线性规划,若原问题无可行解,对偶问题无界解,对吗
对偶问题无可行解,只能得出原问题无最优解,不能推出原问题解无界,还可能也无可行解。求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。扩展资料:线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。 建立线性规划模型的方法。参考资料来源:百度百科-线性规划
运筹学问题。单纯形表中对偶问题的最优解,没有松弛变量,只含有人工变量时,怎么求解?大M怎么处理?如图
我就是考运筹学的,不过考过就忘了,单纯形法还是很简单的,多看几遍你肯定可以搞懂的~~~
运筹学问题。单纯形表中对偶问题的最优解,没有松弛变量,只含有人工变量时,怎么求解?大M怎么处理?
M表示的是一个无穷大的正数,检验数行只要是出现“—M”,那么该检验数就是小于零的。检验数行各检验数都非正即可。
原问题和对偶问题单纯形表上的关系
用单纯型法求得原问题的最优解后,对偶问题的解自然在单纯型表中。原问题松弛变量的检验数的相反数就是对偶问题的最优解。。是问这个吧?
运筹学问题。单纯形表中对偶问题的最优解,没有松弛变量,只含有人工变量时,怎么求解?大M怎么处理?
大M法?“罚因子”-M为人工变量系数,只要人工变量>0,则目标函数不可能实现最优。简单点说就是,可以把M当成正无穷大,一个很大的正数;-M也就是负无穷咯 如果你算得对的话,你的检验数均非正,此表为最终单纯形表学过运筹,不过是比较简单的。。。捂脸飘过
运筹学 怎么样从单纯形表的看出原问题和对偶问题解得形式
你是指从当前单纯形表得到原问题和对偶问题的解吗?原问题的解看表的左侧,其中基变量对应的值就是b对应的列,非基变量等于零;对偶问题的解看表的下侧检验数行,原问题变量对应的检验数为对偶问题松弛变量的值乘以-1,原问题松弛变量的检验数为对偶问题变量的值乘以-1。
管理运筹学 单纯形法的灵敏度分析与对偶问题,b1在什么范围内,其对偶价格不变 怎么算啊
让B的逆阵乘以(0+△b1,50,50)T的积大于等于零就行了,从而解出b1的范围
若线性规划问题 的目标函数在可行域上无界,则其对偶问题必无可行解。
线性规划线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好. 单纯形法求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是 n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。现在一般的线性规划问题都是应用单纯形法标准软件在计算机上求解,对于具有106个决策变量和104个约束条件的线性规划问题已能在计算机上解得。 改进单纯形法 原单纯形法不是很经济的算法。1953年美国数学家G.B.丹齐克为了改进单纯形法每次迭代中积累起来的进位误差,提出改进单纯形法。其基本步骤和单纯形法大致相同,主要区别是在逐次迭代中不再以高斯消去法为基础,而是由旧基阵的逆去直接计算新基阵的逆,再由此确定检验数。这样做可以减少迭代中的累积误差,提高计算精度,同时也减少了在计算机上的存储量。 对偶单纯形法 1954年美国数学家C.莱姆基提出对偶单纯形法。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。设原始问题为min,则其对偶问题为 max。当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。所谓满足对偶可行性,即指其检验数满足最优性条件。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。 数学优化中,由George Dantzig发明的单纯形法是线性规划问题的数值求解的流行技术。有一个算法与此无关,但名称类似,它是Nelder-Mead法或称下山单纯形法,由Nelder和Mead发现(1965年),这是用于优化多维无约束问题的一种数值方法,属于更一般的搜索算法的类别。 这二者都使用了单纯形的概念,它是N维中的N + 1个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体,等等。
线性规划对偶问题如何求解?
线性规划对偶问题可以采用下列方法求解:(1)用单纯形法解对偶问题;(2)由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基。对偶问题是以原问题的约束条件和目标函数为基础构造而来的。对偶问题也是一个线性规划问题,因此可以采用单纯形法求解。对偶问题的最优解也可以通过原问题的最优解得到,反之亦然。而且,在某些情况下,利用对偶理论求解线性规划问题更为简单,而且有助于深入了解待求问题的本质。
如何求解线性规划对偶问题?
线性规划对偶问题可以采用下列方法求解:(1)用单纯形法解对偶问题;(2)由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基。对偶问题是以原问题的约束条件和目标函数为基础构造而来的。对偶问题也是一个线性规划问题,因此可以采用单纯形法求解。对偶问题的最优解也可以通过原问题的最优解得到,反之亦然。而且,在某些情况下,利用对偶理论求解线性规划问题更为简单,而且有助于深入了解待求问题的本质。
用对偶单纯形法求对偶问题的最优解
对偶单纯形法 1954年美国数学家C.莱姆基提出对偶单纯形法。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为 max{yb|yA≤c}。当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。所谓满足对偶可行性,即指其检验数满足最优性条件。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
对偶单纯形法是直接解对偶问题的一种方法。
对偶单纯形法是直接解对偶问题的一种方法。 A.正确 B.错误 正确答案:B
用对偶单纯形法求对偶问题的最优解
对偶单纯形法 1954年美国数学家C.莱姆基提出对偶单纯形法。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为 max{yb|yA≤c}。当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。所谓满足对偶可行性,即指其检验数满足最优性条件。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
运筹学。第(3)题,用单纯形法求解对偶问题怎么做?
1954年美国数学家C.莱姆基提出对偶单纯形法。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为 max{yb|yA≤c}。当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。所谓满足对偶可行性,即指其检验数满足最优性条件。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
运筹学中怎么从单纯形表中看出对偶问题的最优解
根据互补松弛性很易得出对偶问题的最优解,将原问题的最优解依次代入原问题的约束条件,如容果约束条件为严格不等式则说明对偶问题的该变量非零,如果为不等式则说明对偶问题中该变量为0,把对偶问题写出来,将为0的变量代入可以求出其余的变量。对偶问题的最优解就是原问题松弛变量的检验数的相反数。可以直接读出,根据互补松弛。或者你可以根据原问题写出对偶问题,然后用单纯形法求最优解。扩展资料:对偶问题的最优解:对偶问题的最优解可以直接从原问题的最终单纯形表(最优单纯形算子)中得到。原问题中松弛变量的检验次数对应对偶问题的解(符号相反)。使用单纯形法时,迭代的每一步都可以得到原问题的可行解x0和对偶问题的补充解y0,且cx0=y0b。如果X0不是原问题的最优解,那么y0也不是对偶问题的可行解。在最后一次迭代中,得到原问题的最优解x*和对偶问题的互补最优解y*,且cx*=y*b。Y *是原问题的影子价格。利用拉格朗日函数将原约束问题转化为无约束问题。如果原问题难以求解,在满足KKT的条件下,改用对偶问题求解原问题,使问题求解更加容易。参考资料来源:百度百科-对偶理论
线性规划对偶问题可以采用哪些方法求解
(1)用单纯形法解对偶问题;(2)由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基
用对偶单纯形法求对偶问题的最优解
您给的线性规划问题好像没有可行解哦。比如第二个约束可知:x1≥4,从第三个约束可知x2≥3所以x1+x2≥7和你的第一个约束矛盾。。。对偶问题在图片里。。。。无决策条件无真相--若都≥0则结果为(最后一行你写错)max(-z)=-2x1-x2+5x3+x43x1+x4+x5=25x1+x2+x3+x4=204x1+6x3-x6=5