高斯定理

DNA图谱 / 问答 / 标签

谈一谈静电场高斯定理的物理含义,以及它与库仑定律有什么区别与联系?

库伦定律是实验规律,高斯定理是较为普遍的物理规律。库仑定律的常见表述是:真空中两个静止的点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上,同名电荷相斥,异名电荷相吸。该定律由法国物理学家库仑于1785年在《电力定律》一论文中提出。库仑定律是电学发展史上的第一个定量规律,是电磁学和电磁场理论的基本定律之一。高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。静电场中通过任意闭合曲面(称高斯面)S 的电通量等于该闭合面内全部电荷的代数,与面外的电荷无关。

静电场中的高斯定理

静电场中的高斯定理如下:高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

高斯定理的适用范围

高斯定理适用于任何静电场。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料:高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源即是电荷。可表述为:在静电场中,通过任意闭合曲面的电通量,等于该闭合曲面所包围的电荷的代数和的1/(电介质常数)倍,与闭合曲面外的电荷无关。高斯定理是用来求场强E分布,定理中,S是任意曲面,由于数学水平的限制,要由高斯定理计算出E,则对由场的分布有一定的要求,即电荷分布具有严格的对称性。若电荷分布不对称性即不是均匀的,引起电场分布不对称,不能从高斯定理求空间场强分布,高斯定理当然仍是成立的。

对比静电场和稳恒磁场的高斯定理和环路定理,并分析其相同或不同的原因

呵呵,这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。(全部都是自己写的,希望你满意~~)

有关 高斯定理

由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理 与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。 电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达: ∫(E·da) = 4π*S(ρdv) 高斯定理:穿过一封闭曲面的电力线总数与封闭曲面所包围的电荷量成正比。 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。 高斯求和:对于等差数列a1,a2,a3...an,Sn=a1+a2+a3+...+an=(a1+an)*n/2 例题:一个不带电的空心金属球,在球内放一点电荷q,当点电荷在球内空间移动时,只要点电荷不和容器壁接触,则有( ) A.球外各点电场不变,球内各点电场变化 B.球外各点电场变化,球内各点电场不变 C.球内外各点电场均不变 D.球内外各点电场均变化 解析:假设这个点电荷是正的,那么球壳内表面肯定感应了负电荷,外表面肯定感应了正电荷.球壳内部的电场线肯定是指向点电荷的,所以当它移动时电场要变.假设球壳有一定厚度,取球壳中的一个球面作为高斯面(包括内表面,但不包括外表面),因为球壳静电平衡,内部无电场,所以没有电场线穿过这个取的球面,根据高斯定律,所取球面内净电荷量为0,即感应的负电荷量为q,从而外表面的正电荷量也为q,而球壳外部的电场都是由感应的正电荷产生的(而且因为点电荷与感应负电荷在内表面外全抵消,所以正感应电荷始终均匀分布),所以球壳外的电场是不变的。选A。

高斯定理的物理意义

高斯定理是表明在闭合曲面内的电荷分布与产生的电场之间的关系,高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。在电磁学里,高斯磁定律阐明,磁场的散度等于零。因此,磁场是一个螺线矢量场。从这事实,可以推断磁单极子不存在。磁的基本实体是磁偶极子,而不是单极磁荷。

静电场和稳恒磁场的高斯定理说明了什么问题?

说明电场是无旋场,磁场是有旋场。

磁场高斯定理和涡流矛不矛盾?

磁场高斯定理和涡流当然不矛盾,因为同样都符合物理规律的定理

大学物理中,高斯定理和磁高斯定理有区别吗

在静电场中的高斯定理说明静电场是一个有源场,因为在空间中的曲面全积分与闭合曲面包围的电荷量成正比。在磁场中,高斯定理说明磁场是一个无源场,静磁场中闭合曲面的磁通量永远为零,这是由于我们至今观察不到磁单极子造成的。要说区别就是在物理意义上,正负电荷可以单独存在,而磁单极子不能单独存在。

高斯定理数学公式是什么?

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。静电场与磁场:两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

【关键词】:环路定理、高斯定理、静电场、磁场、电位移矢量、磁场强度

麦克斯韦方程组 关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理: 静电场的高斯定理: 静电场的环路定理: 稳恒磁场的高斯定理: 磁场的安培环路定理: 上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。 麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念: 1. 麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即 上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。 2. 麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环路定理在真空或介质中的表示形式,即 上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。 综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。这就是麦克斯韦电磁场理论的基本概念。 在麦克斯韦电磁场理论中,自由电荷可激发电场 ,变化磁场也可激发电场 ,则在一般情况下,空间任一点的电场强度应该表示为 又由于,稳恒电流可激发磁场 ,变化电场也可激发磁场 ,则一般情况下,空间任一点的磁感强度应该表示为 因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律, 根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。变化电磁场的规律是: 1.电场的高斯定理 在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。通过场中任何封闭曲面的电位移通量等于零,故有: 2.电场的环路定理 由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是 3.磁场的高斯定理 变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。因此,磁场的高斯定理仍适用,即 4.磁场的安培环路定理 由本节公式(3)已知,变化的电场和它所激发的磁场满足的环路定理为 在变化电磁场的上述规律中,电场和磁场成为不可分割的一个整体。 将两种电、磁场的规律合并在一起,就得到电磁场的基本规律,称之为麦克斯韦方程组,表示如下 上述四个方程式称为麦克斯韦方程组的积分形式。 将麦克斯韦方程组的积分形式用高等数学中的方法可变换为微分形式。微分形式的方程组如下 上面四个方程可逐一说明如下:在电磁场中任一点处 (1)电位移的散度 等于该点处自由电荷的体密度 ; (2)电场强度的旋度 等于该点处磁感强度变化率 的负值; (3)磁场强度的旋度 等于该点处传导电流密度 与位移电流密度 的矢量和; (4)磁感强度的散度 处处等于零。 麦克斯韦方程是宏观电磁场理论的基本方程,在具体应用这些方程时,还要考虑到介质特性对电磁场的影响, 即 , 以及欧姆定律的微分形式 。 方程组的微分形式,通常称为麦克斯韦方程。 在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。

高斯定理的内容是什么?

高斯定理1  矢量分析的重要定理之一。   穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。   换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比   由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

磁场中高斯定理表明磁场是有源场是对还是错?

错。应该是:磁场中高斯定理表明磁场是无源场。

请问感生电场和感生磁场也有高斯定理?

感生磁场的叫安培环路定理。

静电场的高斯定理

斯定理(Gauss"law)也称为高斯通量理论(Gauss"fluxtheorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度

谁能详细讲解一下物理学中的高斯定理

高斯定理1  矢量分析的重要定理之一。  穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。  换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比  由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]。  与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。  电场E(矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达:  ∫(E·da)=4π*S(ρdv)  适用条件:任何电场  静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。  根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即  公式这就是高斯定理。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。  高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。  高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。  对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。  当存在电介质并用电位移D描写电场时,高斯定理可表示成  它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和Σqo,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,电位移与电场强度成正比,D=εrεoE,εr称为介质的相对介电常数,这是一个无量纲的量。如果整个封闭曲面S在一均匀的相对介电常数为εr的线性介质中(其余空间区域可以充任何介质),高斯定理(2)又可写成公式在研究电介质中的静电场时,这两种形式的高斯定理特别重要。  高斯定理的微分形式为  公式高斯定理2  定理:凡有理整方程f(x)=0必至少有一个根。  推论:一元n次方程  f(x)=a_0x^n+a_1x^(n-1)+……+a_(n-1)x+a_n=0  必有n个根,且只有n个根(包括虚根和重根)。高斯定理3  正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数

怎样理解高斯定理?

呵呵,这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮eds=(∑q)/ε0稳恒磁场的高斯定理:∮bds=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮edl=0(l是l的小写,不是数字1)稳恒磁场的安培环路定律:∮bdl=(∑i)/μ0(∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。(全部都是自[f7159.cn][hyyymjd.cn][rhsyj.cn][766sc.c o m.cn][h8327.cn][shwxxyj.cn][r3205.cn][asysxx.cn][v1568.cn][c9776.cn][zeonline.c o m.cn][twjfx.c o m.cn][s26397.cn][tjhuapu.cn][g2381.cn][hua-hao.cn][b3472.cn][d1589.cn][qqau.cn][dblt.c o m.cn]

高斯定理等于0说明什么

高斯定理等于0说明磁场是无源场。在电磁学里,高斯磁定律阐明,磁场的散度等于零,磁场是一个螺线矢量场,从这事实,可以推断磁单极子不存在。高斯定理(Gauss"law)也称为高斯通量理论(Gauss"fluxtheorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(情况的高斯定理都是指该定理,也有其它同名定理)。

求高中物理高斯定理的应用

高斯定理是矢量分析的重要定理之一。它可以被表述为: 这式子与坐标系的选取无关。式中称向量场的散度(divergence)。 定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比: 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。(当所涉体积内电荷连续分布时,上式右端的求和应变为积分。)它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。高斯定理反映了静电场是有源场这一特性。高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。当空间中存在电介质时,上式亦可以记作 式中 为曲面内自由电荷总量。它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和 ,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,如果整个封闭曲面S在一均匀的相对介电常数为 的线性介质中,则电位移与电场强度成正比, ,式中 称为介质的相对介电常数,这是一个无量纲的量。更常遇到的是逆反问题。给定区域中电荷分布,所求量为在某位置的电场。这问题比较难解析。虽然知道穿过某一个闭合曲面的电通量,但这信息还不足以确定曲面上各点处的电场分布,在闭合曲面任意位置的电场可能会很复杂。仅有在体系具有较强对称性的情况下,如均匀带电球的电场、无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,使用高斯定理才会比使用叠加原理更简便。 磁场的高斯定理指出,无论对于稳恒磁场还是时变磁场,总有: 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理 。 (代数学基本定理)定理:凡有理整方程 至少有一个根。推论:一元n次方程有且只有n个根(包括虚根和重根)。 (数论)正整数n可被表示为两整数平方和的充要条件 为n的一切形如4k+3形状的质因子的幂次均为偶数。

高斯定理和安培环路定理有何区别

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

高斯定理数学公式是什么?

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

高斯定理的数学公式是什么?

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料:高斯定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

静电场的高斯定理

斯定理(Gauss"law)也称为高斯通量理论(Gauss"fluxtheorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度

高斯定理和安培环路定理有什么关系?

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

介质中的高斯定理

高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

电磁学,高斯定理推导过程

由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。 电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达: S(E·da) = 4π*S(ρdv) 这里S()是积分符号。高斯定理:穿过一封闭曲面的电力线总数与封闭曲面所包围的电荷量成正比。 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。

高斯定理和安培环路定理有什么区别??

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

高斯定理数学公式是什么?

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料:高斯定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

高斯定理数学公式是什么?

表达式:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

磁场的高斯定理内容是什么?

这是我曾经最感兴趣的问题之一,给你解释一下吧. 真空静电场的高斯定理:∮EdS=(∑Q)/ε0 稳恒磁场的高斯定理:∮BdS=0 这两个结论的不同揭示了静电场和磁场的一个差异: 静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0.用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0. 静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1) 稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写) 这两个不同的结论又反映了静电场和磁场的另一个差异: 静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0; 稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0.(全部都是自己写的,)

高斯定理的理解

电场高斯定理:在真空中,通过任一闭合曲面的电场强度通量,等于该面所包围的所有电荷的代数和除以真空电容率。磁场高斯定理:通过任一闭合曲面的磁通量必等于零。因为磁感线是一条闭合回路,所以在一定区域内,它有进必有出。它的纯粹数学意义又被叫做高斯公式,它的一端可解释为分布在一定空间区域内的源头在单位时间内所产生的流体的总质量,另一端则可以解释为单位时间内离开该闭区域的流体的总质量。O(∩_∩)O,希望对你有帮助,望采纳

高斯定理的公式是什么?

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料:高斯定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

物理里面的高斯定理是什么?

高斯定理1: 矢量分析的重要定理之一. 穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比. 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了.如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0.这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]. 与静电场中的高斯定理相比较,两者有着本质上的区别.在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零. 电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量.公式表达: ∫(E·da) = 4π*S(ρdv) 适用条件:任何电场 高斯定理2 定理:凡有理整方程f(x)=0必至少有一个根. 推论:一元n次方程 f(x)=a_0x^n+a_1x^(n-1)+……+a_(n-1)x+a_n=0 必有n个根,且只有n个根(包括虚根和重根). 高斯定理3: 正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数

高斯定理的公式

高斯定理,静电场的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。静电场,指的是观察者与电荷相对静止时所观察到的电场。它是电荷周围空间存在的一种特殊形态的物质,其基本特征是对置于其中的静止电荷有力的作用。库仑定律描述了这个力。_物理学是一种自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则。物理学(Physics):物理现象、物质结构、物质相互作用、物质运动规律物理学研究的范围--物质世界的层次和数量级

磁场的高斯定理和环路定理的区别是什么

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

高斯定理怎么求?

高斯定理:做一个半径为r、高为h的圆柱面,柱面轴线与带电直线重合,柱面上的场强就是直线外与直线距离r的场强:E*2πrh=λh/ε0-->E=λ/2πε0*r,其中λ为带电直线的电荷线密度。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料各类场强公式真空中点电荷场强公式:E=KQ/r2 (k为静电力常量k=9.0×10^9N.m^2/C^2)匀强电场场强公式:E=U/d(d为沿场强方向两点间距离)任何电场中都适用的定义式:E=F/q平行板电容器间的场强E=U/d=4πkQ/eS介质中点电荷的场强:E=kQ/(r2)均匀带电球壳的电场:E内=0,E外=k×Q/r2无限长直线的电场强度:E=2kρ/r(ρ为电荷线密度,r为与直线距离)

高斯定理是啥

高斯定理(Gauss" law)也称为高斯通量理论(Gauss" flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

高斯定理的理解

电场高斯定理:在真空中,通过任一闭合曲面的电场强度通量,等于该面所包围的所有电荷的代数和除以真空电容率. 磁场高斯定理:通过任一闭合曲面的磁通量必等于零.因为磁感线是一条闭合回路,所以在一定区域内,它有进必有出. 它的纯粹数学意义又被叫做高斯公式,它的一端可解释为分布在一定空间区域内的源头在单位时间内所产生的流体的总质量,另一端则可以解释为单位时间内离开该闭区域的流体的总质量.

高斯定理数学公式是什么?

高斯定理数学公式是∮F·dS=∫(▽·F)dV。高斯定律显示了封闭表面的电荷分布和产生的电场之间的关系。设空是有界闭区域ω,其边界ω是分段光滑闭曲面。函数P(x,y,z),Q(x,y,z)。R(x,y,z)及其一阶偏导数在ω上是连续的,其中ω的正侧是外侧,cosα,cosβ,cosγ是ω的外法向量的方向余弦。高斯定理概念高斯定理是表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定理在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定理也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。定理内容设空间有界闭合区域,其边界为分片光滑闭曲面。

稳恒磁场的高斯定理和环路定理是什么?它们反映稳恒磁场具有何种性质

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

如何理解磁场的高斯定理

真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0

如何理解磁场的高斯定理

呵呵,这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮eds=(∑q)/ε0稳恒磁场的高斯定理:∮bds=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮edl=0(l是l的小写,不是数字1)稳恒磁场的安培环路定律:∮bdl=(∑i)/μ0(∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。(全部都是自己写的,希望你满意~~)

如何理解磁场的高斯定理

呵呵,这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮eds=(∑q)/ε0稳恒磁场的高斯定理:∮bds=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮edl=0(l是l的小写,不是数字1)稳恒磁场的安培环路定律:∮bdl=(∑i)/μ0(∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。(全部都是自己写的,希望你满意~~)

磁场的高斯定理是什么?

由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。(抄于百度百科)

磁场的高斯定理内容是什么?

真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。扩展资料:磁场的高斯定理指出,无论对于稳恒磁场还是时变磁场,总有:。由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。高斯定理反映了静电场是有源场这一特性。高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。参考资料:百度百科--高斯定理

磁场的高斯定理公式

稳恒磁场的高斯定理:∮BdS=0;真空静电场的高斯定理:∮EdS=(∑Q)/ε0。这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0(∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。

磁场的高斯定理是什么?

真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0

大学物理中,高斯定理和磁高斯定理有区别吗?怎么区分呢?

一个表示了电场的性质,另一个表示了磁场的性质; 电场中的高斯定理表明静电场是有源场;定理数学表达式的等号右边不等于零; 电场中的高斯定理还常常用来求具有对称性的带电体所产生的电场。 而磁场中的高斯定理表明稳恒电场是无源场;定理数学表达式的等号右边等于零。

磁场的高斯定理说明了下面的哪些

a,d 肯定是对的,a 就是磁场高斯定理的一种表述形式,b 肯定错误. d,是有可能的,磁感应线是闭合曲线,当然可以用一个闭合曲面把它完全包覆 而 c 就看"终止"这个词的涵义了,比如说,我们可以认为磁感应线从一块磁铁的 N 极出发,终止于 S 极,这样 c 就是对的; 当然我们也可以认为,它并没有终止,而是在磁铁内部又回到 N 极.这样 c 就是错误的.所以,这个选项的对错不取决于你,我,而是取决于出题者的心理.不过如果要我答的话,我"猜"它错误.

高斯定理什么时候为0

高斯定理在稳恒磁场时为0。根据查询相关公开信息显示稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应有多少条磁场线穿进曲面,磁场对一个封闭曲面的通量恒为0。

静电场高斯定理

静电场高斯定理如下:真空静电场的高斯定理:∮duEdS=(∑Q)/ε0。稳恒磁场的高斯定理:∮BdS=0。这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0。而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是静电场是有源场,散度一般不为0。稳恒磁场是无源场,散度恒为0。高斯定理的简介:高斯定理(Gauss"law),物理学定理,也称为高斯通量理论(Gauss"fluxtheorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

电场中的高斯定理和磁场中的高斯定理有什么区别和联系

电通量与高斯定理的关系静电场的高斯定理指出,通过任意闭合曲面的电通量可以不为零,它表明静电场是有源的。有旋电场的高斯定理指出,通过任意闭合曲面的电通量为零,它表明有旋电场是无源的。通量概念及由它表述的高斯定理是描述矢量场性质的重要手段,它可以确定矢量场是否有源头或尾闾。电通量密度是通过垂直于电场方向的单位面积的电通量,它等于该处电场的大小E 与ε。在库仑定律的常见表述中,通常会有真空和静止,是因为库仑定律的实验基础——扭秤实验,为了排除其他因素的影响,是在亚真空中做的。另外,一般讲静电现象时,常由真空中的情况开始,所以库仑定律中有“真空”的说法。实际上,库仑定律不仅适用于真空中,还适用于均匀介质中,也适用于静止的点电荷之间。库仑定律没有解决电荷间相互作用力是如何传递的,甚至按照库仑定律的内容,库仑力不需要接触任何媒介,也不需要时间,而是直接从一个带电体作用到另一个带电体上的。即电荷之间的相互作用是一种“超距作用”,然而另一批物理学家认为这类力是“近距作用”,电力通过一种充满在空间的弹性媒介——以太来传递。电荷守恒定律和高斯定律的关系电荷守恒定律是物理学的基本定律之一 。它指出,对于一个孤立系统,不论发生什么变化 ,其中所有电荷的代数和永远保持不变。电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷,那么必定有等量的异号电荷同时产生或消失。扩展资料:在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

磁场中的高斯定理的B和S分别是指什么?

B是磁感应强度,S可以是垂直磁场方向的面积(面积在垂直磁场方向的投影)。

磁场中的高斯定理数学表达:__,真空中安培环路定理的数学表达:__。

面积分(B点乘dS)=0闭合线积分(B点乘dL)=u0*电流之和

高斯定理的内容是什么

这是我曾经最感兴趣的问题之一,给你解释一下吧。真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合,所以对一个封闭曲面的通量不一定为0;而稳恒磁场是无源场,它的磁场线是封闭的,有多少条磁场线穿出曲面,相应就有多少条磁场线穿进曲面,所以磁场对一个封闭曲面的通量恒为0。用比较专业的场论术语来说,就是:静电场是有源场,散度一般不为0;稳恒磁场是无源场,散度恒为0。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0,所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。

静电场的高斯定理

斯定理(Gauss"law)也称为高斯通量理论(Gauss"fluxtheorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律(Gauss"law)表明在闭合曲面内的电荷分布与产生的电场之间的关系高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度

稳恒磁场的高斯定理

稳恒磁场的高斯定理:∮EdS=(∑Q)/ε0,稳恒电场(steadyelectricfield)就是不随时间变化的电场,在稳恒情况下,一切物理量都不随时间变化,电荷分布当然也是如此。

无限长带电直线场强大小公式,用高斯定理是怎么推算的?

无限长均匀带电圆柱面的内部的电场强度为零,可以取圆柱状的高斯面,只有侧面有电通量,代入高斯定律可得电场强度。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。扩展资料它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。高斯定理反映了静电场是有源场这一特性。参考资料来源:百度百科-高斯定理

请从环路定理和高斯定理出发对比静电场和稳恒磁场的区别

由环路定理知,静电场是有磁场,稳恒磁场是无磁场。由高斯定理知,静电场是保守场,稳恒磁场是非保守场、涡旋场。

高斯定理求场强公式

高斯定理求场强度公式为:E=F/Q=K*Q/r^2。高斯定理的定义1、高斯定理是电场力平方反比定律和线性叠加原理的直接结果,也可以由高斯定理作为基本规律导出库仑定律,这说明高斯定理和库仑定律是不同形式的表示电荷和电场关系的同一规律,库仑定律可以使我们从电荷分布求出电场分布,高斯定理可以使我们从电场分布求出电荷分布。2、高斯定理是表明在闭合曲面内的电荷分布与产生的电场之间的关系,高斯定理在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中,因为数学上的相似性,高斯定理也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。3、高斯定理表明静电场的有源性,高斯定理说明电场线只能始于正电荷,终于负电荷,即静电场是有源场,高斯定理是静电场的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。高斯定理的应用(1)在电场强度已知时,求出任意区域内的电荷。(2)当电荷分布具有某种特殊对称性时,用高斯定理求出该种电荷系统的电场分布。

谁能详细讲解一下物理学中的高斯定理?

高斯定理1  矢量分析的重要定理之一。   穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。   换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比   由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]。   与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。   电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达:   ∫(E·da) = 4π*S(ρdv)   适用条件:任何电场   静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。   根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即    公式这就是高斯定理。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。   高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。   高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。   对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。   当存在电介质并用电位移D描写电场时,高斯定理可表示成   它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和Σqo,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,电位移与电场强度成正比,D=εrεoE,εr称为介质的相对介电常数,这是一个无量纲的量。如果整个封闭曲面S在一均匀的相对介电常数为εr的线性介质中(其余空间区域可以充任何介质),高斯定理(2)又可写成 公式在研究电介质中的静电场时,这两种形式的高斯定理特别重要。   高斯定理的微分形式为    公式高斯定理2  定理:凡有理整方程f(x)=0必至少有一个根。   推论:一元n次方程   f(x)=a_0x^n+a_1x^(n-1)+……+a_(n-1)x+a_n=0   必有n个根,且只有n个根(包括虚根和重根)。高斯定理3  正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数

高斯定理的物理应用

高斯定理是矢量分析的重要定理之一。它可以被表述为: 这式子与坐标系的选取无关。式中称向量场的散度(divergence)。 定理指出:穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比: 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比。(当所涉体积内电荷连续分布时,上式右端的求和应变为积分。)它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。高斯定理反映了静电场是有源场这一特性。高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。当空间中存在电介质时,上式亦可以记作 式中 为曲面内自由电荷总量。它说明电位移对任意封闭曲面的通量只取决于曲面内自由电荷的代数和 ,与自由电荷的分布情况无关,与极化电荷亦无关。电位移对任一面积的能量为电通量,因而电位移亦称电通密度。对于各向同性的线性的电介质,如果整个封闭曲面S在一均匀的相对介电常数为 的线性介质中,则电位移与电场强度成正比, ,式中 称为介质的相对介电常数,这是一个无量纲的量。更常遇到的是逆反问题。给定区域中电荷分布,所求量为在某位置的电场。这问题比较难解析。虽然知道穿过某一个闭合曲面的电通量,但这信息还不足以确定曲面上各点处的电场分布,在闭合曲面任意位置的电场可能会很复杂。仅有在体系具有较强对称性的情况下,如均匀带电球的电场、无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,使用高斯定理才会比使用叠加原理更简便。 磁场的高斯定理指出,无论对于稳恒磁场还是时变磁场,总有: 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理 。 (代数学基本定理)定理:凡有理整方程 至少有一个根。推论:一元n次方程有且只有n个根(包括虚根和重根)。 (数论)正整数n可被表示为两整数平方和的充要条件 为n的一切形如4k+3形状的质因子的幂次均为偶数。

电磁场 高斯定理?

高斯定理是表明在闭合曲面内的电荷分布与产生的电场之间的关系。 高斯定理在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定理也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

磁场的高斯定理适用于交变磁场吗

磁场的高斯定理适用于交变磁场。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。磁场不是由原子或分子组成的,但磁场是客观存在的。磁场具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或电场的变化而产生的。

高斯定理的理解

电场高斯定理:在真空中,通过任一闭合曲面的电场强度通量,等于该面所包围的所有电荷的代数和除以真空电容率. 磁场高斯定理:通过任一闭合曲面的磁通量必等于零.因为磁感线是一条闭合回路,所以在一定区域内,它有进必有出. 它的纯粹数学意义又被叫做高斯公式,它的一端可解释为分布在一定空间区域内的源头在单位时间内所产生的流体的总质量,另一端则可以解释为单位时间内离开该闭区域的流体的总质量.

稳恒磁场的高斯定理和环路定理是什么?它们反映稳恒磁场具有何种性质

磁场的高斯定理反映的是磁场的性质是无源场,而安培环路定理反映的是磁场的性质是有旋场(漩涡场或非保守力场),而这又能提现静电场是有源场。高斯定理是穿过任意闭合曲面的总磁通量必为零;环路定理是在真空中的稳恒电流磁场中,磁感应强度B沿任意闭合曲线L的线积分等于穿过这个闭合曲线的所有电流强度的代数和的μ0倍。高斯定理反映稳恒磁场是一种有源场的性质,环路定理放映稳恒磁场是一种非保守力。有源场.高斯定理说明电场线只能始于正电荷(或无穷远),终于负电荷(或无穷远),即静电场是有源场。

高斯定理公式是什么 高斯定理公式是怎样的

1、高斯定理数学公式是:∮F·dS=∫(▽·F)dV。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。 2、高斯定理(Gauss law)也称为高斯通量理论(Gauss flux theorem),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

磁场的高斯定理内容是什么?

真空静电场的高斯定理:∮EdS=(∑Q)/ε0稳恒磁场的高斯定理:∮BdS=0这两个结论的不同揭示了静电场和磁场的一个差异:静电场是有源场,它的电场线不会闭合。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。静电场中的环路定理:∮Edl=0(l是L的小写,不是数字1)稳恒磁场的安培环路定律:∮Bdl=(∑I)/μ0 (∑后面的是字母i的大写)这两个不同的结论又反映了静电场和磁场的另一个差异:静电场是无旋场,即它的旋度恒为0。所以静电场对环路积分结果为0;稳恒磁场是有旋场,一般旋度不为零,所以磁场对环路的积分一般不等于0。

磁场的高斯定理表达式

高斯定理数学公式是:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。静电场与磁场:两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。

大学物理 用高斯定理求均匀带电球壳的场强 我要详细的过程

在球壳内部,由高斯定理可知E=0,在球壳外部,可以把均匀带电球壳外部的场强是为一个点电荷集中于球壳的点电荷产生的场强,所以E=KQ/(r)2

如何证明凡是电场强度方向处处相同的地方,电场强度大小也必处处相等(用高斯定理和做功与做功无关的性质)

考虑一个长圆柱,圆柱沿着电场的方向。则通过圆柱表面的电场线只有通过两个底面(因为电场和侧面是平行的,不会穿过侧面),而根据高斯定理,通过整个表面的通量一定为0(空间内无电荷),因此两个底面上的电场强度乘以各自的面积大小应该相等,面积相等,故电场相等,这就证明了纵向上电场不变。再证明横向相等,作一个矩形,两个场边沿电场方向,短边与电场垂直。则做功与路径无关,两个场边上的电场乘以长度相等,因此两个长边上的电场相等。

关于高斯定理对称性的问题

1、对称性更是物理学上的!物理意义相同2、一个物体是否具有对称性,是观察、测量的结果,比如球体具有球对称性!电荷分布也是! 但是,电场的对称性是通过分析得到的!可以用反证法加以证明的!!3、如果电荷是球对称分布的,那么场强也必然是球对称的!你可以设想一下,如果电场不是球对称的,会有什么结果呢?------结果就是:任何一点的电场强度可以有N个方向、有N个大小!-----这可能吗?

在证明高斯定理时,曲面内放的是点电荷,为什么在高斯定理中却成了该面包围的所有电荷电量的代数和?

有什么问题吗?不是一样的吗 ,所有电荷电量的代数和和点电荷不冲突呀

高斯定理是否和库仑定律等价?

库仑定律是整个电磁学的实验基础之一,是基础的意义就是说,没有哪一条定理或定律能够保证其正确性,也无法证明.但大量的实验却非常符合这种规律,于是人们就假设库伦定律是正确的,然后慢慢推出其它结论.没有绝对的真理,科学都是一种假设,只是各门科学提出自己根基的方式可能不同,例如只要你承认了欧几里得的那十一条公理,那么后面的所有定律你都必须承认,那个根基是经验的假设,而库仑定律是由实验来保证.当然,这是不稳定的,因为即使有一亿个实验符合库仑定律,我们都不能说它是对的,但只要有一个不符合,那么电磁物理学就得重新洗牌了. 好了,你如果承认了库仑定律,并且你还承认电场的叠加原理和微积分的正确性,那么导出高斯定理就是两下的事情了.什么是定理,定理由那些公理推理出来的,公理就是大家的共识,认为其是对的,否则就没法玩下去了.所以,库仑定律可以保证高斯定理的正确性,而高斯定理是没有办法保证库仑定律的正确性的. 另外,如果课堂上或老师已知高斯定理让你们去证明库仑定律,那简直是胡来.你想一下,G的存在是基于K,有K才有G,现在假设G存在,然后去证明K的存在,这不好笑吗?二者的关系已说明了,相信楼主也应该有谱了吧...,1,应该是等价的.书上证明高斯定理就是用的库仑定律,而如果已知高斯定理,那么证明库仑定律也是很容易的.,1,

关于高斯定理对称性的问题

高斯定理具有普遍性,就是肯定成立,不要求电荷分布对称。但是只有电荷分布对称了才能方便地使用高斯定理来求电场。因为你做一个曲面,根据高斯定理可以算出电场在这个面上的通量,但如果不对称那么电场在那个面上可能不同的地方不相等,因此没法求出来。但如果由对称性可以知道电场在那个面上比如说大小相等,方向沿法向,就只需要用通量除以面积就能算出电场。强调一点,高斯定理在一般情况下也是成立的,只不过不好用而已。

高斯定理能不能导出库伦定律

高斯定理就是麦克斯韦方程的第三项式(1)▽▪(εE)=ρ,ρ是单位体积的电荷密度,E是电场强度是个矢量,▽▪表示散度,只能对矢量求散度,结果是个标量,ε是电容率是个标量,真空下ε=ε0是个定值,但非真空实际应该写成▽▪(ε0E+P)=ρ,P是介质极化造成的影响,在各项同性、线性介质中P和E成正比,所以可以写成P=χE,ε0E+P=(ε0+χ)E=εE把ε0+χ换成ε,把极化的影响包含在系数中。▽▪(εE)=ε▽▪(E)+E▪▽ε,▽ε是ε的梯度,对标量只能求梯度,结果是个矢量,在均匀介质中ε是个常数,因此▽ε=0,▽▪(εE)=ε▽▪(E),得到式(2)ε▽▪(E)=ρ,这是最简单的情况,一般用库仑定律的情况都默认是这种最简单的情况。理论上所围区域的总电荷Q应该是在有电荷的区域,电荷密度ρ对单位体积dV的积分,等于总电荷Q=∫∫∫ρ*dV,这是式(3)。对于点电荷就更简单了,大部分没电荷的区域ρ都是0,只有点电荷所在ρ*dV才是Q,直接代入已知的点电荷Q就行了。所以对式(2)求体积积分,得到 ε∫∫∫▽▪(E)dV=∫∫∫ρ*dV,代入式(3)得ε∫∫∫▽▪(E)dV=Q,这是式(4)。根据散度的定义,散度就是通过包围体积的表面积的通量▽▪f=lim(△V→0)∮fdS/△V。把f换成电场E,▽▪E=lim(△V→0)∮EdS/△V,对其求体积积分∫∫∫▽▪EdV=∮EdS,这个式(5)用于将对面积积分转化为对体积积分,式(5)同样叫做高斯定理,但我觉得和麦克斯韦方程第三项没什么关系,只是用来将麦克斯韦方程第三项的微分形态和积分形态互相转换。对式(5)代入式(4),那么∮EdS=(1/ε)*Q,这是式(6)。式(1)是麦克斯韦方程第三项(高斯定理)的微分形态,(6)是麦克斯韦方程第三项(高斯定理)的积分形态。当考虑的对象是一个包围点电荷的球形时,球面等电势∮EdS=E*4πr^2,这是式(7),式(7)代入式(6)得E=(1/ε4πr^2)*Q,这个就是式(8)库仑定律,当介质是真空时ε=ε0。因为高斯定理(1)并没有要求不存在变化的磁场,所以无论是不是静电场式(1)都是成立的,从(1)到(8)的推导中(7)要求必须是静电场,所以库仑定律在非静电场不成立。综上所诉,高斯定理可以推出库仑定律,改变一下库仑定律的前提条件再考虑将无数个Q叠加,将Q变回∫∫∫ρ*dV应该也能推出高斯定理。两者是同一个公式,只是在不同前提下表现形式不同,高斯定理可以看成库仑定律的推广,库仑定律可以看成麦克斯韦方程组第三项在特定条件下的简化。虽说可能高斯确实是从库仑定律加上(5)推导出的高斯定理,但本来库仑定律就是实验所得经验公式,4πε0这个系数的值都没法确定,还是靠麦克斯韦方程组计算出来的。实在说不上谁推导谁。参考资料:郭硕鸿《电动力学》135页麦克斯韦方程组和附录一散度、旋度和梯度。

大学物理高斯定理的问题

大学物理会讲到静电场的高斯定理可以推广到非静态场中去,不论对于随时间变化的电场还是静态电场,高斯定理都是成立的,它是麦克斯韦方程组的组成部分。但这需要用到一些数学的积分知识。不知道你对此有没有了解。我给你简单说一下,好长时间不学物理了,有些东西都忘了。嘿嘿高斯定理给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,D=∮c(x)q(x)dx。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。 不知道对你有没有帮助,要知道高中物理大部分是理想状态下的题目,大多都是离散型的条件,而实际问题则连续性的居多,这就需要高等数学的知识来解决了

静电场的高斯定理和环路定理说明静电场是个什么场

高斯定理:矢量分析的重要定理之一。穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理。电场强度E 在任意面积上的面积分高斯定理称为电场强度对该面积的通量。根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和。 高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。静电场的高斯定理可以推广到非静态场中去,不论对于随时间变化的电场还是静态电场,高斯定理都是成立的,它是麦克斯韦方程组的组成部分。

高斯定理使用时的问题,急求解答:高斯定理在求闭合曲面内电场分布时...

用高斯定理计算电场实际上是不积分的,即E必须是常量,即电通量=ES(S为与E垂直部分的面积)。如果无论怎样选择高斯面都不能满足E为常量(注意:指与E垂直的高斯面上场强处处相等,未必是匀强电场),意味着这个问题无法用高斯定理解决(因为你不可能知道任一面积元处E对空间坐标的函数形式,知道了就不必算了。既不知道E的函数形式,积分自然无法进行)。此种情况只能用库仑定律计算各电荷元在空间某处的电场再用电场叠加原理去积分。怎样用高斯定理证明:无限长的带电金属板产生的场强与距离无关?选取垂直于金属板的一个圆柱面,使圆柱面被金属板平分(即两边对称),上下底面间距离任意。在上下底面上,处处E相等(这是合理猜测,使用高斯定理无法严格证明的),而侧面电通量为零,所以电通量=E*上下底面面积S之和=2ES=q/ε0,金属板中中电荷均匀分布(单位面积电荷量为常量),所以E=q/2Sε0=σ/2ε0,即只和电荷面密度有关,与距离无关。如有不明欢迎追问。 想要证明只有用库仑定律去积分。实际上解题时是无需证明的,根据对称性判断,没有不等的理由,就只能相等。金属板面积有限的时候,边缘部分和正中央部分电场分布不同,离开板相同距离处的场强就不会相等。 而无限大的金属板处处电场分布没有理由不同,离开板相同距离处的场强就必须相等。 根据对称性进行的判断虽然不是严格证明,但只要判断合理,得出的结论一定是正确的,相反你用库伦定定积分,尽管可以严格证明,不过一旦算错,反而适得其反。既然要用高斯定理解决,就意味着必须采用对称性判断,如果你已经用库仑定律积分求出场强的空间分布,就没有必要再用高斯定理。

高斯定理 边界条件

根据库仑定律,在球面上任一点的场强为: E=q/(4*3.14e*r^2) 注意是矢量,我用的是标量,我不回打矢量E通量=E*ds的积分 用上式代入积分得 q/ed(E通量)=E*ds=q/(4*3.14*e*r^2)*cosa*ds =q/(4*3.14*e)*ds*r^2a为r与en之间的夹角然后一系列积分就得到了高斯定理
 1 2  下一页  尾页