线粒体

DNA图谱 / 问答 / 标签

低光毒探针“点亮”线粒体

作者 | 倪伟波 唐琳 近日,《化学科学》以在线形式发表的一项研究成果显示,来自北京大学和西湖大学的研究人员合作研发出两款新型探针——PK Mito Red(PKMR)和 PK Mito Deep Red(PKMDR),首次在活细胞水平上实现了光毒性的明显降低。 21世纪被认为是生命科学的时代。科学家为了进一步揭开细胞生物学过程的神秘面纱,研发了各种各样的生物成像技术。其中,荧光超分辨率成像因简单的成像条件及对生物样品的相容性脱颖而出。 突破超分辨成像“卡脖子”问题 早在2018年,北京大学分子医学研究所陈良怡团队研发的海森结构光显微镜(Hessian SIM),首次揭示了活细胞中线粒体的精细内嵴结构及其动态变化。 为了满足新型光学显微镜的需求,国内外诸多科研团队发展了多种光稳定性的新型线粒体探针,用于观察线粒体内嵴结构。 然而,超分辨率成像需要的高激发光强往往使线粒体荧光探针更易产生活性氧物种(ROS),且不随采样时间的间隔增加而消失。 这样的超分辨率成像,即便荧光探针本身并未被完全漂白,也将迅速破坏线粒体内嵴,使线粒体肿胀、变圆。 “光毒性虽然对光学分辨率没有影响,但是会对细胞结构产生极大影响,细胞会受伤害甚至死亡,这种情况下看到的东西与生理反应完全不同。” 此项工作的通讯作者之一、北京大学分子医学研究所研究员陈知行告诉《中国科学报》。 换句话说,活细胞超分辨率成像需要解决的主要问题实际上是改善光毒性,而不仅仅是光漂白。 针对这一领域的新痛点,陈知行团队利用分子内缀合环辛四烯的策略,成功合成了两种新型低光毒性线粒体荧光探针——PKMR和PKMDR,首次在活细胞水平上实现了光毒性的明显降低。 不仅如此,陈知行团队通过与陈良怡团队、西湖大学雷凯团队合作,通过更进一步的实验,证明新染料对细胞的光毒性显著低于MitoTracker系列商业染料,可实现1000帧以上、线粒体内嵴形状基本不变的超分辨成像;首次证明该探针可以用于涡虫的干细胞流式分选,且不影响干细胞的多能性,可以真正用于研究如干细胞重编程等生理过程中的线粒体功能。 低光毒 更温柔 陈知行介绍,荧光探针的光毒性一般来自于激发过程中由第一激发单重态(S1)经过系间窜跃产生的第一激发三重态(T1),T1态与氧气作用可产生单线态氧等活性氧物种,进而破坏生物分子。 为了最大程度抑制这一过程从而减少光毒性,团队采用了之前应用于染料激光、单分子成像等领域减少光漂白的分子内缀合三线态淬灭剂(自修复染料 Self-Healing Dye)的策略。 HeLa细胞的光照存活实验发现,常见三线态淬灭基团中只有环辛四烯(COT)能有效降低荧光成像中的光毒性。 更为重要的是,团队还观察到,能够降低光漂白的基团(硝基苯)并不一定能减少光毒性。 正因为如此,“荧光探针的光毒性和光漂白性质应该被分别测试,但以往的荧光探针设计中往往忽视了对探针光毒性等性质的详细表征”。陈知行解释道。 在此基础上,团队以COT作为三线态淬灭基团,合成了两种以Cyanine为母核的荧光探针PKMR和PKMDR。 HeLa细胞的光照存活实验表明,新探针的光毒性不及对应光谱的商业探针(MitoTrackers)的1/5,并能在相同条件下提供同样甚至更高的亮度。 “可以说,此项工作为该领域找到了新方向,未来希望能将探针的光毒性降到更低,甚至彻底消除。”陈知行表示。 协同创新 迈向极致 2018年6月,回国后的陈知行加入到北京大学分子医学研究所。 彼时,陈良怡团队研发的Hessian SIM不仅将光学显微镜的性能提升到一个全新的高度,还从数学和物理两方面大大改善了超分辨成像技术的光毒性。 要将超分辨成像技术做到极致,必须从化学探针方向进行协同创新。 而化学研究出身的陈知行的加入,无疑为团队注入了一股强劲的动力。 从2018年6月开始进行探针研究,到如今取得重要突破,团队只用了1年多的时间,却迭代了3代设计,最终找到了有效方案。 长期从事涡虫干细胞再生研究的雷凯团队在测试了新探针在涡虫干细胞分选领域的应用后,发现新探针标记线粒体可以帮助分选出干细胞群,而且新探针标记的干细胞在体外仍能维持较好的活性和干性,充分展示了其在流式荧光分析分选中优秀的生物相容性。 更难能可贵的是,新探针在长时程超分辨成像方面也显示出卓越的优势。 Hessian SIM成像结果显示,新探针在提供了接近2D Hessian SIM理论值的分辨率、展示了清晰线粒体嵴结构图像的同时,最大程度保留了线粒体 健康 的原始形态。 而使用商业染料MitoTracker Red CMXRos (MTR)标记的线粒体在140帧左右就发生了肿胀和明显形变,200帧以上已不可见嵴等正常生理结构,而PKMR标记的线粒体可以提供1000帧以上的 健康 线粒体图像,2000帧左右线粒体的形变程度仍小于商业探针的200帧。 “下一步,我们将继续在数学、物理、化学三方面协同推进,把技术推到极致。同时,争取将来发力转化,打破外国公司在高端成像仪器/探针方向的垄断,真正实现为生物医学研究者提供超越国外产品的国产高端成像工具。”陈知行表示。 相关论文信息: https://doi.org/10.1039/D0SC02837A 《中国科学报》 (2020-09-07 第3版 医药 健康 )

既然受精卵中的线粒体来源于母方,那么是否有很多人的线粒体遗传物质相同?

不会!!虽然线粒体是母系遗传,而且所有人类都拥有一个线粒体夏娃然而,线粒体突变的概率比细胞核内染色体明显高了不止一个数量级(主要是1,线粒体DNA距离电子传递系统太近,稍微一不留神就会撞上活性氧,更可怕的是线粒体内又没基因合成谷胱甘肽来清除过氧化物;2,线粒体DNA没有组蛋白,染色质结构保护,完全外露;3,线粒体DNA上也没有损伤修复基因;4,缺乏内含子,天天为了制造有氧呼吸的蛋白质,不断拆开翻译再合上;5,线粒体DNA的复制聚合酶根本就是原核细胞级别的,校对能力惨不忍睹,还经常不小心把线粒体的DNA从线性折叠成发夹状,还搞同一条ATGC配对……;6,线粒体内脂类物质很高,万一有脂溶性的致癌物,最先当挡箭牌的当然是线粒体。7,线粒体内还有一些环状的质粒,那些玩意你可以当做是古病毒,突变能力比线粒体DNA还要再大一个级别……)所以,就以你而言,虽然你的线粒体都来自你母亲,但随着年龄增长,你会发现你线粒体的基因离你娘会越来越远。甚至大概你20岁左右,你不同部位的细胞线粒体内基因可能都完全不一样了。更不用说很多人线粒体遗传物质都相同这种事了……除开都是DNA,没别的相同点了。

人类线粒体脱氧核糖核酸单倍群的简介

【英文】human mitochondrial DNA haplogroup【简写】mtDNA可使研究者追溯母系遗传的人类起源,粒线体研究显示人类是起源于非洲地区 。线粒体DNA单倍群用字母A, B, C, CZ, D, E, F, G, H, pre-HV, HV, I, J, pre-JT, JT, K, L0, L1, L2, L3, L4, L5, L6, M, N, O, P, Q, R, S, T, U, UK, V, W, X, Y和Z.来标记。线粒体夏娃则是理论上一切女性的始祖,即人类最近线粒体共同祖先。以下是最常见的线粒体DNA单倍群分划:【撒哈拉-非洲型】L0, L1, L2, L3, L4, L5, L6【西欧亚型】H,T,U,V,X,K,I,J,W【东欧亚型】A, B, C, D, E, F, G,Y【土著美洲人型】A,B,C,D,X【澳大拉西亚型】O,P,Q,S

分子人类学的线粒体DNA遗传

线粒体只会遗传自母亲,以哺乳类而言,一般在受精之后,卵子细胞就会将精子中的线粒体摧毁。 1999年发表的研究中显示,父系精子线粒体(含有mtDNA)带有泛素(ubiquitin)标记,因而在胚胎中会被挑选出来,进而遭到摧毁。 不过某些细胞外的人工受精技术可直接将精子注入卵子细胞内,可能会干扰摧毁精子线粒体的过程。由于母系遗传的特性,使得研究者能够藉由线粒体DNA,追溯到母系族谱(与之相对的为专门用来追溯父系族谱的Y染 但最近科学家发现的线粒体DNA重组特征对线粒体夏娃概念提出了挑战。由于mtDNA并非高度保守,而是拥有较快的突变速率,因此可用来研究种系发生学,生物学家挑选少量不同物种的基因,分析其序列的保留与变异程度,可建立出演化树。

染色体xy,线粒体哪个判断自己的孩子准确?

鉴定亲子关系目前用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞及骨头等都可以用于亲子鉴定,十分方便。 一个人有23对(46条)染色体,同一对染色体同一位置上的一对基因称为等位基因,一般一个来自父亲,一个来自母亲。如果检测到某个DNA位点的等位基因,一个与母亲相同,另一个就应与父亲相同,否则就存在疑问了。 利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。就好比拿染色体y来说,它会被被每一代母亲的x染色体从组,也就是说虽然都是y但是每一代都不相同,一般到三代后全部从组,它唯一的优势就是可见性,和生命多样性,而线粒体,它不会被从组,或者说可能很小很小,线粒体优势是能保证基因的遗传,线粒体的基因遗传,可以追溯到全人类的祖先,夏娃。亲子鉴定线粒体DNA检验的基本要求、检验程序、结果比对与解释、鉴定意见和鉴定文书。亲子鉴定线粒体适用于法医学DNA实验室采用线粒体DNA遗传标记对母系亲缘关系如母子(女)、隔代外祖母/外孙(女)、舅甥关系、姨甥关系、同母的全同胞或半同胞进行亲缘关系鉴定。 线粒体DNA 人类唯一的细胞核外DNA,呈闭环双链结构,约16.5 Kb;不遵循孟德尔遗传定律,表现为母系遗传,通过卵细胞将其中的遗传信息传递给后代:无有丝分裂和减数分裂的周期变化:遗传物质位于细胞器内,不受核移植的影响;单个细胞中mtDNA拷贝数多;存在异质性现象。亲子鉴定对线粒体的要求(怎么做亲缘关系鉴定) DNA亲子鉴定异质性 当两种或两种以上的mtDNA序列存在于同一个细胞、组织或个体时称为异质性,可分为长度异质性和点异质性,常见于以下两种情况: (1) 个体在同一组织检出不同的mtDNA序列: (2) 个体在不同的组织检出不同的mtDNA序列。 亲子鉴定适用于法医学DNA实验室对降解严重的毛干、骨、牙等生物检材,在无法获取核基因组DNA或核基因组DNA量不足而无法完成检测时进行线粒体DNA检测,帮助个体身份信息的确认。

线粒体夏娃的夏娃亚当

人的基因有数万个,绝大部分位于细胞核的染色体上,但是有极少数(确切地说是37个)位于细胞质的线粒体中。每个细胞中都有成千上万个线粒体,它们是细胞的“呼吸器官”,为细胞活动提供能量。在精子生成过程中,绝大多数的线粒体都被去除了,只保留极少数的线粒体提供精子运动的能量。在受精时,精子细胞核进入卵子,与卵子细胞核融合,而精子中残余的线粒体则被挡在外头,不进入卵子。因此,下一代的细胞核基因,一半来自精子,一半来自卵子,但线粒体基因则全部来自卵子。也就是说,线粒体基因属于母系遗传的。在生成精子、卵子的过程中,细胞核的基因会发生重组,把原来的排列都打乱了。但是线粒体的基因却不会重组,因此它的传递是相当忠实的。不过,并不存在百分之百的完全忠实的遗传,在线粒体基因的传递过程中,就象细胞核的基因一样,还是会发生罕见的基因突变,改变了基因序列。随着时间的推移,线粒体基因积累的突变越来越多,后代个体之间线粒体基因序列的差异也就越大。一般说来,两位个体之间线粒体基因序列差别越大,表明他们与共同祖先分离的时间越长,亲缘越疏,反之则越近。这样,通过比较现在各个个体之间线粒体基因序列的差异,我们就可以比较他们的亲缘关系是怎么样的,然后根据基因的突变率,就可以算出这些个体的共同祖先生活在什么时候。时间越向前推移,突变越多,但是如果越往后追溯,则突变越少,最后必然要达到一点,即不存在现存的所有突变,而只有一种原型。这时候我们就说找到了现在所有人的线粒体的共同祖先了。通过追踪线粒体基因的谱系,发现在大约14万年前出现了交叉点,表明现存所有人的线粒体基因都传自14万年前的一名女性。她被形象地称为“线粒体夏娃”。细胞核中决定男性性别的Y染色体也是单性遗传的,只不过它是父系遗传,由父亲传给儿子。通过比较各个个体之间Y染色体序列的差异,我们也可以计算出现在所有人的Y染色体都来自大约6万年前的一名男性。他被称为“Y染色体亚当”。所谓“夏娃”、“亚当”本来只是一种比喻说法,但是一般人都误会了这个发现,以为它意味着在当时只存在一个女人或一个男人。原教旨基督徒甚至把这个发现当成了《圣经》的亚当、夏娃的故事真实可靠的证明。当然也有人很奇怪“亚当”和“夏娃”生活的年代怎么会相距好几万年。这当然是无稽之谈。这个发现,绝不意味着14万年前只有一个女人或6万年前只有一个男人。恰恰相反,当时肯定同时生活着许多女人和许多男人,只不过她们的线粒体基因和他们的Y染色体基因没有遗传到现在而已。但是她们或他们遗传下了其他的基因。“线粒体夏娃”和“Y染色体亚当”除了遗传下线粒体和Y染色体,很可能没有其他基因一直遗传到现在。不仅是线粒体基因或Y染色体才存在这种情形。我们随便拿一个基因,只要把它们的突变过程追溯得足够远,总能找到一个共同祖先,只不过,这些祖先生活的时间可能各不相同。这些祖先甚至未必是人,有的可能要追溯到人进化出来之前的某个动物。可以说,这是统计学上的一个假象,原因就在于越往前追溯,每个人的祖先越多:你有两个父母,四个祖父母,八个曾祖父母……如果这么翻倍下去,几十代后就会成了个天文数字。但是每一代人的人数又是固定的,实际上越早期人数会越少,所以,只要追溯得足够远,当时以及在那以前生活着的、到现在还有后代的所有的人就都会成了你的祖先,依次类推,人人如此。所以,如果我们以全世界的人所共有的某项特征为据(比如线粒体基因、Y染色体或某种基因)往前追溯,最后全世界的人总能找到一个共同的祖宗,但是这绝不意味着当时就没有其他的人了,更不意味着这个老祖宗的遗传贡献就比其他的同时代的人都大。用姓的遗传打个比方就很容易理解了。我们拿着方氏家谱一代代往前数,最后找到了方家始祖,但是这绝不意味着方家的所有遗传都只来自方氏始祖夫妇,在方家几千年的演变中,不断地加入了外家族的血液,而这些人的血缘,都可以追溯到与方氏始祖同时期的人身上,这些人中,有的对方家血缘的贡献,说不定还超过了方氏始祖。只不过,当我们以“方”姓为标志来研究方家血缘时,把这些来自外姓的血缘都忽略掉了。

线粒体dna到底容不容易突变,如果容易突变的话,我们凭什么通过线粒体dna追踪非洲夏娃啊

1. 线粒体内部的氧化性很高,是呼吸作用的场所,容易产生大量的氧自由基,对DNA产生破坏。2. 线粒体内部DNA修复酶的活性没有细胞核内的活性强。

全世界人口基因来自36个女人 源于“线粒体夏娃”?

中国人常讲同姓氏的人“五百年前是一家”。英国牛津大学人类遗传学家经十几年的DNA研究发现,全世界的人口分别繁衍自36个不同的、被称做“宗族母亲”的原始女人,而她们又都是15万年前到20万年前非洲大陆上一个科学家命名为“线粒体夏娃”(Mitochondrial Eve)的女人的后代。而现代欧洲人其实大多数都是远亲:97%的欧洲人都是繁衍自一万年前到四万五千年前的7个不同女性。据英国《每日快报》报道,该理论是由英国牛津大学人类遗传学教授布赖恩·西基斯(Bryan Sykes)提出的,他是世界上第一个发明从年代久远的古代骨骼中提取出DNA方法的遗传学者,并建立了“牛津祖先”(Oxford Ancestors)项目。 西基斯教授研究发现,97%的现代欧洲人,其实都起源于10000年前到45000年前冰河时代的7个不同女人,这7个“宗族母亲”被他称做是“夏娃的7个女儿”,7名原始女人通过“线粒体DNA”和现代欧洲人联系到了一起。线粒体DNA是只通过母系一脉传递的遗传基因,男性也能从母亲那里继承线粒体DNA,但却无法将它遗传给自己的后代。也就是说,如果一个女性生下的全都是儿子,那么她的线粒体DNA遗传链将因此终止。      据西基斯教授称,线粒体DNA一般很难发生改变,平均要过2万年线粒体DNA才会发生微小的变异。他对记者道:“研究发现,大多数现代欧洲人的线粒体DNA可分为7种类型,就仿佛血型一样。我们相信,每个线粒体DNA相同的人都是数万年前同一个女人的后代。”    西基斯教授称,全世界的人口分别繁衍自36个不同的“宗族母亲”,其中非洲有13个“宗族母亲”,印度、澳大利亚、中亚有7个。而所有这些“宗族母亲”都是15万年前到20万年前非洲大陆上一个科学家起名为“线粒体夏娃”的女人的后代。尽管“夏娃”不是当时惟一活着的女性,然而她却是惟一一个将血脉延续繁衍到今天的原始女人。

怎样理解线粒体夏娃?

假设一个种群有100个女性,这个种群保持种群数量恒定(将来每一代都是100个女性)。初始这一百个女性一共有100条不同的线粒体基因组。而且这一百个线粒体在功能上没有区别,也就是说都是中性进化,没有特殊的选择压力。根据Kimura,Ohta 1969的文章,平均2N也就是200代后,这最初100个不同的线粒体中的一个会扩散到全种群中,其他的99个都丢失了。因为线粒体的丢失是不可逆的,某女性全部生男孩,那她的线粒体就丢失了。这最初的100个线粒体,丢一个少一个,最后就会只剩下一个。用R模拟一下这个过程:这个图X轴是完成这个过程需要多少代,Y轴是重复500次中多少代出现的频率。比如,100代到200代之间丢失最初99个线粒体出现了大概250次,用200代到300代完成99条线粒体丢失大概出现了100次。全部平均大概就是200代。这个图X轴是完成这个过程需要多少代,Y轴是重复500次中多少代出现的频率。比如,100代到200代之间丢失最初99个线粒体出现了大概250次,用200代到300代完成99条线粒体丢失大概出现了100次。全部平均大概就是200代。现实情况肯定更复杂,比如也许会有一些选择压力,比如人类进化中既有瓶颈也有大规模扩张。但不管怎样,这个过程是不可逆的,给足够长的时间总有一天初始的100条线粒体只有一条剩下。

线粒体夏娃的研究

举例说,谁更可能是今日摩洛哥人的祖先?是伊斯玛利,还是他的某个妻妾?根据推测可以得出以下结论:第一,必定存在着一位可称为“线粒体夏娃”的女性,她是所有现代人最晚的纯粹母系共同祖先;第二,必定还有一个称为“焦点祖先”的人,其性别尚不为人知,却是所有现代人通过任何遗传途径而来的最近的共同祖先;第三,“线粒体夏娃”和“焦点祖先”有可能是同一个人;第四,“焦点祖先”更有可能是男性,而不是女性;第五,对于“线粒体夏娃”生活于何地尚存争议,但从已报道的观点看,人们仍倾向于非洲。第五条需科学证据检验,而前4条只需借助常理推断即可。人类是已知生物群中有思维能力的最高级灵长类动物,人类的起源、迁移、进化和适应的模式,远比其他任何生物种群复杂得多。在生物分类学上,人类只有一个种。换言之,人类没有种间所存在的生殖隔离,甚至黄种人、白种人和黑种人之间连亚种都不存在。因而可以说,人类在历史上向地球的任何一处迁移的可能性都是合理的。常说的“人种”,充其量不过是大的族群。人类虽然在形态上有很大差别,但在分子水平上并没有特别大的不同。某些特定的DNA片段在不同族群呈现出明显的差异,这些差异正是人们用以区别不同地区、跨越不同时代的人群的主要研究指标。

人类的起源-线粒体夏娃

为了说明人类文明的起源,我们必须首先从人类学讲起。大家都很熟悉,我们人类是由1600万年前的南方古猿逐步进化而来的。过去学界认为,地球上不同区域的现代人类是由分布在地球上不同区域的,已经存在300万年到500万年的直立人,逐步进化而来的。比如欧洲人认为他们是欧洲尼安德特人的后裔,我们中国人认为我们是北京周口店猿人、陕西蓝田猿人、云南元谋猿人的后裔。可是在上个世纪末叶,生物学家和人类学家研究发现,地球上现存的人类——我们给它取一个专门的名词,叫现代智人——他们只是由14万年前某一个女性,或者某一族女性繁衍进化而来的。这就是著名的“线粒体夏娃学说”。 我来解释一下这个词,基督教认为人类的始祖是上帝创造的亚当和夏娃。夏娃是人类女性始祖的名称。由于这里探讨现代智人最早的发生,因此借用夏娃这个名号。什么是线粒体呢?任何细菌和细胞结构,它的细胞质里有一个细胞器,叫线粒体。过去认为线粒体只不过是细胞能量代谢的一个结构,是上个世纪后半叶,生物学家研究发现,线粒体里也含有一组基因——脱氧核糖核酸。这一组基因只有母亲传给女儿,女儿传给孙女。也就是说这一组基因表达得十分纯净,这句话什么意思?要知道我们细胞核里面的基因因为在每一代遗传中,他受到两性基因的干扰,也就是父本传下50%,母本传下50%。那么每一代基因传承至少有50%的基因干扰率,但线粒体基因表达得十分纯净,只在女性一系下传。 因此研究这一组基因,研究这一组基因的变形和变异,就可以清楚地测算地球上现代智人发生的时间和来源。我们怎么知道这一点呢?生物学上有一个名词叫“基因突变频率”,也就是一组基因发生突变,它是有一定的常量关系。比如每10万个基因每年发生N个基因的突变,它是一个定数。如果我们知道了基因突变频率,同时又能找见这一组基因的原始参考系,那么我们就可以判断这一组基因在地球上发生的时间。那么根据这样一项技术,对全人类的线粒体基因进行追究。发现全人类只是14万年前,某一个或某一族女性的后裔,这叫线粒体夏娃学说。这个学说有力地颠覆了我们过去认为地球人已经有300万年以上生存史得这个说法。因此被人文学界普遍反对。

人的线粒体来自于谁

线粒体夏娃。线粒体夏娃(英文:MitochondrialEve),或称mt-Eve、mt-MRCA(全称:MatrilinealMostRecentCommonAncestor),在人类进化学说中,被认为是人类的共同母系祖先,而现今人类体内的线粒体遗传自她。该理论最早由马克·斯通金(MarkStoneking)博士提出。历史可追溯至20万年前。此前科学家曾对世界不同地区和民族的女性进行线粒体DNA调查,确定现代人的线粒体来自于约10-15万年前的一位女性,这位母系祖先被称为“线粒体夏娃”。1987年,权威杂志《自然》上发表了一篇论文,称“所有的线粒体DNA都来自一个女人”,而她活在大约20万年前的非洲。这篇论文的作者是伯克利市加利福尼亚大学的丽贝·L.卡恩、马克·斯通金,以及他们的博士导师阿伦·威尔逊。它从各方面激起了人们强烈的兴趣和激烈的争议,这种状况一直延续至今。作者将他们分析的样本称为“线粒体DNA”,而媒体戏称之为“线粒体夏娃”,这个称呼更加令人难忘,但也容易使人误解。这个夏娃并不是活在当时的唯一一位女人,她和创世纪的夏娃不同。根据圣经的文字记载推断,人类的历史应该是数千年,而不是20万年。另外,许多进化论者相信,人类是在世界上的不同地区同时进化的,他们并不赞成“走出非洲”的理论根据后一种理论,解剖学意义上的现代人源自非洲,而后迁移至世界各地。卡恩和她的同事分析了线粒体DNA(mtDNA)以及非核DNA(nDNA)。nDNA负责向后代传递我们眼睛的颜色、人种特征,以及对某些疾病的易感性:mtDNA只能编码蛋白质的合成及线粒体的其他功能。nDNA存在于机体的所有细胞内,混合了母亲与父亲的DNA(重组);而mtDNA几乎只源于母系,来自精子的mtDNA即使有,也只有极少的部分。亲缘关系相近的个体拥有几乎完全一样的mtDNA,数千年里只出现过偶然的突变。人们认为,突变的数量越少,我们离共同祖先的时间距离就越短。

线粒体夏娃的介绍

人类共同的母系祖先“线粒体夏娃”的历史可追溯至20万年前。此前科学家曾对世界不同地区和民族的女性进行线粒体DNA调查,确定现代人的线粒体来自于约15万年前的一位女性,这位母系祖先被称为“线粒体夏娃”。线粒体是一种微型细胞组织,其作用相当于人体细胞内的“能量工厂”,他们拥有自己的基因。线粒体内除包含很少变化的37个基因,还包含一个“超变量”区域。每个人的线粒体都来自母亲,因此线粒体是从母系遗传的角度研究人类进化的重要工具,就像Y染色体是研究父系遗传的工具。

线粒体在细胞凋亡中有哪些关键作用

线粒体属于内源性caspase-induced凋亡途径中的中心细胞器。其中第一个线粒体源的凋亡促进因子cytc的释放将会在细胞质中招募apaf1和caspase9,形成凋亡复合体,凋亡复合体中caspase9相互活化,最终活化多种效应caspase(3等)。第二个发现的线粒体凋亡因子smac,在凋亡启动后释放到细胞质中,可以解除AIP对pro-caspase9的抑制,促进调往复合体的形成,因此促进凋亡。

研究发现,线粒体促凋亡蛋白(smac)是细胞中一种促进细胞凋亡的关键蛋白.在正常的细胞中,smac存在于线

A、Smac(线粒体促凋亡蛋白)是大分子物质,从线粒体中释放出来的方式是胞吐,需消耗能量,A正确;B、癌细胞是不死细胞,所以Smac从线粒体释放可能受阻,B正确;C、癌细胞的无限增殖,可能与癌细胞中IAPs过度表达有关,C正确; D、Smac与IAPs使细胞凋亡是由基因控制的编程性死亡,由基因控制,也受环境影响,D错误.故选:D.

研究发现,线粒体促凋亡蛋白(smac)是细胞中一种促进...

【答案】D【答案解析】试题分析:smac属于蛋白质,从线粒体释放时需消耗能量,A不符合题意;癌细胞中smac从线粒体释放可能受阻,使细胞不能正常凋亡,B不符合题意;癌细胞中IAPs过度表达,使癌细胞凋亡受到抑制,癌细胞无限增殖,C不符合题意;smac使细胞凋亡,IAPs使细胞凋亡受到抑制,都是由基因控制,与环境因素有关,D符合题意。考点:本题考查细胞凋亡,意在考查考生能理解所学知识的要点,把握知识间的内在联系,形成知识的网络结构。

抗线粒体抗体m2阳性是什么意思

  抗线粒体抗体(AMA)由Maokey等于1958年首次于原发性胆汁性肝硬化(PBC)患者血清发现,是一种无器官特异性也无种属特异性的自身抗体,以后的研究发现,AMA也见于其他自身免疫病患者。AMA的靶抗原是线粒体膜上的多种蛋白,成分复杂,现知有M1~M99种成分。M2是PBC患者血清中AMA反应的主要成分,其本质是线粒体内膜上的丙酮酸脱氢酶和α-酮酸脱氢酶的复合体;M2的本质尚不清楚。  抗M2见于90%的PBC患者,常用作该病的重要实验室诊断指标,但AMA与PBC的病期、疾病严重程度、治疗效果均无相关性。除PBC外,抗M2也见于慢性活动性肝炎(CAH)、HBsAg阴性的肝病。

兰斯9的线粒体怎么打

参考战国兰斯吧置顶帖攻略

线粒体能进行多肽链的合成吗?

不能。虽然线粒体中有DNA分子。控制某些性状(伴性遗传)。但翻译这些基因一定要核糖体。线粒体中没有核糖体。基因要转录,然后在细胞质中合成相应的蛋白质

线粒体就是端粒酶吗?

不是,我记得生物教材上说在线粒体的末端上有端粒,端粒可以预测人生命的长短。

线粒体遗传是不是可以证明孩子和母亲基因更近?那为什么世界上大多数还是随父姓。

这个问题分两部分回答:一、线粒体遗传是不是可以证明孩子和母亲基因更近:受精卵细胞核中来自父方、母方的遗传物质是等量的,但细胞质(包括线粒体)的遗传物质绝大部分来自母方的卵细胞,这就是题目所说的线粒体遗传。确实可以说孩子含有的基因中来自母亲的部分更多,但由于基因的显隐性和出生后的环境影响,孩子的表现型不一定与母亲更相像。并且基因主要分布在细胞核,线粒体基因的占比小。至于性染色体的大小,X染色体确实比Y染色体更大,携带的基因更多。但在女性(性染色体为XX)的体细胞中,其中一条X染色体会形成巴氏小体,其大部分基因不会被表达。二、为什么世界上大多数还是随父姓:首先要明白,这更多地是一个社会问题。原始社会的初级阶段中,曾经有过母系社会的阶段。那时人类的生产力水平很低,且缺乏对生殖的科学知识。且男性在大多数时间里外出打猎,而女性从事的工作较稳定,一般孩子只能认出自己的母亲而不知道父亲是谁。因此,妇女在氏族中地位较高,形成了母系社会。后来由于生产力的提高,父系社会出现。其原因是人类开始向农耕时代迈进,男子的工作也逐渐稳定。且男子的力量比女子更大,因此形成了父系氏族。从此,父系社会的传统就一直流传下来,成为人类社会的主流。

线粒体 叶绿体是怎么进行自我复制的、

线粒体、叶绿体的复制过程就是DNA分子先进行复制,两DNA分子各分到两头,再从中间溢裂开。叶绿体和线粒体内都有基因(DNA和RNA),这些基因能够控制它们自身的复制,叶绿体能靠分裂而增殖,其分裂是靠中部缢缩而实现的。线粒体的增殖是通过已有的线粒体的分裂实现的。线粒体是半自主的细胞器,自身能合成十余种蛋白质。线粒体的核糖体蛋白、氨酰tRNA合成酶、许多结构蛋白,都是核基因编码,在细胞质中合成后,定向转运到线粒体。扩展资料线粒体中拥有一套独特的遗传系统。在进行人类线粒体遗传学研究时,人们确认线粒体的遗传密码与通用遗传密码也有些许差异。自从上述发现证明并不只存在单独的一种遗传密码之后,许多有轻微不同的遗传密码都陆续连发现。在线粒体的遗传密码中最常见的差异是:AUA由终止密码子变为甲硫氨酸的密码子、UGA由终止密码子变为色氨酸的密码子、AGA和AGG由精氨酸的密码子变为终止密码子(植物等生物的线粒体遗传密码另有差异,参见表二)。此外,也有某些特例是只涉及终止密码子的,在山羊支原体线粒体遗传密码的UGA由终止密码子变为色氨酸的密码子,而且使用频率比UGG更高;四膜虫线粒体遗传密码里只有UGA一种终止密码子,其UAA和UAG由终止密码子变为谷氨酰胺的密码子;而游仆虫线粒体遗传密码里则只有UAA和UAG两种终止密码子,其UGA由终止密码子变为半胱氨酸的密码子。通过线粒体遗传密码和通用遗传密码的对比,可以推导出遗传密码演化过程的可能模式。参考资料来源:百度百科——线粒体DNA参考资料来源:百度百科——叶绿体DNA参考资料来源:百度百科——线粒体

线粒体 叶绿体是怎么进行自我复制的、

线粒体、叶绿体的复制过程就是DNA分子先进行复制,两DNA分子各分到两头,再从中间溢裂开。叶绿体和线粒体内都有基因(DNA和RNA),这些基因能够控制它们自身的复制,叶绿体能靠分裂而增殖,其分裂是靠中部缢缩而实现的。线粒体的增殖是通过已有的线粒体的分裂实现的。线粒体是半自主的细胞器,自身能合成十余种蛋白质。线粒体的核糖体蛋白、氨酰tRNA合成酶、许多结构蛋白,都是核基因编码,在细胞质中合成后,定向转运到线粒体。扩展资料线粒体中拥有一套独特的遗传系统。在进行人类线粒体遗传学研究时,人们确认线粒体的遗传密码与通用遗传密码也有些许差异。自从上述发现证明并不只存在单独的一种遗传密码之后,许多有轻微不同的遗传密码都陆续连发现。在线粒体的遗传密码中最常见的差异是:AUA由终止密码子变为甲硫氨酸的密码子、UGA由终止密码子变为色氨酸的密码子、AGA和AGG由精氨酸的密码子变为终止密码子(植物等生物的线粒体遗传密码另有差异,参见表二)。此外,也有某些特例是只涉及终止密码子的,在山羊支原体线粒体遗传密码的UGA由终止密码子变为色氨酸的密码子,而且使用频率比UGG更高;四膜虫线粒体遗传密码里只有UGA一种终止密码子,其UAA和UAG由终止密码子变为谷氨酰胺的密码子;而游仆虫线粒体遗传密码里则只有UAA和UAG两种终止密码子,其UGA由终止密码子变为半胱氨酸的密码子。通过线粒体遗传密码和通用遗传密码的对比,可以推导出遗传密码演化过程的可能模式。参考资料来源:百度百科——线粒体DNA参考资料来源:百度百科——叶绿体DNA参考资料来源:百度百科——线粒体

论述线粒体的氧化过程和磷酸化过程是怎样偶联的要

论述线粒体的氧化过程和磷酸化过程是怎样偶联的要氧化磷酸化,生物化学过程,是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应.主要在线粒体中进行.在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应.磷酸化(phosphorylation)是指在生物氧化中伴随着ATP生成的作用.有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型.即ATP生成方式有两种.一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP.这称为底物水平磷酸化.如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸.另一种是在呼吸链电子传递过程中偶联ATP的生成,这就是氧化磷酸化.生物体内95%的ATP来自这种方式.

线粒体内有无ATP水解

当然有ATP的水解了,举一个例子吧,真核生物脂质代谢的第一步脂肪酸分解就是在线粒体基质中进行的,这个过程一开始就要用ATP水解为AMP的,在线粒体里的一些产能代谢里,产ATP的同时也在消耗着ATP以保持代谢的循环进行。

解释线粒体腺苷酸最好有结构图分类

核苷酸 Nucleotide 的详细说明: 一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。 核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。 在生物体内,核苷酸可由一些简单的化合物合成。这些合成原料有天门冬氨酸、甘氨酸、谷氨酰胺、一碳单位及 CO2等。嘌呤核苷酸在体内分解代谢可产生尿酸,嘧啶核苷酸分解生成CO2、β-丙氨酸及β-氨基异丁酸等。嘌呤核苷酸及嘧啶核苷酸的代谢紊乱可引起临床症状(见嘌呤代谢紊乱、嘧啶代谢紊乱)。 核苷酸类化合物也有作为药物用于临床治疗者,例如肿瘤化学治疗中常用的5-氟尿嘧啶及6-巯基嘌呤等。 有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP)。5"-核苷酸的磷酸基还可进一步磷酸化生成二磷酸核苷(NDP)及三磷酸核苷(NTP),其中磷酸之间是以高能键相连。脱氧核苷酸的情况也是如此。 体内还有一类环化核苷酸,即单核苷酸中磷酸部分与核糖中第三位和第五位碳原子同时脱水缩合形成一个环状二酯、即3",5"-环化核苷酸,重要的有3",5"-环腺苷酸(cAMP)和3",5"-环鸟苷酸(cGMP)。 生物学功能 核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面: ① 核苷酸是合成生物大分子核糖核酸 (RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP。合成前身物则是相应的三磷酸核苷 ATP、GTP、CTP和UTP。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,合成前身物则是dATP、dGTP、dCTP和dUTP。 ② 三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。 ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。 ③ ATP还可将高能磷酸键转移给UDP、CDP及GTP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。 ④ 腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。

单核苷酸,线粒体和肽哪个分子更小?

线粒体是细胞器,单核苷酸最小

DNA为什么是双螺旋结构,对于存在于线粒体和叶绿体中的DNA是如何转录和翻译的。

奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。  1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。

氨基酸分布在叶绿体细胞核线粒体中吗

考点: 核酸的种类及主要存在的部位 核酸的基本组成单位 专题: 分析: 此题主要考查核酸的种类以及主要存在部位.核酸分为DNA和RNA,DNA主要分布在细胞核,线粒体和叶绿体,基本组成单位是脱氧核糖核苷酸;RNA主要分布在细胞质,基本组成单位是核糖核苷酸.放射性集中于细胞核、线粒体和叶绿体,说明存在于DNA中.所以,只能是脱氧核苷酸.细胞核、线粒体和叶绿体都有DNA分子.氨基酸和单糖不会集中分布,细胞质中也有;核糖核苷酸位于mRNA上,细胞质中应该也有. 放射性集中于细胞核、线粒体和叶绿体,说明存在于DNA中.所以,被标记的化合物只能是脱氧核苷酸.故选:C. 点评: 此题主要考查生物大分子的种类以及主要分布,基础题目,意在考查学生对基础知识的理解运用,难度不大.

哺乳动物线粒体起始TRNA携带甲酰甲硫氨酸吗?

是的。N-甲酰甲硫氨酸在细菌、线粒体和叶绿体的蛋白质生物合成中起到至关重要的角色。是原核生物蛋白质合成时的第一个氨基酸(大部分pro会将其切除)。

质粒和线粒体叶绿体中的DNA还有拟核中的DNA有什么联系和区别么??什么是裸露的环状DNA分子?

质粒和线粒体叶绿体中的DNA还有拟核中的DNA都是裸露的DNA,也就是DNA外面没有蛋白质包裹。而且它们都是环状的。不同点是拟核DNA中核苷酸数较多,而质粒及线粒体、叶绿体中的DNA都是小型的。

为什么线粒体和叶绿体有dna和rna

内共生起源学说:认为线粒体和叶绿体分别起源于原始真核cell内共生的细菌和蓝藻.线粒体来源于细菌,即细菌被真核生物吞噬后,在长期共生过程中,通过演变,形成了线粒体.叶绿体来源于蓝藻,被原始真核cell摄入胞内,在共生关系中,形成了叶绿体.主要论据:①线粒体和叶绿体的基因组在大小、形态和结构方面与细菌的相似.②线粒体核叶绿体有自己完整的蛋白质合成系统,能独立合成蛋白质.③线粒体和叶绿体的两层被膜有不同的进化来源,外膜与内膜的结构和成分差异很大.④线粒体和叶绿体能以分裂的方式进行繁殖,这与细菌的繁殖方式类似.⑤线粒体和叶绿体能在异源细胞内长期生存.⑥线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌.⑦发现介于包内共生蓝藻与叶绿体之间的结构---蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证.

线粒体和叶绿体的DNA位置在哪里?

在线粒体和叶绿体内。这两种细胞器的结构与原核生物细胞结构类似

为什么转录能在叶绿体和线粒体中进行,不是说只在细胞

线粒体和叶绿体的遗传信息系统 被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.它们的复制都受细胞核的控制,复制所需的DNA聚合酶都是由细胞核DNA编码,在细胞质核糖体上合成的.

线粒体 叶绿体 核糖体 染色体 都含有DNA对吗

不对。叶绿体和线粒体内既有DNA,又有RNA;但核糖体是由RNA(准确的说是rRNA)和蛋白质构成。

叶绿体、线粒体中的DNA是否能够进行复制表达?具体过程是怎样的…

线粒体、叶绿体中的DNA决定自身的线粒体、叶绿体合成,在细胞复制时它俩会复制,还有在代谢旺盛时可合成。记住,线粒体、叶绿体的合成只由自己的DNA决定.几乎与细胞核的基因无关

线粒体叶绿体的RNA分别在那里

线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的 线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。不同来源的核糖体其形状,大小、化学组成稍有不同,通常根据沉降系数的不同分为70S和80S两种类型,70S核糖体存在于细菌,线粒体和叶绿体中,80S核糖体存在于真核生物的细胞质中

叶绿体和线粒体中DNA的来源

线粒体和叶绿体的起源,一般公认的是内共生起源学说即叶绿体和线粒体的前身是原核生物,被真核生物吞噬后,在长期的共生过程中,通过演变,形成了线粒体和叶绿体。所以其中的DNA来自原核生物(一般认为是好氧细菌和蓝藻),其DNA结构与原核生物相似也是该学说的有力证据之一。更详细的信息LZ可以查阅百度百科,网址如下:

线粒体和叶绿体中的DNA和RNA有什么作用?工作原理是怎样的?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状。很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体与叶绿体中的DNA从哪来

线粒体和叶绿体本身是具有DNA的,细胞复制的时候它们也自己会复制。就好像一个小型的细胞。而且它们的DNA一点都不像细胞核的DNA,反而更像原核生物的DNA,所以很多科学家认为线粒体和叶绿体最早是被真核细胞吞噬的原核生物,结果留在真核细胞体内和真核细胞共存下来,进化到今日而形成的。

为什么说线粒体是半自主性细胞器

线粒体中有DNA和RNA、核糖体、氨基酸、活化酶等。线粒体有自我繁殖所必需的基本组分,具有独立进行转录和转译的功能。但是,已知线粒体基因组仅能编码约20种线粒体膜和基质蛋白并在线粒体核糖体上合成;线粒体和叶绿体的绝大多数蛋白质是由核基因编码。在细胞质核糖体上合成,然后转移至线粒体或叶绿体内。这些蛋白质与线粒体或叶绿体DNA编码的蛋白质协同作用,也就是说,线粒体的自主程度是有限的,因此,线粒体的生长和增殖是受核基因组及其自身的基因组两套遗传系统的控制,所以称为半自主性细胞器。扩展资料线粒体的功能:1、能量转化线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。2、三羧酸循环糖酵解中生成的每分子丙酮酸会被主动运输转运穿过线粒体膜。进入线粒体基质后,丙酮酸会被氧化,并与辅酶A结合生成CO2、还原型辅酶Ⅰ和乙酰辅酶A。3、储存钙离子线粒体可以储存钙离子,可以和内质网、细胞外基质等结构协同作用,从而控制细胞中的钙离子浓度的动态平衡。线粒体迅速吸收钙离子的能力使其成为细胞中钙离子的缓冲区。参考资料来源:百度百科——半自主性细胞器

解释叶绿体线粒体半自主性

线粒体和叶绿体是半自主性细胞器半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的。

线粒体和叶绿体内的DNA是否裸露的

不是。裸露的DNA现在在原核生物的细胞中才能见到。一般是存在在细胞核中。另外在线粒体以及叶绿体中也有。

线粒体和叶绿体分别用什么试剂染色

叶绿体自身就绿色,无须染色.线粒体用健那绿溶液染成蓝绿色.叶绿体是植物细胞中由双层膜围成,含有叶绿素能进行光合作用的细胞器。叶绿体基质中悬浮有由膜囊构成的类囊体,内含叶绿体DNA。是一种质体。质体有圆形、卵圆形或盘形3种形态。叶绿体含有的叶绿素a、b吸收绿光最少,绿光被反射,故叶片呈绿色。容易区别於另类两类质体──无色的白色体和黄色到红色的有色体。叶绿素a、b的功能是吸收光能,少数特殊状态下的叶绿素a能够传递电子,通过光合作用将光能转变成化学能。叶绿体扁球状,厚约2.5微米,直径约5微米。具双层膜,内有间质,间质中含呈溶解状态的酶和片层。片层由闭合的中空盘状的类囊体垛堆而成,类囊体是形成高能化合物三磷酸腺苷(ATP)所必需。是植物的“养料制造车间”和“能量转换站”。能发生碱基互补配对。线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。其直径在0.5到1.0微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。

线粒体和叶绿体中是不是都含有DNA和RNA

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状. 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

叶绿体线粒体中的DNA和RNA分别在什么地方,以什么形式存在?

植物细胞中;细胞质中无DNA,只有线粒体和叶绿体中有 动物细胞中;细胞凡是有DNA存在就一定有染色体 原核单细胞生物中:有些DNA有染色体,如拟核,也有些DNA不存在染色体,具有放射性的a DNA 这个涉及高等生物,高中的生物中不可能出现的 也就是说,高中生物细胞质中有DNA就一定由染色体构成噢的,动物细胞中不可能会有单独存在的DNA 但是植物细胞可能,也就是在线粒体和叶绿体存在DNA,而无染色体是因为线粒体和叶绿体中的细胞膜是选择透过性膜,它不允许由脂肪构成的酶透过,也就是核糖聚合酶,它是将DNA和蛋白质聚合到一起形成染色体的酶,线粒体和叶绿体没有这酶也就不能形成染色体,却有DNA

有丝分裂中线粒体 叶绿体数量怎么增加,其DNA如何复制

线粒体和叶绿体是半自主性细胞器半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的。

细胞中叶绿体,线粒体的DNA与细胞核的相同吗?

不相同。叶绿体,线粒体的DNA是环状的,也细菌中的质粒DNA是一样的,而真核细胞的细胞核中的DNA则是线状的。

线粒体和叶绿体中的DNA的遗传物质有什么特点

细胞质遗传是由细胞质中的遗传物质决定的遗传,也就是由线粒体或叶绿体中的DNA所决定的形状。细胞质遗传具有母系遗传的特点,也就是子代与母本的性状相同。而伴性遗传中的显隐性还不一样,并且,细胞质遗传不遵循孟德尔遗传定律。

植物细胞中线粒体和叶绿体中的DNA如何遗传?

植物受精卵也是精子和卵子结合的,精子几乎所有细胞器都消失了,所以可以说是精子的细胞核与卵子结合罢了,这样子,父本的线粒体和叶绿体就无法参与植物的遗传,子代的非核DNA与母本的是一致的,所以由细胞质基因控制的形状是只是可能由母本遗传给子代的。------------------------------------------------------------------补充:线粒体和叶绿体DNA在各自的基质中进行DNA的复制、转录、和翻译,利用游离的脱氧核苷酸进行复制,利用游离的核苷酸进行转录,利用游离的氨基酸进行翻译,从而表达出该生物的某些性状。也细胞质DNA是双螺旋结构,按半保留方式复制,与核基因的突变率相同。。但是它们的DNA一点都不像细胞核的DNA哟!反而更像原核生物的DNA,所以很多科学家认为线粒体和叶绿体最早是被真核细胞吞噬的原核生物,结果留在真核细胞体内和真核细胞共存下来,进化到今日而形成的。希望对你有一点帮助哟!O(∩_∩)O~

线粒体和叶绿体都含有dna吗

能控制部分性状。 线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状. 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

叶绿体和线粒体被称为什么

叶绿体叶绿体(chloroplast):藻类和植物体中含有叶绿素进行光合作用的器官。几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成糖,同时产生氧。所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。一、形态与结构在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。叶绿体由叶绿体外被(chloroplast envelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔(一)外被叶绿体外被由双层膜组成,膜间为10~20nm的膜间隙。外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。(二)类囊体是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(grana lamella)。基粒直径约0.25~0.8μm,由10~100个类囊体组成。每个叶绿体中约有40~60个基粒。贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stroma lamella)。由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱含脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统 Ⅰ、光系统Ⅱ复合物等。(三)基质是内膜与类囊体之间的空间,主要成分包括:碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。二、光合作用机理光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(light reaction)和暗反应(dark reaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要光,涉及CO2的固定。分为C3和C4两类。(一)光合色素和电子传递链组分1.光合色素类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。2.集光复合体(light harvesting complex)由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。3.光系统Ⅱ(PSⅡ)吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light- hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。4.细胞色素b6/f复合体(cyt b6/f complex)可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。5.光系统Ⅰ(PSI)能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的 4Fe-4S。(二)光反应与电子传递P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心 D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。2H 2O→O2 + 4H+ + 4e-在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统Ⅱ。P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。(三)光合磷酸化一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。(四)暗反应C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。三、叶绿体的半自主性线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。①均由两层膜包被而成,且内外膜的性质、结构有显著的差异。②均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。ctDNA呈环状,长40~60μm,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由 ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4.5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。四、叶绿体的增殖在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的 幼叶的基部2-2.5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。成熟叶绿体正常情况下一般不再分裂或很少分裂。高等植物的叶绿体主要存在于叶肉细胞内,含有叶绿素。电镜观察表明: 叶绿体外有光滑的双层单位膜,内膜向内叠成内囊体,若干内囊体垛叠成基粒。基粒内的某些内囊体内向外伸展,连接不同基粒。连接基粒的类囊体部分,称为基质片层;构成基粒的类囊体部分,称为基粒片层。在个体发育上,叶绿体来自前质体,由前质体发育成叶绿体。 线粒体形态与分布线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。一般直径0.5~1μm,长1.5~3.0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。超微结构线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔(图7-1、7-2)。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子线粒体的半自主性1963年M. 和 S. Nass发现线粒体DNA(mtDNA)后,人们又在线粒体中发现了RNA、DNA聚合酶、RNA聚合酶、tRNA、核糖体、氨基酸活化酶等进行DNA复制、转录和蛋白质翻译的全套装备,说明线粒体具有独立的遗传体系。虽然线粒体也能合成蛋白质,但是合成能力有限。线粒体1000多种蛋白质中,自身合成的仅十余种。线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白, 都是核基因编码, 在细胞质中合成后,定向转运到线粒体的,因此称线粒体为半自主细胞器。利用标记氨基酸培养细胞,用氯霉素和放线菌酮分别抑制线粒体和细胞质蛋白质合成的方法,发现人的线粒体DNA编码的多肽为细胞色素c氧化酶的3个亚基, F0的2个亚基,NADH脱氢酶的7个亚基和细胞色素b等13条多肽。此外线粒体DNA还能合成12S和16SrRNA及22种tRNA。mtDNA分子为环状双链DNA分子,外环为重链(H),内环为轻链(L )。基因排列非常紧凑,除与mtDNA复制及转录有关的一小段区域外,无内含子序列。每个线粒体含数个m tDNA,动物m tDNA 约16-20kb,大多数基因由H链转录, 包括2个rRNA , 14个tRNA 和12个编码多肽的mRNA , L链编码另外8个tRNA和一条多肽链。mtDNA上的基因相互连接或仅间隔几个核苷酸序列, 一些多肽基因相互重叠,几乎所有阅读框都缺少非翻译区域。很多基因没有完整的终止密码, 而仅以T或TA 结尾,mRNA的终止信号是在转录后加工时加上去的。线粒体在形态,染色反应、化学组成、物理性质、活动状态、遗传体系等方面,都很像细菌,所以人们推测线粒体起源于内共生。按照这种观点,需氧细菌被原始真核细胞吞噬以后,有可能在长期互利共生中演化形成了现在的线粒体。在进化过程中好氧细菌逐步丧失了独立性,并将大量遗传信息转移到了宿主细胞中,形成了线粒体的半自主性。线粒体遗传体系确实具有许多和细菌相似的特征,如:①DNA为环形分子,无内含子;②核糖体为70S型;③RNA聚合酶被溴化乙锭抑制不被放线菌素D所抑制;④tRNA、氨酰基-tRNA合成酶不同于细胞质中的;⑤蛋白质合成的起始氨酰基tRNA是N-甲酰甲硫氨酰tRNA,对细菌蛋白质合成抑制剂氯霉素敏感对细胞质蛋白合成抑制剂放线菌酮不敏感。此外哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:①UGA不是终止信号,而是色氨酸的密码;②多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;③AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体密码系统中有4个终止密码子(UAA,UAG,AGA,AGG)。mtDNA表现为母系遗传。其突变率高于核DNA,并且缺乏修复能力。有些遗传病,如Leber遗传性视神经病,肌阵挛性癫痫等均与线粒体基因突变有关。线粒体的增殖线粒体的增殖是通过已有的线粒体的分裂,有以下几种形式:1、间壁分离,分裂时先由内膜向中心皱褶,将线粒体分类两个,常见于鼠肝和植物产生组织中2、收缩后分离,分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个,见于蕨类和酵母线粒体中。3、出芽,见于酵母和藓类植物,线粒体出现小芽,脱落后长大,发育为线粒体。

线粒体叶绿体中的DNA是以什么形式存在?

以裸露的形式存在,而且还是环状的,就像细菌中的质粒一样。

线粒体和叶绿体为什么是半自主性细胞器?

线粒体和叶绿体的遗传信息系统 被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。它们的复制都受细胞核的控制,复制所需的DNA聚合酶都是由细胞核DNA编码,在细胞质核糖体上合成的。

解释叶绿体线粒体半自主性 谢谢

线粒体和叶绿体是半自主性细胞器 半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限). 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的.

线粒体和叶绿体中的DNA和RNA有什么作用?工作原理是怎样的?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状. 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体和叶绿体中的环状dna上的基因如何表达?

线粒体和叶绿体中没有核糖体..合成蛋白质不一定要核糖体啊..线粒体内的DNA可以自主合成RNA 并以RNA为模板合成蛋白质如果说核糖体没有信使RNA作为模板 核糖体也是不能合成蛋白质的.线粒体DNA结构、复制及蛋白质合成在真核细胞中,作为重要遗传物质的DNA分子,过去一直被认为只存在于细胞核中,从而把细胞核看成是唯一的遗传控制中心。随着细胞生物学的发展,人们已经发现细胞质中某些重要细胞器,如线位体及叶绿体等也都含有自己特殊的DNA分子,并能依靠它所贮存的遗传信息进行独立的蛋白质合成,而成为一套核外遗传系统。目前,对线粒体的研究日趋深入,现仅就对线粒体DNA的认识作一简单介绍。一、线粒体DNA的发现1962—1963年首先是瑞斯(Ris)等用电子显微镜在藻类的线粒体和叶绿体中观察到了呈小细纤维状的DNA分子。接着纳斯(Nass)等又在鸡肝细胞的线粒体中也相继发现了DNA。它既可被DNA专一性染料(醋酸尿嘧啶)染色,又能被特异性DNA酶所消化。从而为DNA在线粒体中的存在,提供了令人信服的证据。此后,在各种低等或高等的动、植物细胞的线粒体中被普遍确认存在有DNA。特别是在胎儿的组织细胞、培养细胞、以及癌细胞等增殖旺盛的细胞线粒体中就更为多见。二、线粒体DNA的一般形态线粒体DNA是不与组蛋白结合的(相似于细菌染色体),如果将分离出来的线粒体用震荡方法进行破坏,这种裸露DNA便可以游离出来。首先是Luck等在红色面包霉的线粒体中将DNA成功的分离出来。后来又相继在鸡的胚胎,鼠、牛等心脏、肝脏等细胞的线粒体中分离出DNA。如果用蛋白质单分子膜法将分离出来的DNA分子在水面上扩展,同时用醋酸尿嘧啶染色在电子显微镜下观察,便可以看出几乎所有动物细胞的线粒体DNA,其大小均为5微米左右(原生动物和植物的线粒体DNA要长一些),分子量约为9.6×106道尔顿,是一种双链环状分子。在这些环状DNA分子当中,有的是呈闭链环状(Ⅰ型),也有的是开链环状(Ⅱ型)。显然,这种Ⅱ型开链环状分子是由于Ⅰ型闭链环状分子发生部分单链切断所形成的。如果其双链都发生这种切断的话,便可以形成线形DNA分子(Ⅲ型)(图1)。如果将这种环状DNA分子做热变性处理(水浴加热)则双链之间的氢键可被打开,各自成为单链的DNA分子而成凝聚状态,其S值(沉降系数)增大。但是其热变性熔点却比核DNA高(约90℃)。目前,有人用密度梯度离心法,已经成功地分离出来各种形态的线粒体环状DNA分子。其中可见,大部分是呈双链单环状的单体结构也有少部分是以两个单环状DNA分子连锁起来而形成的环状二聚体结构以及呈单环状的二聚体结构等等(图2)。三、线粒体DNA的核外遗传系统1.线粒体DNA的复制事实表明,被分离出来的线粒体,可以用自身的DNA为模板合成出新的DNA。这就说明线粒体DNA也具有自我复制的能力。并具有自己的DNA聚合酶。在电镜下所见到的线粒体DNA复制过程,基本上与细菌、病毒等复制方式相类似,也为半保留复制,并出现有叉型复制形分子。值得注意的是,线粒体DNA的复制周期与线粒体的增殖是平行进行的,但是线粒体DNA的复制过程与核DNA的复制过程不是平行进行的。一般认为,核DNA复制是发生在细胞周期的S期,而线粒体DNA复制是发生在细胞周期的G2期。并且,凡是分裂增殖快的细胞,几乎它的线粒体DNA合成也都十分旺盛。显然线粒体DNA的复制,能够保证线粒体本身DNA在生命过程中的连续性。2.线粒体RNA与线粒体核蛋白体利用电镜放射自显影技术,可以看到被分离出来的线粒体能够在体外,以自身DNA为模板独立的转录合成线粒体RNA。并具有为这种合成所必需的RNA聚合酶(分子量为64,000道尔顿的单一多肽)。线粒体RNA聚合酶是不同于核RNA聚合酶的,但与细菌等却极为相似。如用能使细菌RNA合成受到抑制作用的一定浓度的特异性抑制剂(利福平)做实验,可以看出线粒体中的RNA合成也同样会受到抑制。但是对细胞核中的RNA合成却没有抑制能力。最近,也有人报道,已经在线粒体中分离出来多聚核蛋白体。如酵母菌线粒体中的核蛋白体就是为74S的颗粒。一般认为动物细胞的线粒体核蛋白体比前者要小,约为55—60S被称为小核蛋白体。Attardi等人已从人的HeLa细胞的线粒体中成功的分离出来12SrRNA (小亚基rRNA)和16SrRNA(大亚基rRNA)以及4StRNA等。3.线粒体DNA的基因位点Attardi等还应用DNA-RNA分子杂交实验,并在电镜下观察已确认出某些与RNA碱基具有互补作用的线粒体DNA分子的基因位点。并初步绘制出了人的HeLa细胞线粒体DNA的基因图。目前已被公认在H链(重链)上分别有12S以及16S rRNA的基因位点和9个tRNA基因位点。在L链(轻链)上有3个tRNA基因位点。并且确定出它们的排列顺序。至于在它们的空隙区域内将有怎样的mRNA基因存在,尚在研究之中(图3)。4.线粒体的蛋白质合成某些特异性抑制剂的使用,可以用来鉴定线粒体中的蛋白质成分是由细胞质内合成的,还是由线粒体本身所合成。比如,氯霉素等某些抗生素只能特异性的抑制细菌以及线粒体内蛋白质的合成,而对真核细胞细胞质内的蛋白质合成却没有影响作用。利用这种特异性实验,可以证明线粒体内的部分蛋白质成分是在线粒体本身的DNA支配下所合成的。如:用于构成线粒体内膜的电子传递系,及氧化磷酸化系机构有关的蛋白质,ATP酶(ATPase)的四种内源性蛋白质亚基、细胞色素氧化酶的三种亚基、以及细胞色素b+c1的亚基等等。至于构成线粒体结构的其它部分蛋白质成分,看来还要依靠核DNA蛋白质合成系统所合成。这就是说,构成线粒体结构的蛋白质成分,除靠自己合成外,还需要有核DNA蛋白质合成系统的协助。另外某些实验还推测,线粒体DNA的基因活性,不仅能够转译合成部分蛋白质,它还可以通过合成出某种阻遏性蛋白质,在一定程度上能控制(或阻遏)核DNA基因的转录活性的表达。从以上这些事实,不难得出如下结论:1.线粒体由于含有自己的DNA等并能进行自我复制和转录、合成蛋白质而成为一套完整的核外遗传系统。2.线粒体的结构物质,除部分可以自身合成外,同时又要依靠核DNA遗传系统的输入,是一种半独立性的细胞器。3.真核细胞内所具有的两种遗传体系是处于互相影响、互相依存的复杂矛盾状态之中,核DNA遗传系统看来是居于主导地位。http://nczxh.bokee.com/6084293.html三、叶绿体的半自主性线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。①均由两层膜包被而成,且内外膜的性质、结构有显著的差异。②均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。ctDNA呈环状,长40~60μm,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4.5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。四、叶绿体的增殖在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的 幼叶的基部2-2.5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。成熟叶绿体正常情况下一般不再分裂或很少分裂。高等植物的叶绿体主要存在于叶肉细胞内,含有叶绿素。电镜观察表明: 叶绿体外有光滑的双层单位膜,内膜向内叠成内囊体,若干内囊体垛叠成基粒。基粒内的某些内囊体内向外伸展,连接不同基粒。连接基粒的类囊体部分,称为基质片层;构成基粒的类囊体部分,称为基粒片层。在个体发育上,叶绿体来自前质体,由前质体发育成叶绿体。 http://baike.baidu.com/view/28826.htm

为什么叶绿体线粒体中有DNA和RNA

从两种细胞器的起源来看,有内共生假说。以线粒体为例:线粒体体来源于被原始的前真核生物吞噬的好氧性细菌;这种细菌和前真核生物共生,在长期的共生过程中演化成了线粒体。所以线粒体和叶绿体维持了原来原核细胞的结构,存在核酸和核糖体。

线粒体和叶绿体中的DNA的作用?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。 线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

叶绿体 线粒体中的DNA有何用

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。 线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体与叶绿体中的DNA是如何复制的呢?有同源染色体吗?

线粒体和叶绿体是半自主性细胞器半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)。 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的。

线粒体叶绿体中的DNA是以什么形式存在

植物细胞中;细胞质中无DNA,只有线粒体和叶绿体中有 动物细胞中;细胞凡是有DNA存在就一定有染色体 原核单细胞生物中:有些DNA有染色体,如拟核,也有些DNA不存在染色体,具有放射性的a DNA 这个涉及高等生物,高中的生物中不可能出现的 也就是说,高中生物细胞质中有DNA就一定由染色体构成噢的,动物细胞中不可能会有单独存在的DNA但是植物细胞可能,也就是在线粒体和叶绿体存在DNA,而无染色体是因为线粒体和叶绿体中的细胞膜是选择透过性膜,它不允许由脂肪构成的酶透过,也就是核糖聚合酶,它是将DNA和蛋白质聚合到一起形成染色体的酶,线粒体和叶绿体没有这酶也就不能形成染色体,却有DNA

线粒体和叶绿体中含的dna参与控制生物性状吗

能控制部分性状。线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状.很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器.线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子.线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体和叶绿体中的DNA有什么作用?

线粒体和叶绿体中的DNA是半自主性的的遗传物质,它们里面包含了一些特有的基因,这些基因只表达对于线粒体,或叶绿体中的结构或代谢反应所需要的特有的蛋白质。也就是说,形成叶绿体和线粒体所需要的所有结构元件,以及它们所进行的所有代谢反应所需的酶类,不完全是细胞核基因表达的结果,有一部分是它们自身的DNA携带的遗传信息。

线粒体和叶绿体中是不是都含有DNA和RNA

线粒体和叶绿体都含有少量的dna和rna,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的rna和dna能直接或根本上控制一部分性状。很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有dna外,还有rna(mrna、trna、rrna)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录rna和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体dna呈双链环状,与细菌dna相似。一个线粒体中可有一个或几个dna分子。各种生物的线粒体dna大小不一样,大多数动物细胞线粒体dna的周长约为5μm,约含有16000个碱基对,相对分子质量比核dna分子小100~1000倍。叶绿体dna也呈双链环状,其大小差异较大(有200000~2500000个碱基对)。叶绿体dna的周长一般在40~60μm。每个线粒体中平均约含有6个线粒体dna分子,每个叶绿体中平均约含12个叶绿体dna分子。线粒体dna和叶绿体dna都可以自我复制,复制也是以半保留方式进行的。用3h嘧啶核苷标记证明,线粒体dna复制的时间主要在细胞周期的s期及g2期,而且dna先复制,随后线粒体分裂。叶绿体dna复制的时间在g1期。它们的复制都受核的控制,复制所需的dna聚合酶都是由核dna编码,在细胞质核糖体上合成的

线粒体膜的线粒体相关的ER膜(MAM)

线粒体相关ER膜(MAM)]是日益认识到在细胞生理学和其关键作用的另一个结构元件的动态平衡。一度被认为是在细胞分离技术的技术障碍,这往往出现在线粒体分数涉嫌ER囊泡的污染物已经被重新确定为从MAM-线粒体和ER之间的接口派生的膜结构。这之间的物理耦合2细胞器此前在电子显微照片中观察到,并且被探测用荧光显微镜。这样的研究估计,在MAM,其可包括最高达20%的线粒体外膜的,内质网和线粒体被分开仅10-25纳米和由蛋白质束缚络合物保持在一起。从亚细胞分离纯化MAM已经表明在参与磷脂交换酶被富集,除了与钙有关的信道信令。这些为MAM在细胞脂质存储的调节突出作用的提示和信号转导已被证实,对线粒体相关细胞现象显著影响,如下面所讨论。不仅具有将MAM提供洞察机械基础,例如生理过程如内在凋亡和钙信号的传播底层,但它也有利于线粒体的一个更精确的图。虽然常常被看作是静态的,孤立的“大力士”,通过一种古老的共生事件被劫持的细胞代谢,对MAM的演变强调到线粒体已被纳入整体的细胞生理学,与亲密的物理和功能耦合内膜系统的程度。

我姐姐得了线粒体脑肌病,这个病可以治疗吗?

病情分析:线粒体脑肌病(mitochondrial encephalopathy, ME)是一组少见的线粒体结构和(或)功能异常所导致的以脑和肌肉受累为主的多系统疾病。其肌肉损害主要表现为骨骼肌极度不能耐受疲劳,神经系统主要表现有眼外肌麻痹、卒中、癫痫反复发作、肌阵挛、偏头痛、共济失调、智能障碍以及视神经病变等,其它系统表现可有心脏传导阻滞、心肌病、糖尿病、肾功能不全、假性肠梗阻和身材矮小等。 意见建议:疾病治疗 虽然近几年对本病分子基础的认识突飞猛进,但治疗选择仍然有限,目前主要依靠支持疗法,而不是纠正根本缺陷。几种比较有前景的治疗方法已由小规模的非随机试验证实。药物治疗 1. 联合用药 目前所用药物大致分为以下 4 方面: (1) 清除氧自由基: 辅酶 Q10、艾地苯醌、维生素 C、维生素 E等; (2) 减少毒性产物: 二氯乙酸、二甲基甘氨酸等; (3) 通过旁路传递电子: 辅酶 Q10、艾地苯醌、琥珀酸盐、维生素 K 等; (4) 补充代谢辅酶: 肌酸、肉碱、烟酰胺、硫胺素、核黄素等。辅酶 Q10 和维生素 C 可以使维生素 E 保持活性状态,辅酶Q10 又可以促进能量代谢; 二氯乙酸和维生素 B1 从不同方面作用于丙酮酸脱氢酶复合物,组合运用可以加速氧化代谢,减少乳酸生成; 辅酶 Q10 和琥珀酸均能作为电子载体直接为复合酶Ⅱ和Ⅲ传递电子,故复合酶 I 缺陷的患者可以联合使用; 抗氧化剂作用于呼吸链的各个环节,可保护各种复合酶不被氧自由基破坏。因此多年前便开始联合用药治疗ME。另外 ME 是由于氧化磷酸化呼吸链的完整性被破坏所致的疾病,因此给予改善能量代谢的各种药物有助于患者症状的缓解。但明确线粒体氧化磷酸化链条中的某个因素缺乏非常困难,因此多种辅酶、维生素等改善能量代谢的药物组成的“鸡尾酒”疗法成了近些年治疗 ME 的主要方法。 2.L-精氨酸 作为氧化亚氮( NO) 前体可诱发血管舒张,从而减少 MELAS 征患者的卒中样发作。Kubota 的研究表明 MELAS 卒中样发作急性期给予 L-精氨酸治疗后症状改善,磁共振波谱分析显示顶叶皮质乳酸峰降低、N-乙酰天门冬氨酸( NAA) 峰正常,这些都提示 L -精氨酸可改善线粒体能量状态及细胞活力。还有研究表明 L-精氨酸可通过影响谷氨酸的吸收和 γ-氨基丁酸的释放调节神经元的兴奋性。虽然 L-精氨酸的安全性和确切作用尚需长期随机对照试验来证实,但其为临床工作带来了希望。运动疗法 运动训练作为 ME 有希望的治疗选择,包括阻力和耐力训练。( 1) 阻力训练: 理论基础是基因漂移学说。当 mtDNA发生突变时就会导致细胞内同时存在野生型和突变型 mtDNA,即异质性。但 mtDNA 突变的比例必须超过一个阈值,才能发生病变,对肌肉特定 mtDNA 突变患者的两项研究证实了这种学说,这些患者骨骼肌卫星细胞检测不到突变 mtDNA,阻力训练可以激活融合于骨骼肌纤维中的静态卫星细胞,增加野生型 mtDNA/突变型 mtDNA 的比例和纠正一些骨骼肌纤维的生化缺陷。最近报道,8 名 mtDNA 缺失患者进行12w 的阻力训练后,虽然突变 DNA 水平没有明显下降,但肌力、氧化能力和卫星细胞的比例都增加了。( 2) 耐力训练:规律的有氧耐力运动可以提高组织毛细血管的密度、增加血管的通透性及线粒体呼吸链的酶活性。

线粒体中酶的合成

合成能力有限(线粒体1000多种蛋白质,自身合成十余种)线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白,都是核基因编码。在细胞质核糖体中合成后,定向转运到线粒体的。希望能帮您 谢谢

人类基因组的核DNA包括线粒体DNA吗

不包括。核DNA在细胞核,线粒体DNA在线粒体。

为什么观察线粒体用口腔上皮细胞

线粒体普遍存在于动植物细胞中,它是有氧呼吸的主要场所,观察线粒体用口腔上皮细胞,是由于口腔上皮容易取材,其次是含线粒体多,所以通常用口腔上皮细胞

你知道为什么动物线粒体基因组比植物小那么多吗?

植物质体基因组进化正好是我课题的一部分,这里简要讨论一下植物线粒体基因组的特点,成因和后果。植物线粒体基因组的主要特点是:基因组大小和结构变异巨大,基因却极度保守;基因分布非常稀疏,含有大量非编码序列;存在大量的RNA编辑。大部分动物的环状线粒体基因组的大小约15-17kb,且结构相对保守,基因排列紧凑,这些特点都跟植物叶绿体基因组相仿,植物的叶绿体基因组大小在100-200kb之间。然而植物线粒体基因组却跟前两者有着迥然不同的特性,其大小一般在200-750kb之间。有些植物如黄瓜,其线粒体基因组竟然达到了1556kb之大。而且这种基因组大小的差异即便是在近缘物种之间都可以是非常巨大的。如在蝇子草属(Silene)中,夜花蝇子草(S.noctiflora)的线粒体基因组大小为6.728kb,而叉枝条蝇子草(S.latifolia)的线粒体基因组则有253kb之大。两者为同属植物,后者的线粒体基因组大小竟然达到了前者的30多倍。而即便在同一物种中,其线粒体基因组的差异也非常显著。如在白玉草(S.vulgaris)中,任何不同种群两两之间只有约一半的线粒体基因组序列是相同的(Sloanetal,2012)。虽然植物的线粒体基因组非常庞大,但其上的编码基因却并不多,排列得非常稀疏。植物的叶绿体基因组上有约100个基因,但比叶绿体基因组大的拟南芥线粒体基因组上,却只有约50多个基因,而人的线粒体基因组上有37个基因。拟南芥的线粒体基因数量不到人的两倍,其基因组大小却是后者的22倍。也就是说,植物线粒体基因组中,大部分都是非编码序列,这些序列占到了整个拟南芥线粒体基因组的60%以上。这些非编码序列由重复片段、由叶绿体基因组和和基因组转移而来的序列,甚至是基因水平转移获得的其它物种的序列构成。如最古老的被子植物互叶梅(Amborellatrichopoda)的线粒体基因组中,就有大量来自苔藓、绿藻和其它被子植物的序列片段(Rice,2013)。植物线粒体基因组结构变异巨大,线粒体基因却极度保守,是植物三套基因组中最保守,演化速率最慢的。黄瓜如此庞大的线粒体基因组上,却只比拟南芥多了四个基因。正是由于植物线粒体基因非常保守,区分度不足,所以一般不选作系统学研究的分子标记。这跟动物正好相反,动物的线粒体基因演化速率较快,所以在动物系统学研究中,它们是最常用的分子标记。那么是什么导致植物线粒体基因组如此庞大,涌入了如此多的非编码序列呢?又是什么导致在这样疯狂变异的基因组中,线粒体基因本身却能独善其身,处变不惊,稳如泰山呢?目前我们是用发生在线粒体非编码区和编码区的两套不同的DNA修复机制来解释的。

线粒体基因组的大小

已知的是哺乳动物的线粒体基因组最小,果蝇和蛙的稍大,酵母的更大,而植物的线粒体基因组最大。人、小鼠和牛的线粒体基因组全序列已经测定,都是16.5 kb左右。每个细胞里有成千上万份线粒体基因组DNA拷贝。果蝇和蛙的细胞里有多少个线粒体以及每个线粒体有多少份DNA拷贝,还没有准确的数字。估计线粒体DNA的总量只相当于核DNA的1%弱。酿酒酵母(S.cerevisiae)的线粒体基因组约长84 kb,每个细胞里有22个线粒体,每个线粒体有4个基因组。生长中的酵母细胞线粒体DNA占细胞总DNA量的比例可高达18%。

什么是叶绿体?与线粒体的区别是什么?

叶绿体与线粒体的区别为:1、两者的形态不同:叶绿体的形态为网状、带状、裂片状和星形,线粒体的形态为球状、棒状或细丝状颗粒;2、两者的功能不同:叶绿体的功能为叶绿体吸收光能,使之转变为化学能,同时利用二氧化碳和水制造有机物并释放氧气,线粒体的功能是负责最终氧化,分别对应有氧呼吸的第二、三阶段;3、两者的大小不同:叶绿体的长径5-10um,短径2-4um,厚度2-3um,线粒体的大小为0.5-1.0μm,长1-2μm。扩展资料:线粒体的功能:1、合成ATP为细胞提供能量;2、细胞增殖与细胞代谢的调控;3、合成胆固醇及某些血红素;4、对氨气造成的毒害解毒。参考资料来源:百度百科-线粒体参考资料来源:百度百科-叶绿体

绿色植物的每个细胞都含有线粒体和叶绿体吗?

每个细胞都要进行新陈代谢,需要能量,所以所有细胞里面都有线粒体,叶绿体用于光合作用,只存在叶肉细胞,如根系细胞就没有叶绿体。

线粒体的成分是什么

线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。  1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。  2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。  3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。它是内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、 线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。  4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。 线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。

线粒体的意思线粒体的意思是什么

线粒体的词语解释是:线粒体xiànlìtǐ。(1)极小的细胞器,光学显微镜下线粒体呈线状颗粒、短棒状,一般长约2—6微米,直径约0.2微米。线粒体的词语解释是:线粒体xiànlìtǐ。(1)极小的细胞器,光学显微镜下线粒体呈线状颗粒、短棒状,一般长约2—6微米,直径约0.2微米。注音是:ㄒ一ㄢ_ㄌ一_ㄊ一ˇ。拼音是:xiànlìtǐ。结构是:线(左右结构)粒(左右结构)体(左右结构)。线粒体的具体解释是什么呢,我们通过以下几个方面为您介绍:一、国语词典【点此查看计划详细内容】位于细胞质内的小颗粒或杆状构造物,是细胞能量储藏和供给的所在。二、网络解释线粒体(线粒体)线粒体(mitochondrion)是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"powerhouse"。其直径在0.5到1.0微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。关于线粒体的成语米粒之珠一针一线桂薪玉粒_丝麻线粒米狼戾颗粒无收杯水粒粟玉粒桂薪引线穿针冠山戴粒关于线粒体的词语杯水粒粟颗粒无存粒米狼戾颗粒无收飞刍挽粒桂薪玉粒冠山戴粒玉粒桂薪_丝麻线粒米束薪关于线粒体的造句1、线粒体表现为肿胀、基质密度降低、基质内出现絮状致密体。2、卵细胞含有很多的核糖体及多聚核糖体、嵴明显的线粒体、粗面内质网,高尔基体具小泡。3、结果肝细胞内出现大量脂肪滴和巨大线粒体;神经细胞线粒体受损、脂褐质增多;发现凋亡细胞。4、通过质谱分析和数据库检索,鉴定为纽蛋白和线粒体顺乌头酸酶。5、线粒体是细胞发生呼吸作用的主要场所,包括柠檬酸循环和氧化磷酸化两个过程。点此查看更多关于线粒体的详细信息

线粒体的作用是什么?

线粒体的作用:1、细胞有氧呼吸的主要场所线粒体是一种存在于大多数细胞中的用两层膜包被的细胞器,是细胞有氧呼吸的主要场所,被称为“powerhouse”,其直径在0.5到1.0微米左右。大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小数量以及外观等方面上都有所不同。线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0微米,长1-2微米在光学显微镜下,需用特殊的染色,才能加以辨别。不同生物的不同组织中线粒体数量的差异是巨大的,大多数哺乳动物的成熟红细胞不具有线粒体。一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。线粒体分布方向与微管一致,通常分布在细胞功能旺盛的区域。线粒体的化学成分主要包括水,蛋白质和脂质(主要是磷脂),此外还有少量的辅酶等小分子及核酸,维生素,无机离子。2、线粒体是含酶最多的细胞器线粒体含有120多种酶是细胞中含酶最多的细胞器,由外至内可划分为线粒体外膜,线粒体膜间隙,线粒体内膜和线粒体基质四个功能区。外膜较光滑,起细胞器界膜的作用,内膜则向内皱褶形成线粒体嵴,负担更多的生化反应。内膜富含心磷脂,通透性差。内膜具有嵴内膜上向内腔突起的折叠,能扩大表面积(5-10倍):分两种,1.板层状,2.管状:嵴上有基粒。这两层膜将线粒体分出两个区室,位于两层线粒体膜之间的是线粒体膜间隙,被线粒体内膜包裹的是线粒体基质。内膜是线粒体进行电子传递和氧化磷酸化的主要部位。呼吸包括氧化和磷酸化,ADP的磷酸化有2种方式:底物水平磷酸化,电子传递和氧化磷酸化。几种不同部位的标志酶:内膜_细胞色素氧化酶,外膜_单胺氧化酶,基质_苹果酸脱氢酶,膜间腔_腺苷酸激酶。3、线粒体拥有调控细胞生长和细胞周期的能力线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自助细胞器,除了为细胞供能外,线粒体还参与诸如细胞化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。线粒体的遗传体系除植物中的叶绿体外,真核细胞中唯一含有核外遗传。4、线粒体是细胞氧化代谢的中心线粒体是细胞氧化代谢的中心,是糖类,脂质和氨基酸最终氧化释能的场所。氧化作用葡萄糖和脂肪酸是真核细胞能量的主要来源。线粒体中的三羧酸循环,简称TCA循环,又称Krebs循环,柠檬酸循环,是物质氧化的最终共同途径。氧化磷酸化是生物体获得能量的主要途径。细胞质基质中完成的糖酵解(glylolysis)葡萄糖经糖酵解生成丙酮酸的过程:生成2分子ATP和2分子NADH。乙酰辅酶A形成(丙酮酸生成乙酰辅酶A)和在线粒体基质中完成的三羧酸循环在含产还原型烟酰胺腺嘌呤二核苷酸和还原型黄素腺嘌呤二核苷酸等高能分子,而氧化磷酸化这一步骤的作用则是利用这些物质还原氧气释放能量合成ATP。5、线粒体可以储存钙离子线粒体可以储存钙离子,可以和内质网,细胞外基质等结构协同作用。从而控制细胞中的钙离子浓度的动态平衡。在钙离子释放时会引起伴随着较大膜电位变化的“钙波”,能激活某些第二信使系统蛋白质,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌,线粒体也参与细胞凋亡时的钙离子信号转导。参考资料来源:百度百科-线粒体

线粒体的主要作用是?

1、能量转化线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。细胞质基质中完成的糖酵解和在线粒体基质中完成的三羧酸循环在会产还原型烟酰胺腺嘌呤二核苷酸(reducednicotinarnideadeninedinucleotide,NADH)。它和还原型黄素腺嘌呤二核苷酸(reducedflavinadenosinedinucleotide,FADH2)等高能分子,而氧化磷酸化这一步骤的作用则是利用这些物质还原氧气释放能量合成ATP。在有氧呼吸过程中,1分子葡萄糖经过糖酵解、三羧酸循环和氧化磷酸化将能量释放后,可产生30-32分子ATP(考虑到将NADH运入线粒体可能需消耗2分子ATP)。如果细胞所在环境缺氧,则会转而进行无氧呼吸。此时,糖酵解产生的丙酮酸便不再进入线粒体内的三羧酸循环,而是继续在细胞质基质中反应(被NADH还原成乙醇或乳酸等发酵产物),但不产生ATP。所以在无氧呼吸过程中,1分子葡萄糖只能在第一阶段产生2分子ATP。2、三羧酸循环糖酵解中生成的每分子丙酮酸会被主动运输转运穿过线粒体膜。进入线粒体基质后,丙酮酸会被氧化,并与辅酶A结合生成CO2、还原型辅酶Ⅰ和乙酰辅酶A。乙酰辅酶A是三羧酸循环(也称为“柠檬酸循环”或“Krebs循环”)的初级底物。参与该循环的酶除位于线粒体内膜的琥珀酸脱氢酶外都游离于线粒体基质中。在三羧酸循环中,每分子乙酰辅酶A被氧化的同时会产生起始电子传递链的还原型辅因子(包括3分子NADH和1分子FADH2)以及1分子三磷酸鸟苷(GTP)。3、氧化磷酸化NADH和FADH2等是具有还原性的分子(在细胞质基质中的还原当量可从由逆向转运蛋白构成的苹果酸-天冬氨酸穿梭系统或通过磷酸甘油穿梭作用进入电子传递链)。在电子传递链里面经过几步反应最终将氧气还原并释放能量,其中一部分能量用于生成ATP,其余则作为热能散失。在线粒体内膜上的酶复合物(NADH-泛醌还原酶、泛醌-细胞色素c还原酶、细胞色素c氧化酶)利用过程中释放的能量将质子逆浓度梯度泵入线粒体膜间隙。虽然这一过程是高效的,但仍有少量电子会过早地还原氧气,形成超氧化物等活性氧(ROS),这些物质能引起氧化应激反应使线粒体性能发生衰退。当质子被泵入线粒体膜间隙后,线粒体内膜两侧便建立起了电化学梯度,质子就会有顺浓度梯度扩散的趋势。质子唯一的扩散通道是ATP合酶(呼吸链复合物V)。当质子通过复合物从膜间隙回到线粒体基质时,电势能被ATP合酶用于将ADP和磷酸合成ATP。这个过程被称为“化学渗透”,是一种协助扩散。彼得·米切尔就因为提出了这一假说而获得了1978年诺贝尔奖。1997年诺贝尔奖获得者保罗·博耶和约翰·瓦克阐明了ATP合酶的机制。4、储存钙离子线粒体可以储存钙离子,可以和内质网、细胞外基质等结构协同作用,从而控制细胞中的钙离子浓度的动态平衡。线粒体迅速吸收钙离子的能力使其成为细胞中钙离子的缓冲区。在线粒体内膜膜电位的驱动下,钙离子可由存在于线粒体内膜中的单向运送体输送进入线粒体基质;排出线粒体基质时则需要钠-钙交换蛋白的辅助或通过钙诱导钙释放(calcium-induced-calcium-release,CICR)机制。在钙离子释放时会引起伴随着较大膜电位变化的“钙波”(calciumwave),能激活某些第二信使系统蛋白,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌。线粒体也参与细胞凋亡时的钙离子信号转导。5、其他功能除了合成ATP为细胞提供能量等主要功能外,线粒体还承担了许多其他生理功能。调节膜电位并控制细胞程序性死亡:当线粒体内膜与外膜接触位点处生成了由己糖激酶(细胞质基质蛋白)、外周苯并二氮受体和电压依赖阴离子通道(线粒体外膜蛋白)、肌酸激酶(线粒体膜间隙蛋白)、ADP-ATP载体(线粒体内膜蛋白)。它和亲环蛋白D(线粒体基质蛋白)等多种蛋白质组成的通透性转变孔道(PT孔道)后,会使线粒体内膜通透性提高,引起线粒体跨膜电位的耗散,从而导致细胞凋亡。线粒体膜通透性增加也能使诱导凋亡因子(AIF)等分子释放进入细胞质基质,破坏细胞结构。线粒体的某些功能只有在特定的组织细胞中才能展现。例如,只有肝脏细胞中的线粒体才具有对氨气(蛋白质代谢过程中产生的废物)造成的毒害解毒的功能。参考资料:百度百科-线粒体

线粒体的5个功能

线粒体的5个功能:能量转化、三羧酸循环、氧化磷酸化、储存钙离子、调节膜电位并控制细胞程序性死亡。 能量转化 线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。细胞质基质中完成的糖酵解和在线粒体基质中完成的三羧酸循环在会产还原型烟酰胺腺嘌呤二核苷酸和还原型黄素腺嘌呤二核苷酸等高能分子,而氧化磷酸化这一步骤的作用则是利用这些物质还原氧气释放能量合成ATP。 三羧酸循环 糖酵解中生成的每分子丙酮酸会被主动运输转运穿过线粒体膜。进入线粒体基质后,丙酮酸会被氧化,并与辅酶A结合生成CO2、还原型辅酶Ⅰ和乙酰辅酶A。乙酰辅酶A是三羧酸循环的初级底物。参与该循环的酶除位于线粒体内膜的琥珀酸脱氢酶外都游离于线粒体基质中。在三羧酸循环中,每分子乙酰辅酶A被氧化的同时会产生起始电子传递链的还原型辅因子以及1分子三磷酸鸟苷。 氧化磷酸化 NADH和FADH2等具有还原性的分子(在细胞质基质中的还原当量可从由逆向转运蛋白构成的苹果酸-天冬氨酸穿梭系统或通过磷酸甘油穿梭作用进入电子传递链)在电子传递链里面经过几步反应最终将氧气还原并释放能量,其中一部分能量用于生成ATP,其余则作为热能散失。 储存钙离子 线粒体可以储存钙离子,可以和内质网、细胞外基质等结构协同作用,从而控制细胞中的钙离子浓度的动态平衡。线粒体迅速吸收钙离子的能力使其成为细胞中钙离子的缓冲区。在线粒体内膜膜电位的驱动下,钙离子可由存在于线粒体内膜中的单向运送体输送进入线粒体基质;排出线粒体基质时则需要钠-钙交换蛋白的辅助或通过钙诱导钙释放机制。在钙离子释放时会引起伴随着较大膜电位变化的“钙波”,能激活某些第二信使系统蛋白,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌。线粒体也参与细胞凋亡时的钙离子信号转导。 调节膜电位并控制细胞程序性死亡 当线粒体内膜与外膜接触位点处生成了由己糖激酶、外周苯并二氮受体和电压依赖阴离子通道、肌酸激酶、ADP-ATP载体和亲环蛋白D等多种蛋白质组成的通透性转变孔道后,会使线粒体内膜通透性提高,引起线粒体跨膜电位的耗散,从而导致细胞凋亡。线粒体膜通透性增加也能使诱导凋亡因子等分子释放进入细胞质基质,破坏细胞结构。

线粒体的作用

线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含 有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体能为细胞的生命活动提供场所,是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂" (power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。  在各种细胞器中,线粒体具有特殊性,因其含有核糖体且自身带有遗传物质。线粒体DNA是环状的,且有一些和标准真核生物遗传密码不同的变化。  这些特性导致了内共生学说——线粒体起源于内共生体。这种被广泛接受的学说认为,原先独立生活的细菌在真核生物的共同祖先中繁殖,形成今天的线粒体。  线粒体(mitochondrion,来源于希腊语mitos“线” + khondrion“颗粒”,又译为粒线体),在细胞生物学中是存在于大多数真核生物(包括植物、动物、真菌和原生生物)细胞中的细胞器。一些细胞,如原生生物锥体虫中,只有一个大的线粒体,但通常一个细胞中有成百上千个。细胞中线粒体的具体数目取决于细胞的代谢水平,代谢活动越旺盛,线粒体越多。线粒体可占到细胞质体积的25%。  可看作是“细胞能量工厂”,因其主要功能是将有机物氧化产生的能量转化为ATP,有氧呼吸产生能量的主要场所。  线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.5~1.0 μm, 在长度上变化很大, 一般为1.5~3μm,长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)  在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外,在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。  通俗的讲:细胞必须有能量的供给才会有活性,线粒体就是细胞中制造能量的器官,科学界也给线粒体起了一个别名叫做“power house”,即细胞的发电厂。一个细胞内含有线粒体的数目可以从十几个到数百个不等,越活跃的细胞含有的线粒体数目越多,如时刻跳动的心脏细胞和经常思考问题的大脑细胞含有线粒体的数目最大,皮肤细胞含有线粒体的数目比较少。科学家发现农民皮肤细胞的线粒体因常年在室外劳动受到损伤的程度远远高于其他室内职业者,线粒体受到损伤,细胞就会缺乏能量而死亡。我们的面部常年暴露在外,时时刻刻都在经受风吹雨打和各种污染颗粒的侵袭,因此面部细胞经常是因为过度的磨难而早夭。
 1 2 3  下一页  尾页