT的运算效率比DFT提高了100倍。在库利和图基提出的FFT算法中,其基本原理是先将一个N点时域序列的DFT分解为N个1点序列的DFT,然后将这样计算出来的N个1点序列DFT的结果进行组合,得到最初的N点时域序列的DFT值。实际上,这种基本的思想很早就由德国伟大的数学家高斯提出过,在某种情况下,天文学计算(也是现在FFT应用的领域之一)与等距观察的有限集中的行星轨道的内插值有关。由于当时计算都是靠手工,所以产生一种快速算法的迫切需要。 而且,更少的计算量同时也代表着错误的机会更少,正确性更高。高斯发现,一个富氏级数有宽度N=N1*N2,可以分成几个部分。计算N2子样本DFT的N1长度和N1子样本DFT的N2长度。只是由于当时尚欠东风——计算机还没发明。在20世纪60年代,伴随着计算机的发展和成熟,库利和图基的成果掀起了数字信号处理的革命,因而FFT发明者的桂冠才落在他们头上。  之后,桑德(G.Sand)-图基等快速算法相继出现,几经改进,很快形成了一套高效运算方法,这就是现在的快速傅立叶变换(FFT)。这种算法使DFT的运算效率提高1到2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了良好的条件,大大推进了数学信号处理技术。1984年,法国的杜哈梅(P.Dohamel)和霍尔曼(H.Hollamann)提出的分裂基块快速算法,使运算效率进一步提高。  库利和图基的FFT算法的最基本运算为蝶形运算,每个蝶形运算包括两个输入点,因而也称为基-2算法。在这之后,又有一些新的算法,进一步提高了FFT的运算效率,比如基-4算法,分裂基算法等。这些新算法对FFT运算效率的提高一般在50%以内,远远不如FFT对DFT运算的提高幅度。从这个意义上说,FFT算法是里程碑式的。可以说,正是计算机技术的发展和FFT的出现,才使得数字信号处理迎来了一个崭新的时代。除了运算效率的大幅度提高外,FFT还大大降低了DFT运算带来的累计量化误差,这点常为人们所忽略。  分给我吧 哈哈
2023-07-10 20:46:1710

matlab程序画图

stem(n,x); 这句的错误,n和x的维度不一样,你一步步的运行试试 看看那儿出问题了(注意维度)
2023-07-10 20:46:421

分别求f(t)=t和f(t)=1/t的 傅里叶变换

f(t)=t不满足绝对可积,不符合傅里叶变换的存在条件 所以不存在傅里叶变换1/t傅里叶变换为 -i*3.14*sgn(w)
2023-07-10 20:46:572

《数字信号处理》中的DIT-FFT蝶形运算流图有谁看明白了?

按照图里的方法,把数带进去就能算了。
2023-07-10 20:47:051

简要叙述基2 DIT-FFT与基2 DIF-FFT快速算法运算流图的主要异同点。

DIT先乘以旋转因子后蝶形运算DIF先蝶形运算后乘以旋转因子
2023-07-10 20:47:331

抽样函数的傅里叶变换怎么算?

因为频域抽样函数,反变换回来时域就是方波) 序列福利叶变换的关系是特殊的"离散傅立叶变换",也就是时域序列被认为是各种方波抽样信号的叠加,认为复数的角度只取0和∏这两种情况,于是你就看到了序列的傅立叶变换。 序列的傅立叶变换,因为频率不再有意义(因为只有两种角度),所以X(k)之间只有顺序关系(原来是频移关系),通常写为Z变换。另外,虚机团上产品团购,超级便宜
2023-07-10 20:47:442

求傅里叶变化 详细过程 谢谢 又追加悬赏

尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:   1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;   2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;   3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;   4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;   5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)).   正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。   有関傅立叶变换的FPGA实现   傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。整体结构  一般情况下,N点的傅立叶变换对为:   其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。   N=8192点DFT的运算表达式为:   式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。   由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。   图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。蝶形运算器的实现  基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有:   A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? (4)   B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5)   C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)   D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7)   而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有:   A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8)   B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9)   C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10)   D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11)   在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。   以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好?便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。   图2 基2和基4蝶形算法的信号流图FFT的地址  FFT变换后输出的结果通常为一特定的倒序,因此,几级变换后对地址的控制必须准确无误。   倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下:   基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X?011 → x?110 ,即输入顺序为3,输出时顺序变为6。   更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如: X?0111 → x?1101 。即输入顺序为7,输出时顺序变为13。   在2k/4k/8k的傅立叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。旋转因子  N点傅立叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为:   FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。   根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。   实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅立叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。存储器的控制  因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。   为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样?FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。   为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。   在2k/4k/8k傅立叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。硬件的选择  本设计的硬件实现选用的是现场可编程门阵列(FPGA)来满足较高速度的需要。本系统在设计时选用的是ALTERA公司的STRATIX芯片,该芯片中包含有DSP单元,可以完成较为耗费资源的乘法器单元。同时,该器件也包含有大量存储单元,从而可保证旋转因子的精度。   除了一些专用引脚外,FPGA上几乎所有的引脚均可供用户使用,这使得FPGA信号处理方案具有非常好的I/O带宽。大量的I/O引脚和多块存储器可使设计获得优越的并行处理性能。其独立的存储块可作为输入/工作存储区和结果的缓存区,这使得I/O可与FFT计算同时进行。在实现的时间方面,该设计能在4096个时钟周期内完成一个4096点的FFT。若采用10MHz的输入时钟,其变换时间在200μs左右。而由于最新的FPGA使用了MultiTrack互连技术,故可在250MHz以下频率稳定地工作,同时,FFT的实现时间也可以大大缩小。   FFT运算结果的精度与输入数据的位数及运算过程中的位数有关,同时和数据的表示形式也有很大关系。一般来说,浮点方式比定点方式精度高。而在定点计算中,存储器数据的位数越大,运算精度越高,使用的存储单元和逻辑单元也越多。在实际应用中,应根据实际情况折衷选择精度和资源。本设计通过MATLAB进行仿真证明:其实现的变换结果与MATLAB工具箱中的FFT函数相比,信噪比可以达到65db以上,完全可以满足一般工程的实际应用要求。
2023-07-10 20:47:521

怎样理解卷积积分?

对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。
2023-07-10 20:48:122

怎么理解ofdm的cp将线性卷积转化为循环卷积

对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。复频域。s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。负的频率。之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
2023-07-10 20:48:191

如何画出4,8,16点基2 DIT-FFT和DIF-FFT的运算图?

如下:频域8点基2DFT。时域8点基2FFT。16点以此类推,两个8点。图像运算指以图像为单位进行的搡作(该操作对图像中的所有像素同样进行),运算的结果是一幅其灰度分布与原来参与运算图像灰度分布不同的新图像。具体的运算主要包括算术和逻辑运算,它们通过改变像素的值来得到图像增强的效果。算术和逻辑运算中每次只涉及一个空间像素的位置,所以可以“原地”完成,即在(x,y)位置做一个算术运算或逻辑运算的结果可以存在其中一个图像的相应位置,因为那个位置在其后的运算中不会再使用。换句话说,设对两幅图像f(x,y) 和h(x,y)的算术或逻辑运算的结果是g(x,y),则可直接将g(x,y)覆盖f(x,y)或h(x,y),即从原存放输入图像的空间直接得到输出图像。图像信号也具有频谱,虽然它的频谱比一般信号有更特别的解释。一般来说,图像频谱 的低频部分指那些灰度缓慢变化的部分,而高频成份意味着快速变化,往往是图像中物体的边缘。因为是从二维信号获得的频谱,所以包含着两个方向的频率数据。一个沿着图像的行, 一个沿着图像的列,因此,幅度和相位必须用第三维表示。一般在二维图上用不同的颜色强度表示这些量大小,或在三维图中用高度表示。二维DFT是首先沿图像的行作一维DFT,然后再沿中间结果数据的列作一维DFT。为提高计算速度,也存在2D FFT算法。一般要确定一幅图像需要图像的幅度和相位两部分信息,通过逆2D DFT变换即可精确还原图像。对于图像频谱,单独的相位谱往往携带了建立图像摹本的足够信息,而幅度却不能。
2023-07-10 20:48:261

数字信号处理中按时间和按频率抽选的4点FFT运算流图怎么画啊 高手教一下

这个用说的不容易说也不容易理解,建议还是弄本书来看,书上讲得很详细
2023-07-10 20:48:522

御泥坊和美即哪个好?御泥坊面膜和美即面膜哪个好?

御泥坊和美即都是比较常见的面膜护肤品品牌,御泥坊和美即都有很多不同系列的面膜产品,产品的价格都不是很贵,许多人想了解这两个品牌面膜的一些区别,更好的选择护肤产品,那么御泥坊和美即哪个好?御泥坊面膜和美即面膜哪个好?1、御泥坊和美即哪个好御泥坊,是一种护肤产品的名称。这种护肤产品是以湖南湘西边陲小镇——滩头古镇所特有的矿物泥浆(也称御泥)做原料而开发研制而成的。目前,该品牌产品已经形成系列天然矿物护肤品,依靠网络口碑相传,受到大量时尚知性女性的追捧,名列2007年度淘宝网化妆品终评榜最佳面膜。美即,面膜品类领导品牌,提供优质的面膜产品,让都市人在自己的时间与空间里,停下来享受美丽,在自由、轻松的面膜过程中获得身心愉悦。脚步停下的时候,悦享美即时刻。美即面膜的一刻是美丽的一刻,更是女性自由呼吸的一刻;美即面膜的一刻是疲倦的肌肤尽情舒解的一刻,更是心灵自由旅行的一刻。2、御泥坊和美即面膜比较(1)睡眠面膜对比美即子夜奇迹密集凝润睡眠面膜价格:149/120ml优点:质地清透易推开,Q弹水润的_喱质地一抹即润。深度补水且持久性强,清爽不油腻,还有丝滑的触感,用后皮肤水润、紧致。缺点:吸收的不是很快,起初会有点粘稠感,吸收后就好很多。效果单一,性价比不高。御泥坊玫瑰滋养矿物睡眠面膜价格:79.9/180g优点:淡淡的玫瑰香味,质地轻薄,延展性好,吸收快,滋润保湿的效果还不错。不会蹭到枕头上,保湿度也不错,第二天早上起来还是比较水润的。缺点:敷在脸上有点黏腻。部分油性肌肤用后起脂肪粒。敏感性皮肤敷上有刺痛感。(2)普通白面膜对比美即海洋冰泉补水面膜价格:10/片优点:美即面膜中补水效果最好的一款,即时补水功效非常强大,舒缓肌肤,可以用作晒后修复。特别适合干燥缺水的肌肤使用。缺点:面膜纸设计得太大,不适合小脸用。部分混合性肌肤使用会过敏。御泥坊美白嫩肤矿物营养面膜贴价格:9.9/片优点:精华液充足,水水嫩嫩的很保湿,美白效果不错。缺点:面膜纸又厚又硬,导致服帖度不好。裁剪不合理,难以贴合。(3)黑面膜对比美即黑藻酵力纯净润透面膜价格:18/片优点:竹炭膜布,柔软又服帖。精华充足,补水嫩肤效果特别好,有助于减少细纹的产生。缺点:没有“以黑吸黑”的清洁作用。御泥坊清爽平衡矿物蚕丝黑面膜价格:9/片优点:敏感肌也可以使用。蚕丝膜布,面膜剪裁到位、柔软亲肤,可以吸走黑头、粉刺和老化角质,敷完之后上妆更服帖。缺点:控油效果不太好。(4)蚕丝面膜对比美即流金丝语(水动力)深润面膜价格:25/片优点:面膜纸轻薄透气,贴合度非常高。温和不刺激,补水效果显著,精华液的吸收速度快,可以长久的保持肌肤水润。缺点:价格有点贵。御泥坊红酒焕白矿物蚕丝面膜价格:33/片优点:蚕丝膜柔软,裁剪度非常到位,能与皮肤完美贴合。针对肌肤干黄、暗沉、细纹有很比较好的效果。缺点:含酒精成分,对酒精过敏者慎用。性价比不高。3、补水面膜什么时候用1、补水的面膜一个星期可以用2-3次,在晚上用。用面膜最重要的还是要先把脸洗干净,不然用了就等于没用了。2、面膜时间15分钟到25分钟为宜,久了就把皮肤本来的水分给吸走了,反而不好,所以在那个时间敷最好。3、敷补水面膜的最好时间在每天在晚12时至凌晨3时是皮肤自行修补受损细胞的时候,因此在这段时间以前或睡前敷面膜最佳,有助于将养分随新陈代谢送入肌肤底层。4、.敷面膜前确保皮肤干净,只有把肌肤表层的油污、皮脂和老化角质彻底清除,肌肤才是真正的清洁,肌肤才会吸收更多的营养成分。所以敷面膜前,应先卸妆、洗脸。5、面膜后除去面膜,应用干净温水将脸上残留物洗净,再以冷毛巾敷面片刻,以促使毛孔收缩,最后涂上润肤化妆品。6、放松心情,面膜效果会更好,待面膜敷上脸后,禁止皱眉、大笑,且尽量避免大声说话。让自己在一个放松的环境下,静静呵护肌肤。
2023-07-10 20:45:051

将100微安表(表头内阻为2000欧姆)改装成50毫安表,计算出并联的分流电阻R(S)值

50mA说的是改表后总路的电流。表头并联一个电阻构成并联电路,并联电路两端的电压是100微安*2000欧姆=0.2伏特。50毫安-100微安就是分流电阻的电流,所以需要的并联电阻也就是分流电阻是0.2伏特/(50毫安-100微安)=4.008欧姆
2023-07-10 20:45:073

指环王中主角的名字?

伊利亚·伍德Elijah Wood (饰 佛罗多·巴金斯 Frodo) 伊安·霍姆 Ian Holm(饰 毕尔博·巴金斯 Bilbo Baggins) 伊安·麦克莱恩Ian McKellen(饰 甘道夫 Gandalf the Grey) 维戈·莫特森Viggo Mortensen(饰 阿拉贡 Aragorn) 肖恩·奥斯汀Sean Astin(饰 山姆·甘姆齐 Sam Gamgee) 奥兰多·布鲁姆Orlando Bloom (饰精灵莱戈拉斯 Legolas) 丽芙·泰勒Liv Tyler(饰 精灵公主阿尔温 Arwen) 雨果·维文 Hugo Weaving(饰 精灵王埃尔隆德 Elrond) 米兰达·奥托Miranda Otto(饰 罗翰国公主伊欧温 07owyn) 克里斯托弗·李Christopher Lee(饰 白袍萨茹曼 Saruman) 约翰·莱斯-戴维斯John Rhys-Davies(饰 矮人吉姆利/树须(配音) Gimli/Voice of Treebeard) 肖恩·宾 Sean Bean(饰 博罗米尔,摄政王长子 Boromir) 比利·伯伊德Billy Boyd(饰 佩里格林·图克 (皮平) Peregrin Took) 多米尼克·莫纳汉Dominic Monaghan(饰 梅利阿道克·布兰迪巴克(梅利) Meriadoc Brandybuck) 克拉伊格·帕克Craig Parker(饰 哈尔迪 Haldir) 凯特·布兰切特Cate Blanchett(饰 盖拉德丽尔夫人 Galadriel) 马尔顿·绍凯斯 Marton Csokas(饰 精灵王凯勒博恩 Celeborn) 卡尔·俄本Karl Urban(饰 罗翰国元帅伊欧墨 07omer) 伯纳德·希尔Bernard Hill(饰 罗翰国王塞奥顿 Théoden) 布拉德·道里夫 Brad Dourif(饰 葛力马·三寸舌 Grima) 大卫·温翰姆David Wenham(饰 法拉米尔,刚铎摄政王次子 Faramir ) 安迪·塞基斯Andy Serkis(饰 咕噜姆/斯米戈尔 Gollum/Smeagol ) 约翰·诺贝尔John Noble(饰 摄政王迪耐索 Denethor ) 劳伦斯·玛寇尔Lawrence Makoare(饰 强兽人首领鲁兹/戒灵王/魔多军兽人首领格斯枚苟 Lurtz/Witchking/Gothmog)
2023-07-10 20:45:071

奶茶里的珍珠、椰果、西米、仙草究竟都是啥?

奶茶里的珍珠究竟是什么“珍珠”?椰果是椰子的果肉吗?西米是怎么来的?仙草是草做的吗?本文,我们一起来聊聊奶茶里的那些配料们。 珍珠 有很多人喜欢喝珍珠奶茶,其实主要是喜欢里面Q弹、有嚼劲的“珍珠”。然而关于珍珠奶茶里的“珍珠”,却有很多耸人听闻的谣言:有人说是塑料做的,有人说是旧轮胎做的,甚至还有说是皮鞋底做的…… 其实,珍珠奶茶里的“珍珠”是以淀粉为主要原料制成的食品,又称为粉圆。最常用的是木薯淀粉,将木薯淀粉、黑糖(或红糖)混合揉成面团,再搓成一个个小圆子,然后放入沸水中煮至透明状,Q弹爽滑的“珍珠”就出炉了。为了有比较好的口感和嚼劲,还可以再加一些小麦蛋白和食品添加剂。 提到珍珠,就不得不提和它很类似的一种食物——芋圆。芋圆和珍珠做法类似,只不过原料不太一样。珍珠主要是以木薯淀粉为原料;而芋圆则以香芋淀粉为主,再加上红薯淀粉、紫薯淀粉或木薯淀粉等而制成,不同的原料可以制成不同种类的芋圆,颜色也比较丰富。 椰果 椰子是一种非常受欢迎的热带水果,打开椰子,将里面的椰子水喝掉之后,再掰开椰子壳,里面的果肉也可以直接食用。吃过椰肉的人都知道,椰肉是软软的,并不像奶茶和其他甜品里的椰果一样有嚼劲。那么,椰果究竟是什么呢? 椰果就是一种微生物纤维素,是以椰子水为主要原料,通过细菌的代谢作用,在培养液表面形成的乳白色凝胶状物质,又称为椰子凝胶。所以,椰果实际上是细菌的代谢产物,是一种膳食纤维食品,和椰子自然长出的果肉可完全是两回事,和椰子水还是有那么一点关系的。 不过,据说为了降低椰果的生产成本,培养细菌纤维素的原料已经不用椰子水了,而是用价格较低的人工配制培养液。如果真是这样,那椰果和椰子就彻底没关系了。 西米 生活中常见的米如小米、大米、紫米、黑米、薏米等都是通过种植庄稼直接收获的米,那么西米又是什么米?是种出来的吗? 西米,又称为西谷米,并不是直接种植出的米,而是一种加工出来的淀粉制品,正宗的西米是由西米树加工而成的。马来群岛常见的西米棕榈树中含有非常多的淀粉,将西米棕榈树的核或软核加工,通过机械处理(重击、研磨、制粉),浸泡、沉淀,然后烘干可以制成可食用的西米淀粉。西米淀粉再经过进一步的加工变成一粒粒的圆形颗粒,即为生的西米。食用前,将生西米放入沸水中煮一段时间,就会变成我们常见的晶莹剔透的样子了。 如今,市面上很多西米并不是用西米淀粉制成的正宗西米,而是用成本较低的豆类、薯类中提取的淀粉制成,其中以木薯淀粉最为常见。 仙草 奶茶和甜品中的仙草其实是仙草冻,是一种黑色果冻状的食物。那么仙草冻和仙草有什么关系?真的有“仙草”存在吗?仙草冻是草做的吗? 其实,还真有一种植物叫仙草,又称为仙人草、凉粉草、仙人冻。仙草虽然不能直接食用,但它却是一种药食两用的植物,从中可以提取多种有效成分,用于食品、保健品、药品等领域。其中一种重要物质就是仙草胶,广泛存在于仙草的叶、根、茎中,又以仙草叶中含量最为丰富。仙草胶的凝胶性好,热稳定性也优于一般的食品胶,可应用于果冻的生产,提高产品的弹性、韧性和咀嚼性,使其口感更加嫩滑,风味更为独特。仙草胶也是制备仙草冻的关键物质。 传统的仙草冻是以干仙草和淀粉为主要原料。将干仙草加水煎煮并过滤,再加入淀粉煮制,起锅后倒入模具中冷却凝固,便可制成仙草冻。仙草冻在粤港澳地区也被称为“凉粉”。烧仙草则是在仙草冻的基础上,加上煮熟的花生、红豆、银耳等配料,使其味道更加丰富。 然而传统的仙草冻制作工艺比较耗时,为了方便食用,仙草冻粉应运而生。仙草冻粉是以仙草和淀粉为原料,经过一定的加工工艺制成粉状。仙草冻粉加水和糖稍加煮制,或直接加开水和糖冲调即可制成爽口嫩滑、质地柔韧的仙草冻。 看到这里,相信大家对奶茶里的珍珠、椰果、西米、仙草等配料已经有了一定的认识。奶茶虽美味,但不可多喝,配料虽诱人,但不可多食,毕竟糖和淀粉含量都不低呢。 【参考文献】 [1]珍珠奶茶中的“珍珠”是什么,对人体是否有害?[J].食品安全导刊,2015(36):16. [2]陈正行,于秋生,徐晖.椰果发酵技术及食品中应用[J].食品科学技术学报,2017,35(02):13-15+57. [3]陈利梅,李德茂.椰果物质成分的综合分析与利用[J].热带农业科学,2002(06):50-53+75. [4]毕玉,方芳,洪雁,顾正彪.西米淀粉结构及消化特性[J].食品科学,2014,35(13):70-73. [5]蒋璇靓,段起,詹岳霖,王增焜,林河通.仙草开发与利用的研究进展[J].包装与食品机械,2014,32(02):58-63.
2023-07-10 20:45:081

有一个关于matlab的问题。希望大神帮忙解决。

可这样:h= fspecial("sobel"); h1 = h"; g1= imfilter(im, h,"symmetric","same"); g2 = imfilter(im, h1,"symmetric","same"); m=sqrt(double(g1).^2 + double(g2).^2);
2023-07-10 20:45:101

我15岁,胸超级大,该怎么办

楼主,你好!乳房一般可以分为2种,一种是乳腺型的,一种是脂肪型的。判定方法是这样的,你可以捏你副乳胳膊窝的地方,如果捏起来感觉里面有像米粒一样的东西那就是乳腺型的,如果捏起来就是一大块的话,那就是脂肪型的。如果是乳腺型的话胸是不容易瘦下去的,因为胸里面充满的是乳腺。而如果是脂肪的话就很容易瘦下去,从你开始减肥的那天开始,你的胸就会先开始缩水。正如别人讲的,女人瘦先瘦胸,胖先胖屁股。而乳腺型的胸多来自遗传或者天生基因好。所以就算这类型的MM节食减肥,胸也不会有很明显的缩水,除非很胖或者CUP原本就很大,可能会缩一个CUP。而且就算缩了也是有办法让胸再长回去的。所以如果是这类型的MM就恭喜你了。与之相对的脂肪型的胸就比较吃亏,虽然胸大,但是你也会很胖,好不容易减了啊,胸又没景色了。因为你的胸蕴藏着大量的脂肪,而当你减肥的时候,你身体会首先消耗你胸部的脂肪。所以很多MM一开始减肥胸就一点点变小。如果减肥很多,你的CUP可能会跳水哦!您可以选择器械BRAVA进行改善,利用胸罩来塑形毕竟不是长久之计。要真正让乳房的形状得到改善,得到健康又漂亮的胸型还得依靠自身的改变才行,BRAVA就是一个不二的选择,您只需连续10周每天使用10小时,乳房就能平均增长105CC(一个罩杯),跟随访问至今,乳房的增大效果持久无回缩,无副作用。对于哺乳期后出现乳房下垂回缩的女性,BRAVA可让乳房重新坚挺,解决下垂回缩的烦恼;对于人到中年皮肤松弛的女性,BRAVA可以收紧松弛皮肤,提升胸部,重回坚挺。改善乳房的外扩症状。
2023-07-10 20:45:132

简述将微安表改装为电压表的基本原理

先测出微安表的电阻 然后 串联一个 大电阻 根据你要做的量程 根据分压公式 计算出电阻值 串联接好 就是 电压表了 分压公式 r1/r2=u1/u2 楼下的 回答很到位
2023-07-10 20:45:131

怎样用MATLAB实现中值和均值滤波

中值滤波楼上答了,5*5的均值滤波代码 w2=fspecial("average",[5 5]); %% 先定义一个滤波器 h=imfilter(a,w2,"replicate"); %%让图像通过滤波器 imshow(h); imwrite(h,"8.jpg"); 均值滤波是I=medfilt2(a,[3 3],"symmetric")可以在matlab中查询medfilt函数的用法,本例是使用3*3的滤波器采用镜像边界法做均值滤波。
2023-07-10 20:45:022

如何使用自组电桥测量电表内阻,可否

通我所用测电阻主要伏安惠斯通电桥些测量象等电阻适宜于低电阻(0.1Ω)甚高电阻(1MΩ)测定即使测量等电阻由于所给条件同要求采用同面提些典型测量设计要求 1.需要测量5-10Ω未知电阻阻值提供器材:直流电源(3V左右)滑变阻器(0-200Ω)电阻箱(9999.9Ω)微安表(50μA内阻于数千欧姆)等 2.提供电池组(电势约3V)电阻箱(9999.9Ω)关等请设计简单实验测量3V量程电压表内电阻 3.请用惠斯通电桥测微安表内电阻提供器材:干电池关(2)电阻箱滑变阻器单臂滑线式电桥许认少重要仪器检验电桥平衡检流计缺少疏忽请脑筋吧 4.现蓄电池、电流表各电阻R0已知电阻两关、导线若干要求用给器材设计测定未知电阻RX电路并测RX阻值 5.假设屋内电路电能表(电度表)用交流220伏供电收录机请设测用320伏电压供电电炉工作电阻 浮萍精灵 答采纳率:22.7% 2008-09-18 20:44 检举 1.压测电阻 2.用伏安测电阻 3.半偏测电阻 4.替代测电阻 5.平衡电桥 6.电压补偿测电阻 7.欧姆表测电阻 8.特殊测电阻种提问觉没意义自找资料吧
2023-07-10 20:44:571

泰国仙草是什么

泰国仙草,即金鸡毛草,它学名叫“白背三七”。简介:泰国仙草,多年生草本,高30~50厘米。根茎块状。 茎紫红色,被短毛。主要作用是清洗血液,清洗红细胞,加强红细胞,防止血栓,清热解毒,提取剂可用于治疗毒蛇咬伤,疗效显著。原产于新加坡,中国主要分布在台湾和华南、西南一带。参考百度百科:http://baike.baidu.com/view/2964644.htm
2023-07-10 20:44:563

山西的特产有哪些?

问题一:山西特产有哪些? 产品包括: 山西土特产品 山西红枣:散枣有交城骏枣、稷山红枣、稷山贡枣、稷山板枣、太谷壶瓶枣、柳林滩枣、黄河滩枣、运城相枣、芮城糖枣、香脆枣、酥脆枣、酒 枣醉枣、野生酸枣、山楂蜜饯等; 红枣品牌有天娇红枣、大唐枣、汉波枣、汉唐枣、汉阔枣、丰滋枣、鑫仁和枣、天渊枣、晋特好枣、恒丰枣、嘉荣枣、鸿潮枣、兴谷枣、后稷枣、晋谷香枣、晋源村枣、欣源枣、胃乐枣等; 汾阳核桃、汾州核桃、纸皮核桃、绵核桃、散核桃、核桃仁、核桃露、杏仁、南瓜子仁等各地干果; 山西老陈醋、陈醋、名醋、四味醋、手工醋、保健醋、保健醋口服液、醋爽、醋糕、保健醋糕、紫苑黑苦荞醋软胶囊、紫苑黑小麦醋胶囊等; 醋品牌有益源庆宁化府醋、水塔醋、东湖醋、紫林醋、笑星醋等; 山西汾酒、山西杏花村汾酒、山西杏花村竹叶青酒、汾阳王酒、龟龄集酒、定坤丹等; 平遥牛肉、平遥的牛肉、山西平遥牛肉、山西平遥古城牛肉、冠云平遥牛肉、云青平遥牛肉、宝聚源平遥牛肉、冠陶平遥牛肉、六味斋肉食等; 交口沙棘、维仕杰沙棘、沙棘汁、沙棘果罐头、沙棘果珍、沙棘果糕、沙棘籽油软胶囊、沙棘果油软胶囊、沙棘紫苏油软胶囊、沙棘枸杞油软胶囊等; 恒山黄芪、浑源正北芪、炮台芪、五花芯党参、上党党参、潞党参、佳鑫苦荞健茶、鸿舟银杏茶、华莲牛心柿叶茶、阿胶、薏仁粉、五台山台蘑、五台山野生台蘑、五台山金莲花、五台山野生红花、五台山野生灵芝、五台山野生雪菜、芦芽山野生菇、天然枸杞、大同黄花菜、沁源野 生山珍菜、沁源野生地皮菜、五寨蕨根粉、五寨干豆角、沁源野生黄花菜、沁源野生松针菇、沁源野生黑木耳、沁河源金针、沁河源香菇、蘑菇等; 沁县小米、沁州黄小米、檀山皇小米、安敦堂小米、吴阁老沁州黄小米、汾州香小米、颐养文湖小米、散小米等; 太谷饼、太谷的饼、孟封饼、闻喜煮饼、石头饼、巴饼、运康锅巴、平遥长山药粉、寿阳豆腐干、快乐牌美味肉蓉面、大寨黄金饼、柳林 *** 、柳林碗团、柳林碗脱子、柳林碗秃、荞面碗团、柳林芝麻饼等特色小吃; 三晋五谷杂粮、莜面、莜麦面、荞面、豆面、燕麦粉、玉米糁、高粱面、红面、玉米面、糕面、黄米面、炒面、黄豆、红豆、绿豆、胡麻油、削面刀、核桃夹; 野生珍品、原平梨、永济青柿、临猗石榴、长治山楂、山西夏县莲菜、虞乡的柿子、高平的罗卜、晋城的葱、曲沃的旱烟、平顺花椒、清徐葡萄、清徐的葡萄、山西拉面削面等数百种名优土特产品; 山西民间工艺品 平遥推光漆器、平遥推光漆器首饰盒、桌屏、围屏、屏风、漆盘、圆盘、手镯、梳妆镜、镜子、梳子、戒指、耳坠、民俗挂饰、螺钿彩贝首饰盒、雕漆、漆雕、中国结、新绛云雕、大同煤雕、大同铜器、大同毛挂毯、太原铁器、翔龙黑陶、平定砂货、平定砂锅、平定沙锅、五台山澄泥砚、孝义皮影、晋南剪纸、阳泉平定刻花瓷、社火脸谱、平阳木板画、五谷画、布艺画、木雕、烙烫葫芦、京剧脸谱、应县木塔、核桃皮工艺品、山西乡绣、绣花鞋垫、粗布鞋垫、布老虎、黎候虎等近千种民间艺术品。 参 问题二:山西特产有哪些 山西省特产: 在山西,名产以汾酒、竹叶青最为有名。清除老陈醋、太原葡萄酒也并不逊色,知名度颇高,而且独树一帜,盛名中外。此外,五台山“台砚”、大同黄花、恒山黄芪、稷山板枣、平陆百合、蒲州青柿、垣曲猕猴桃、清除葡萄、上当“党参”、晋城红果、代县辣椒、“沁州黄”小米、晋祠大米、太谷中药“龟龄集”、定坤丹、洪洞甲鱼、运城黄河鲤鱼、高平丝绸、平阳木板年画、大同艺术瓷、铜器、平遥推光漆具均属名产之列。 晋祠大米,产于太原晋祠镇一带。这种大米,颗粒长,个头大,外形晶莹饱满,呈斗半透明状,米色微褐,做出饭来颗粒分明,香气扑鼻。吃到嘴里,味香甜,有韧性、粘性,有咬头。晋祠大米所以质地优良,是由于水上关系。生产这种大米的稻田,用晋祠难老泉水浇地,这种水水温低,含有明矾等矿物质,加之晋祠附近村庄土地肥沃,土壤呈黑色,有利于水稻生长。 醋:山西陈醋,全国闻名,追溯历史,酿醋至迟在春秋时已开始,经历代的改进发展,到了清代,酿醋工艺精益求精,形成了闻名全国的山西陈醋和太原特醋。它以高粱为原料,特曲发酵,经夏晒东冰,一年时间,醋的浓度、香度提高,才成为陈醋。山西陈醋以清徐产品最有名。太原特醋以溢源庆醋坊最为有名。开始只是一个磨面坊的副业,到1921年才以酿醋为主,所生产的醋,甜、棉、酸、香、浓。太原生产的醋不仅本省人民喜爱,而且行销全国。 清徐葡萄,产于太原清徐县境内,这里是国内著名的葡萄产区之一,素有“葡萄之乡”的美称。清徐葡萄已有一千余年的栽培历史,葡萄产地主要分布在县城西北一带的山区。这里生产的葡萄品质优良、味美香甜、色泽鲜艳、含糖量高。唐朝诗人刘禹锡来并州曾写有葡萄歌,赞美清徐葡萄。葡萄产地的土质、阳光、气候、水源都适宜葡萄的生长。经过多年的积累,已形成一套完整的栽培管理技术,养植经验。清徐葡萄现有五十多个品种,最著名的优质品种为白瓶儿、黑鸡心、紫龙眼三种,其中白瓶儿葡萄为最好,每粒约七、八分,直径达三、四分。 葡萄酒:太原葡萄酒在唐朝时已经很有名气,是给皇帝的贡品。宋朝大文学家、历史学家司马光,在他的诗句中就有“山寒太行晓,水碧晋祠春,斋酿葡萄熟,飞觞不厌频。”盛赞太原葡萄酒的醇香。太原葡萄酒来自清徐,这里历史上就以盛产葡萄酒闻名,主要产地在西山边山、马峪、高白、城关等乡。长期以来,太原葡萄酒以古传统独特方法酿制,质量上乘,长胜不衰。 汾酒:汾酒是山西省杏花村汾酒厂生产的白酒。始酿于南北朝时代,距今已有1500多年的历史。汾酒“入口绵,落口甜,酒后有余香”,以色、味、香三绝著称,是我国八大名酒之一。汾酒曾在1916年巴拿马国际博览会上获得一等优胜金质奖。新中国成立后,多次获得国务院颁发的金质奖。已行销40多个国家和地区。 竹叶青酒:杏花村汾酒厂产,是汾酒的再制品,酿造历史悠久。竹叶青以汾酒做原料,配以陈皮、砂仁、当归、零陵香、公丁香、广木香、紫檀香等十余种中药材和经蛋青、竹叶、冰糖浸泡而成,酒精含量为45度。酒色青绿,晶莹透明。经科学鉴定,具有和胃、消食、除烦的功效,对心脏病、高血压、冠心病、关节炎都有一定的疗效。纯正香美的汾酒、竹叶青酒,都要经过5道关口、27条防线和120道工序反复检验合格才能包装上市。因此,也可见酒之品质。 五台山砚,简称“台砚”。因取石料于文山,亦名文山石砚。五台山砚石料分黑、绿、红、紫四种。黑如漆、绿如叶、红如丹、紫如肝、颜色纯净美观。石砚生产始于明代,有段砚、凤砚、崞砚之别。台砚石纹犹如五台山的松枝柏叶,遒劲疏朗,刚中有柔;质地细腻不滑,叩之无声,性凉如冰;用之发黑快,水墨交融,浓淡相宜,汗......>> 问题三:山西特产有哪些?? 汾州核桃 山西汾酒 灵丘莜麦面 运城池盐 大蒜 黄河鲤鱼 山西香醋 竹叶青酒 稷山板枣 木版年画 菖蒲酒 玉堂春酒 沁州黄小米 大同火锅 北芪黄酒 晋祠大米 平遥牛肉 闻喜煮饼 太谷壶瓶枣 恒山白酒 六味斋酱肉 山西熏醋 运城相枣 上党腊味驴肉 汾州核桃 山西汾州核桃历史悠久,其核仁味道甘美,富脂肪和蛋白质,不论生食或制成糕点糖果,均清香可口。还是一种益智健脑食品,能补气 益血,润燥化痰,治肺润肠,且味甘平,对于 “温补肾肺,定喘化痰”有一定的疗效。 问题四:山西特色小吃有哪些 山西有什么特色美食?山西著名的特色小吃有哪些?来山西旅游的朋友一定不可以错过极具山西地方特色的美食,今天土贡源特产网就为大家盘点下山西的特色美食小吃,吃货们一定不要错过哦~ 1.山西面食。 有句话说的好,“世界面食在中国,中国面食在山西。”山西面食可以说是名扬天下。山西面食品种多样,面食原料多样,如:小麦粉、高粱面、豆面、荞面、莜面等,形式多样,如:刀削面、拉面、猫耳朵、面片儿、圪培面、推窝窝、 *** 等,简直是一面百样、一面百味。面食在山西按照制作工艺来讲,可分为蒸制面食、煮制面食、烹制面食三大类。 2.长治羊汤 长治壶关羊汤一大特点是讲究尝全羊,即一碗汤中要有七八个羊肉饺子、三五个羊肉丸子、几块炖肉、血条、脂油与头、蹄、口条及胃、肠、心、肝、肺、腰等内脏切成的条条或块块,除羊的皮毛之外,应有尽有,连羊骨髓也熬在老汤中,难怪它能大补元气了,让人闻其香而思其味。 3、定襄蒸肉 。食材主要以精瘦猪肉肉糜为主,加上土豆、淀粉、植物油、调味品制成。具有肉香扑鼻,回味无穷,多食不腻等特点,经常食用既补充必要的多种营养成份,又克服了肉类食品高脂肪、高胆固醇等弊病。做出来的有肉香却不见肉影的一种特色美食。此菜冷热均可食用,味道堪称一绝 4、大同兔头 初到大同的朋友,可不要被这道特色美食的外表吓蒙,如拳头大小的兔子头,一锅一锅的出现在大同大街小巷的餐馆之中。兔头的味道有酱香,有麻辣,滋味那叫一个足,吃着那叫一个过瘾。 5、平遥牛肉 闻其香而提其神,品其味而解其困“这是对平遥牛肉的描写,据说慈禧太后吃了以后都赞不绝口,可想而知这平遥牛肉是何等的美味,这是来山西一定要吃的东西哦。 6、忻州瓦酥 忻州瓦酥,外表呈瓦片形状,长10厘米、宽4厘米、厚0.5厘米,内外皆呈金黄色,上印“忻州瓦酥”字样。其质酥脆,味甜香郁,堪称炉食中之一绝。久放色味不变,常食有健胃壮身的功用 7、山西黄米油糕 不同于江米糕那么细腻嫩白,黄米油糕主要以黄米为原材料,然后用熟黄米包红小豆泥茸,油炸而成。吃时撒少许白糖。外焦里嫩,色泽金黄,香味扑鼻,甜香可,嚼劲十足,而且可以做各式糕点。山西的黄米糕,属于粗粮,吃着养人,接地气儿。 8、山西不烂子 不烂子名字土,但是做法讲究。不烂子将蔬菜(如土豆、茄子、豆角等)拌入面粉,搅拌均匀后上笼蒸熟,之后可以炒食也可以拌食。春末榆树槐树开花时也可以用榆钱、槐花做食材。 9、山西碗托 碗托有白面碗托,也有荞面碗托,食客可以根据自己的饮食习惯选择,而碗托的吃饭也多种多样,可以凉拌,食用时有一种凉爽、清香、光滑可口的感受。也可以热炒,将炒瓢内入入熟猪油,加入葱蒜后,将切成条状的碗倒入,加山药蛋丝或豆芽菜,再加大料水、酱油、醋等调味品。炒熟后香味四溢,诱人馋涎欲滴。 10、山西花馍 山西人出了名的手巧,剪窗花,做花馍,处处都能展现心灵手巧。一个个的花馍,又暄又白,造型独特,来到山西不见识这巧夺天工的花馍可是吃货们的一大损失。 问题五:山西有什么特产? 山西特产风味 汾阳杏花村汾酒,竹叶青酒,祁县六曲香酒,长治潞酒,清徐香醋,陵州玉泉陈醋;稷山,运城,临汾,芮城,太谷等地枣子,原平梨,清徐葡萄,永济青柿;大同黄花,沁州黄米,平顺花椒,永治党参;手工业名产并州(太原)刀剪,大同艺术陶瓷,阳泉铁锅;山西风味菜肴名点并州火锅, *** 全羊大菜,平遥牛肉,头脑(以羊肉,山药,藕根,黄芪等多种补品制成),山西刀削面,太谷饼,黄米油糕等。 问题六:山西著名特产有哪些 山西土特产 ◆ 著名土特产 粮油类 “沁州黄”小米 “东方亮”小米 “汾州香”小米 晋祠大米 优质软米 黄豆 绿豆 红小豆 红芸豆 苦荞麦 爆烈玉米 小蘑香油 精制葵花籽油 山西面食 太原面食 绿色食品类 苦荞挂面 健康牌燕麦片 右玉燕麦片 精制莜面 营养方便面 五仁小米营养糊 恒山牌粉丝 雁牌粉丝 桑干牌强化奶粉 古城牌奶粉 “雁音”牌全脂甜奶粉 “滹沱河”牌全脂甜奶粉 红卫牌母乳化奶粉 红卫牌全脂甜奶粉 百福中老年奶粉 小天使婴儿奶粉 大槐树牌全脂牛奶粉 大槐树牌全脂甜羊奶粉 槐花蜂蜜 平遥牛肉 闻喜煮饼 天然开口松 中华乌鸡酥 乌鸡双宝 乌鸡双降宝 野餐牛排 沙棘原汁 沙棘清原汁 沙棘浓缩汁 沙棘罐头 沙棘果油 平衡人体营养液 太谷饼 清和元头脑 名醋 东湖牌老陈醋 东湖牌保健醋 山西白醋 水塔牌陈醋 四眼井牌薰醋与陈醋 绵山牌陈醋与健身醋 多福牌“北芪醋” 绵山牌健身醋 寨泉牌老陈醋 荞麦健身醋 苦荞保健醋 壶关县老陈醋 浍汾牌米醋 瑶泉牌老陈醋 山西老陈醋 干果鲜品类 红星苹果 红富士苹果 秦冠苹果 代县酥梨 新品种晋蜜梨 沙金红杏 晋城山楂 金星桃 瑰宝葡萄 秸山板枣 积极德油枣 交城骏枣 柳林木枣 太谷壶瓶枣 运城相枣 芮城屯屯枣 弥猴桃 汾州核桃 花椒 无核糖枣 枣泥 核桃仁系列产品 琥珀核桃仁罐头 天然核桃乳汁 京杏脯 高Vc山楂蜜饯 万荣桔蜜柿饼 平定果丹皮 红枣饴 珍稀疏菜 五台山蘑菇 垣曲野生猴头 平陆百合 平遥长山药 代县辣椒 紫皮大蒜 脱水蔬菜 北芪菇 大同黄花菜 洪洞莲藕 苦菜罐头 野生苦菜罐头 蕨菜 芥菜丝 名贵药材 党参 甘草 金银花 恒山黄芪 连翘 山萸 生地 猪苓 赤芍 黄芩 紫苏子 板兰根 苦荞降糖茶 龟龄集 手工艺品 五台山砚台 民间剪纸 仿古花瓶壁挂 木珠系列产品 如意牌烫花系列产品 广灵大理石雕塑 压花工艺品 推光漆器 平定砂货 大同铜火锅 汾酒类 汾酒 竹叶青 玫瑰 问题七:山西什么特产适合送人 山西土特产介绍 山西土特产 汾州核桃 山西汾酒 灵丘莜麦面 运城池盐 大蒜 黄河鲤鱼 山西香醋 竹叶青酒 稷山板枣 木版年画 菖蒲酒 玉堂春酒 沁州黄小米 大同火锅 北芪黄酒 晋祠大米 平遥牛肉 闻喜煮饼 太谷壶瓶枣 恒山白酒 六味斋酱肉 山西熏醋 运城相枣 上党腊味驴肉 汾州核桃 山西汾州核桃历史悠久,其核仁味道甘美,富脂肪和蛋白质,不论生食或制成糕点糖果,均清香可口。还是一种益智健脑食品,能补气 益血,润燥化痰,治肺润肠,且味甘平,对于 “温补肾肺,定喘化痰”有一定的疗效。 山西汾酒 汾酒产于山西汾阳县杏花村酒厂。 相传杏花村于公元五世纪就开始酿酒,距今已有一千四百多年的历史。汾酒在唐代已有盛名唐代诗人杜牧的《清明》里写道:“清明时节雨纷纷,路上行人欲断魂;借问酒家何处有?牧童遥指杏花村。” 汾酒是我国清香型白酒的典型代表,具有清香纯正、醇厚绵软、甜润净洁的特点。汾酒虽为60度高度酒,但没有强烈的 *** 性。 灵丘莜麦面 山西灵丘气候寒冷,无霜期短,适合种植莜麦。莜麦经过淘洗、晒晾、炒熟、磨制成面,名曰“莜面”。 莜面的吃法花样非常多,有推窝窝(即拷栳栳)、搓个卷、推刨渣、搓鱼儿、压烙……等。莜面性寒,必须经过“三熟”,方可进食。即先把莜麦炒熟,磨成面;再把莜面用开水泼熟,和好以后,做成各种花样蒸熟(约15分钟左右)。吃的时候可分冷热两种菜:冷菜是烧茄子、拌黄瓜丝、水萝卜丝,再配以盐汤辣子炝油,菜与莜面拌起来,清香可口;热菜是羊肉臊子,配点蘑菇,开笼后将莜面蘸上羊肉蘑菇鲜汤,更是香味扑鼻,美不可言。 运城池盐 产于山西运城。是盐湖中主要资源硫酸钠、氯化钠、硫酸镁的矿藏总储量达八千三百七十多万吨。溴、钙、碘、钾、硼以及锂、刨、锶、镓、铷等多种稀有元素的储量也很丰富。还有一种与盐共生的硝板,即白钠镁矾,其主要成分是硫酸钠、硫酸镁的复盐,厚度2-4米,贮量为一千六百多万吨矿体露出地表。这是经过前人几千年产盐而形成的一种得天独厚的宝贵资源。 大蒜 产于山西灵丘。《后汉书》云:一天,名医华佗遇到一辆车上躺着一个病人,这人得的是一种怪病,喉咙眼里象噎住了东西,吃饭咽不下去。华佗诊视后,对病家说,你到饭铺里去买二升蒜和醋来,令病人吃下去。华佗走后,没有多久,病人就吐出一条蛇来。病家拿着蛇找华佗道谢,见华佗屋里的墙壁上挂着数十条蛇,才知道华佗的医术高明。此虽神奇之说,姑置勿论,但祖国医学实践总结肯定,大蒜为“除风邪,杀毒气”。因而,大蒜的杀菌作用是千真万确的。大蒜消毒、杀菌、去腥、解腻,使菜肴更加味美可口的功能。在夏季凉拌冷菜和凉拌面食中酌加此品,并能“解暑气”,增加食欲,促进人体健康。具有防癌、抗癌,减缓老化和保持健美的作用。 黄河鲤鱼 主要产于河津、永济、芮城、垣曲等县的黄河之中。黄河鲤鱼历史悠久,源远流长。早在春秋时代就有名气,史书上曾有“黄河之尺鲤,本在虞津居”之记载。在古代医林篡药上也有记载:“彩而金者,洛鲤最贵,江汉次之,昊会而下”,并有“一登龙门而身价百倍”之美谈,历史上曾作为贡品上贡朝廷。黄河鲤鱼以肉质鲜嫩、营养丰富而闻名全国,已列为中国四大名鱼之首。黄河鲤鱼体内含钙、磷营养素较多,剌少肉多,个大味美。具有和脾养肺、平肝补血之作用,常食鲤鱼对肝、眼、肾、脾等病有一定疗效,还是孕妇的高级保健食品,经济价值很高。 山西香醋 要提到山西,最不能忘记的是醋,山西酿醋有悠久的历史,主要分熏醋和陈醋,分别以太原益源庆和清徐老陈醋最为有名,山西的醋有独特的沁香和悠长的后味,绝对称得上中国最好的醋。......>> 问题八:山西特产有哪些 吕梁红枣,汾阳核桃 ,隰县苹果、梨,清徐葡萄,运城山楂 孝义的柿子等 问题九:山西太原有哪些特产? 太原市地肥水美物产丰富。清徐葡萄、晋祠大米、老陈醋都是四海享誉的名产。 ◎ 太谷壶瓶枣-左权特产 ◎ 左权特产-花椒 ◎ 沙棘的故事 ◎ 三黄二白--大同特产 ◎ 黄烧饼--大同特产 ◎ 小堡葡萄--大同特产 ◎ 下韩砂锅--大同特产 ◎ 阳泉特产 平定陶瓷介绍 ◎ 北岭牌食醋/老陈醋/米醋/熏醋/蒜醋--阳泉名品特产 ◎ 平定黄瓜干--阳泉名品特产 ◎ 核桃--阳泉名品特产 ◎ 阳泉特产 阳泉铁锅介绍 ◎ 朔州特产 胡油介绍 ◎ 朔州特产 沙棘汁介绍,高级饮料和滋补佳品 ◎ 朔州特产 “古城”牌全脂奶粉介绍,全国优质产品 ◎ 油果子---朔州特产 ◎ 虹鳟鱼---朔州特产 ◎ 红堤葡萄--山西临汾土特产 ◎ 官滩枣--山西临汾土特产 ◎ 浮山剪纸--山西临汾特产 ◎ 晋祠元宵--太原特产 ◎ *** --太原特产 ◎ 太原大蒜 太原特产 ◎ 阳曲白桃 太原特产 ◎ “白马掌”小米 太原特产 ◎ 阳曲大红 太原特产 ◎ 揪片 太原特产 ◎ 阳曲国光---太原特产 ◎ 阳曲酥梨---太原特产 ◎ 太原特产---太原河漏 ◎ 太原号腐干--太原特产 ◎ 太原特产---拨鱼 ◎ 忻州特产---忻州当地特产详细介绍 ◎ 山西吕梁特产--胡麻 ◎ 山西吕梁特产--甘草 ◎ 山西吕梁特产--沙棘--方山县特产 ◎ 山西吕梁特产--柏籽羊 ◎ 吕梁特产--柳林碗团 ◎ 山西吕梁特产---临县红枣 ◎ 吕梁老区特产永味香瓜子 ◎ 吕梁特产---柳林芝麻饼 ◎ 太源井晒醋 ◎ 吕梁特产--红芸豆 ◎ 平遥县碗托儿(晋中特产) ◎ 六合枕 ◎ 长治市的著名特产--山楂饼 ◎ 长治特产--高平县著名风味小吃--烧豆腐 ◎ 长治特产--黎城县黎侯虎 ◎ 长治潞绣 ◎ 大风丸,古潞州传统名药,山西省优质产品 ◎ 长治特产--上党三宝 ◎ 长治市潞酒(山西名酒潞酒) ◎ 长治潞城草帽辫 ◎ 长治堆花,是长治一项传统的手工艺品 ◎ 中国月饼之乡-山西 忻州 神池县 ◎ 中国红枣之乡-山西 运城 稷山县 ◎ 中国玉米良种之乡-山西 长治 屯留县 ◎ 中国核桃之乡-山西 晋中 左权县 ◎ 中国核桃之乡-山西 长治 黎城县 ◎ 中国酥梨之乡-山西临汾隰县 问题十:谁知道山西有哪些干货特产么? 汾州核桃 山西汾酒 灵丘莜麦面 运城池盐 大蒜 黄河鲤鱼 山西香醋 竹叶青酒 稷山板枣 木版年画 菖蒲酒 玉堂春酒 沁州黄小米 大同火锅 北芪黄酒 晋祠大米 平遥牛肉 闻喜煮饼 太谷壶瓶枣 恒山白酒 六味斋酱肉 山西熏醋 运城相枣 上党腊味驴肉 汾州核桃 山西汾州核桃历史悠久,其核仁味道甘美,富脂肪和蛋白质,不论生食或制成糕点糖果,均清香可口。还是一种益智健脑食品,能补气 益血,润燥化痰,治肺润肠,且味甘平,对于 “温补肾肺,定喘化痰”有一定的疗效。 山西汾酒 汾酒产于山西汾阳县杏花村酒厂。 相传杏花村于公元五世纪就开始酿酒,距今已有一千四百多年的历史。汾酒在唐代已有盛名唐代诗人杜牧的《清明》里写道:“清明时节雨纷纷,路上行人欲断魂;借问酒家何处有?牧童遥指杏花村。” 汾酒是我国清香型白酒的典型代表,具有清香纯正、醇厚绵软、甜润净洁的特点。汾酒虽为60度高度酒,但没有强烈的 *** 性。 灵丘莜麦面 山西灵丘气候寒冷,无霜期短,适合种植莜麦。莜麦经过淘洗、晒晾、炒熟、磨制成面,名曰“莜面”。 莜面的吃法花样非常多,有推窝窝(即拷栳栳)、搓个卷、推刨渣、搓鱼儿、压烙……等。莜面性寒,必须经过“三熟”,方可进食。即先把莜麦炒熟,磨成面;再把莜面用开水泼熟,和好以后,做成各种花样蒸熟(约15分钟左右)。吃的时候可分冷热两种菜:冷菜是烧茄子、拌黄瓜丝、水萝卜丝,再配以盐汤辣子炝油,菜与莜面拌起来,清香可口;热菜是羊肉臊子,配点蘑菇,开笼后将莜面蘸上羊肉蘑菇鲜汤,更是香味扑鼻,美不可言。 运城池盐 产于山西运城。是盐湖中主要资源硫酸钠、氯化钠、硫酸镁的矿藏总储量达八千三百七十多万吨。溴、钙、碘、钾、硼以及锂、刨、锶、镓、铷等多种稀有元素的储量也很丰富。还有一种与盐共生的硝板,即白钠镁矾,其主要成分是硫酸钠、硫酸镁的复盐,厚度2-4米,贮量为一千六百多万吨矿体露出地表。这是经过前人几千年产盐而形成的一种得天独厚的宝贵资源。 大蒜 产于山西灵丘。《后汉书》云:一天,名医华佗遇到一辆车上躺着一个病人,这人得的是一种怪病,喉咙眼里象噎住了东西,吃饭咽不下去。华佗诊视后,对病家说,你到饭铺里去买二升蒜和醋来,令病人吃下去。华佗走后,没有多久,病人就吐出一条蛇来。病家拿着蛇找华佗道谢,见华佗屋里的墙壁上挂着数十条蛇,才知道华佗的医术高明。此虽神奇之说,姑置勿论,但祖国医学实践总结肯定,大蒜为“除风邪,杀毒气”。因而,大蒜的杀菌作用是千真万确的。大蒜消毒、杀菌、去腥、解腻,使菜肴更加味美可口的功能。在夏季凉拌冷菜和凉拌面食中酌加此品,并能“解暑气”,增加食欲,促进人体健康。具有防癌、抗癌,减缓老化和保持健美的作用。 黄河鲤鱼 主要产于河津、永济、芮城、垣曲等县的黄河之中。黄河鲤鱼历史悠久,源远流长。早在春秋时代就有名气,史书上曾有“黄河之尺鲤,本在虞津居”之记载。在古代医林篡药上也有记载:“彩而金者,洛鲤最贵,江汉次之,昊会而下”,并有“一登龙门而身价百倍”之美谈,历史上曾作为贡品上贡朝廷。黄河鲤鱼以肉质鲜嫩、营养丰富而闻名全国,已列为中国四大名鱼之首。黄河鲤鱼体内含钙、磷营养素较多,剌少肉多,个大味美。具有和脾养肺、平肝补血之作用,常食鲤鱼对肝、眼、肾、脾等病有一定疗效,还是孕妇的高级保健食品,经济价值很高。 山西香醋 要提到山西,最不能忘记的是醋,山西酿醋有悠久的历史,主要分熏醋和陈醋,分别以太原益源庆和清徐老陈醋最为有名,山西的醋有独特的沁香和悠长的后味,绝对称得上中国最好的醋。 竹叶青酒 山西竹叶青酒,是以优质汾酒为底酒,配......>>
2023-07-10 20:44:541

为什么在使用微安表等各种电表时,希望指针在满量程的2/3范围内使用

指针在2/3范围时读数会准点,打个比方说,要测量一个电路大概是25ma的电流时,如果用指针万用表打到500ma或1A档,那么指针只摆动一两格而已,读数看不准!但打到50ma档时,指针就摆到一半左右,读数非常直观,即是25ma!所以选档位时很重要,不能大大也不能太小。选档位小了,指针会摆过头,容易损坏表头,选太大时,指针才摆几格,不方便读数……这么详细的解释,应该明白了吧,希望能帮助你!
2023-07-10 20:44:481

这段代码的错误是什么?我是matlab初学者,英文也不太好,看不大懂,希望有人能快点解答,比较着急

lz 你好,是因为这句imshow(wr);,wr为逻辑型数据,imshow不支持,支持uint8,需要转换,修改如下:f=imread("lena(hui).png");subplot(2,2,1)imshow(f);title("(a)原始图像");f=double(f);hv=fspecial("prewitt");hh=hv.";gv=abs(imfilter(f,hv,"replicate"));gh=abs(imfilter(f,hh,"replicate"));g=sqrt(gv.^2+gh.^2);subplot(2,2,2);L=watershed(g);wr=L==0;ww=uint8(wr);%必须把逻辑变量转换为uint8型,imshow才能读取imshow(ww);%title("(b)分水岭");figureL1=uint8(L);%imshow(L1);%
2023-07-10 20:44:412