基因

DNA图谱 / 问答 / 标签

一个基因有多少个碱基对组成

人类结构基因4个区域:①编码区,包括外显子与内含子;②前导区,位于编码区上游,相当于RNA5"末端非编码区(非翻译区);③尾部区,位于RNA3"编码区下游,相当于末端非编码区(非翻译区);④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序详细资料外显子和内含子大多数真核生物的基因为不连续基因(interruptesd或discontinuous gene)。所谓不连续基因就是基因的编码序列在DNA分子上是不连续的,被非编码序列隔开。编码的序列称为外显子(exon),是一个基因表达为多肽链的部分;非编码序列称为内含子(intron),又称插入序列(intervening sequence,IVS)。内含子只参与转录形成pre-mRNA,在pre-mRNA形成成熟mRNA时被剪切掉。如果一个基因有n个内含子,一般总是把基因的外显子分隔成n+1部分。内含子的核苷酸数量可比外显子多许多倍。外显子每个外显子和内含子接头区都有一段高度保守的一致顺序(consensus seqence),即内含子5"末端大多数是GT开始,3"末端大多是AG结束,称为GT-AG法则,是普遍存在于真核基因中RNA剪接的识别信号。侧翼顺序侧翼顺序在第一个外显子和最末一个外显子的外侧是一段不被翻译的非编码区,称为侧翼顺序(flanking sequence)。侧翼顺序含有基因调控顺序,对该基因的活性有重要影响。基础资料转录过程1.启动子 启动子(promoter)包括下列几种不同顺序,能促进转录过程:(1)TATA框(TATA box):其一致顺序为TATAATAAT。它约在基因转录起始点上游约-30-50bp处,基本上由A-T碱基对组成,是决定基因转录始的选择,为RNA聚合酶的结合处之一,RNA聚合酶与TATA框牢固结合之后才能开始转录。](2)CAAT框(CAAT box):其一致顺序为GGGTCAATCT,是真核生物基因常有的调节区,位于转录起始点上游约-80-100bp处,可能也是RNA聚合酶的一个结合处,控制着转录起始的频率。(3)GC框(GC box):有两个拷贝,位于CAAT框的两侧,由GGCGGG组成,是一个转录调节区,有激活转录的功能。此外,RNA聚合酶Ⅲ负责转录tRNA的DNA和5SrDNA,其启动子位于转录的DNA顺序中,称为下游启动子。2.增强子在真核基因转录起始点的上游或下游,一般都有增强子(enhancer),它不能启动一个基因的转录,但有增强转录的作用。此外,增强子顺序可与特异性细胞因子结合而促进转录的进行。研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对基因表达有组织、器官、时间不同的调节作用。例如人类单拷贝胰岛素基因5"末端上游约250 bp处有一组织特异性增强子,在胰岛β细胞中有一特异因子可作用于该区以增强胰岛素基因的转录和翻译,其它组织中无此因子,这是何以胰岛素基因只有在胰岛β细胞中才得以很好表达的原因.3.多聚腺苷酸化附加信号 是位于真核基因3‘端的一段保守序列,由AATAAA6个碱基组成。目前研究表明,它是mRNA3"端的polyA附加信号,不是终止信号。研究还发现,在进行多聚腺苷酸化之前,应该现在3‘端水解掉10—15bp。所以,这段顺序又称为RNA裂解信号,其作用是:一、知道核酸内切酶在此信号下游10—15bp特定位点处裂解mRNA;二、在聚合酶的作用下,在成熟mRNA3‘端加上200—250个A的poly A尾部。En:增强子:P1、P2、P3:启动子(TATA框,CAAT框,GC框);E:外显子:I:内含子;UT:非翻译区;GT-AG:外显子-内含子接头6.终止子在一个基因的末端往往有一段特定顺序,它具有转录终止的功能,这段终止信号的顺序称为终止子(termianator)。终止子的共同顺序特征是在转录终止点之前有一段回文顺序,约7-20核苷酸对。回文顺序的两个重复部分分由几个不重复碱基对的不重复节段隔开,回文顺序的对称轴一般距转录终止点16-24bp(图3-2)。在回文顺序的下游有6-8个A-T对,因此,这段终止子转录后形成的RNA具有发夹结构,并具有与A互补的一串U,因为A-U之间氢健结合较弱,因而DNA杂交部分易于拆开,这样对转录物从DNA模板上释放出来是有利的,也可使RNA聚合酶从DNA上解离下来,实现转录的终止。

关于基因增强子描述错误的是() A 增强子可提高该基因mRNA 的翻译效率 B 增强子序列与DNA

A描述错误;增强子定义是能使和他连锁的基因转录频率明显增加的DNA序列;增强子是顺式作用元件自然是可以和DNA结合蛋白结合的,以甾体激素受体的“锌指结构”为例~

基础知识——基因结构

我们都知道,不论真核生物还是原核生物都离不开基因,它储存着生长、发育、凋亡等几乎全部生命过程的信息。 外显子(expressed region)是真核生物基因的一部分。 外显子是最后出现在成熟RNA中的基因序列,又称表达序列。 编码区中不连续的具有蛋白编码功能的DNA序列 内含子(Intron)又称间隔顺序,指一个基因或mRNA分子中无编码作用的片段。就是 编码区中外显子之间间隔的非编码序列 。 增强子是DNA上一小段可与蛋白质结合的区域,与蛋白质结合之后,基因的转录作用将会加强。增强子可能位于基因上游,也可能位于下游。一般位于转录起始位点上游大约100个碱基以外。 启动子是特定基因转录的DNA区域,启动子一般位于基因的转录起始位点5‘端上游,启动子长约100-1000bp。与RNA聚合酶特异性结合。 CAAT box 第一个外显子的5"转录起始位点(TSS) 上游 大约 70-80 个碱基的位置,具有 GGCCAATCT 共有序列的核苷酸序列。是RNA聚合酶的结合位点,其作用是控制转录起始频率。 GC box 位于CAAT box两侧,包含的碱基是 GGCGGG ,它有转录调节、激活转录的功能。 TATA box 第一个外显子的5"转录起始位点(TSS) 上游 大约 20-30 个碱基的位置。包含的碱基信息是 TATAATAAT ,其作用保证RNA聚合酶可以准确识别转录起始位点并开始转录过程。它 影响转录的起始 。 终止子处于基因或操纵子的末端,给RNA聚合酶提供转录终止信号的DNA序列。 ATAAA ATAAA 是 preRNA 在通过修剪后形成成熟mRNA 时在3"UTR产生ployA 是的加尾信号。这段序列再往下到转录终止位点(TTS)之前,是一个反向重复序列(7-20个碱基对),转录后形成一个 发卡结构 ,可以阻碍RNA聚合酶移动, 终止转录 回文序列 palindrome sequence 回文序列是双链DNA中的一段倒置重复序列,这段序列有个特点, 它的碱基序列与其互补链之间正读和反读都相同 。当该序列的双链被打开后,如果这段序列较短,有可能是限制性内切酶的识别序列,如果比较长,有可能形成发卡结构,这种结构的形成 有助于DNA与特异性DNA与蛋白质的结合 。 TSS在启动子区下游和起始密码子上游 TTS在终止子区下游&终止密码子下游 参考链接 (基因结构基础知识) (基因结构)

基因的基本结构

你好我们都知道不论真核与原核生物都离不开基因,它储存着生长、发育、凋亡等几乎全部生命过程的信息。那么基因有着哪些结构呢,接下来从三个层面来讨论基因的构成:一、DNA编码区 Coding region基因在结构上,分为编码区和非编码区两部分。真核生物的编码区是不连续的,分为外显子和内含子,在转录过程中会修剪内含子,并拼合外显子来形成转录产物。在原核生物中,基因是连续的,也就是说无外显子和内含子之分。外显子 Exon外显子是在 preRNA 经过剪切或修饰后,被保留的DNA部分,并最终出现在成熟RNA的基因序列中。内含子 Intron在真核生物中,内含子作为阻断基因的线性表达的一段DNA序列,是在 preRNA 经过剪切或修饰后,被切除的DNA序列非编码区 Non-coding region非编码区在对基因的表达调控中发挥重要作用,如启动子,增强子,终止子等都位于该区域,有意思的是在人类基因中非编码区的占比超过90%。它们中的一部分可以转录为功能性RNA,比如tRNA(transfer RNA), rRNA(ribosomal RNA)等;可以作为DNA复制,转录起始来对复制,转录和翻译起到调控作用;也可能是着丝粒与端粒的重要组成部分。启动子 Promoter启动子是特定基因转录的DNA区域,启动子一般位于基因的转录起始位点,5‘端上游,启动子长约100-1000bp。在转录过程中,RNA聚合酶与转录因子可以识别并特异性结合到启动子特有的DNA序列(一般为保守序列),从而启动转录。启动子本身并不转录而且也不控制基因活动,而是通过转录因子结合来调控转录过程。在细胞核中,似乎启动子优先分布在染色体区域的边缘,可能是在不同染色体上共同表达基因。 此外,在人类中,启动子显示出每个染色体特有的某些结构特征。CAAT Box 与 Sextama boxCCAAT box(有时也缩写为CAAT box或CAT box):具有GGCCAATCT 共有序列的不同核苷酸序列 ,是真核生物基因常有的调节区,位于转录起始点上游约-80bp处,可能也是RNA聚合酶的一个结合处,控制着转录起始的频率。与之相似的是,在原核生物启动子上-35bp处的TTGACA区,又称-35区。保守序列与共有序列的概念含义基本相同。保守序列间相似度高,但不一定相同,而共有序列是相同的,共有序列可以理解为一种特殊的保守序列。CAAT框是最早被人们描述的常见启动子元件之一,常位于接近-80的位置,但是它可以在离起始点较远的距离仍能起作用,且在两种取向均可发挥作用。CAAT框的突变敏感性提示了它在决定转录效率上有很强的作用,但是突变对启动子的特异性没有影响。TATA Box 与 Pribnow boxTATA 框(TATA box / Goldberg-Hogness box),存在于古细菌和真核生物的核心启动子区域的一段DNA序列,TATA 框的原核同源物称为Pribnow 框(Pribnow box),其具有较短的共有序列TATAATAAT。 它约在多数真核生物基因转录起始点上游约-30bp(-25~-32bp)处,基本上由A-T碱基对组成,是决定基因转录始的选择,为RNA聚合酶的结合处之一,RNA聚合酶与TATA框牢固结合之后才能起始转录。增强子 Enhancer增强子是位于转录起始位点或下游基因1Mbp的位置,长度50-1500bp的序列,其可以被转录激活因子结合从而增加特定基因转录发生的可能性,广泛的存在于原核与真核生物基因结构中。增强子能大大增强启动子的活性。增强子有别于启动子处有两点:增强子对于启动子的位置不固定,而能有很大的变动;它能在两个方向产生相互作用。一个增强子并不限于促进某一特殊启动子的转录,它能刺激在它附近的任一启动子。终止子 Terminator终止子处于基因或操纵子的末端,给RNA聚合酶提供转录终止信号的DNA序列。终止子与终止密码子的概念区分:二者在名称上相似,但是含义是截然不同的。终止子是处于基因的非编码区的一段DNA序列,用于终止转录。而终止密码子是在翻译过程中终止肽链合成的mRNA中的三联体碱基序列,一般情况下为UAA,UAG和UGA,不编码为氨基酸。ATAAAATAAA 是 preRNA 在通过修剪后形成成熟mRNA 时在3"UTR产生ployA 是的加尾信号。但是这段序列并不是绝对保守,也可能为其他A富集的序列,比如AATAAA等。回文序列 palindrome sequence回文序列是双链DNA中的一段倒置重复序列,这段序列有个特点,它的碱基序列与其互补链之间正读和反读都相同。当该序列的双链被打开后,如果这段序列较短,有可能是限制性内切酶的识别序列,如果比较长,有可能形成发卡结构,这种结构的形成有助于DNA与特异性DNA与蛋白质的结合。5" GGTACC 3" 3" CCATGG 5"二、preRNA转录起始位点 Transcription start sites (TSS)转录起始位点是指与新生RNA链第一个核苷酸相对应的DNA链上的碱基,通常为一个嘌呤(A 或G),即5"UTR的上游第一个碱基。5"末端的序列称为上游,而把其后面即3‘末端的序列称为下游.转录终止位点 Transcription termination sites (TTS)转录起始位点是指新生RNA链最后一个核苷酸相对应的DNA链上的碱基。当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,转录泡瓦解,DNA恢复成双链状态,而RNA聚合酶和RNA链都被从模板上释放出来。开放阅读框 Open reading frame(ORF)ORF 是连续的一段密码子,其含有起始密码子(通常是AUG)和终止密码子(通常是UAA,UAG或UGA)。在真核基因中,ORF跨越内含子/外显子区域,其可以在 ORF 转录后拼接在一起以产生蛋白质翻译的最终mRNA。 由于读写位置不同(对应不同的起始位点),ORF 可能翻译为不同的多肽链。

已知一个基因的全序列想知道它的启动子、终止子、增强子之类的怎么办?NCBI上面没有

一般的来说,在NCBI上查到的基因序列,一般是指的基因的mRNA(cDNA)序列,这个里面,并没有启动子、终止子,增强子这类的信息,你需要通过blast等手段,将染色体上的序列找到,然后使用对应的软件进行分析,从而得到一个初步数据,最终还是需要片段克隆,最终获得确认。

增强基因组织特异性表达的序列是( ) A.启动子 B.增强子 C.静息子 D.操纵子 E.外显子

【答案】:B增强子就是远离转录起始点、决定基因的时间、空间特异性表达、增强启动子转录活性的DNA序列。

高中生物:若将真核基因在原核细胞中表达,对该目的基因的基本要求是:“无内含子" 为什么?

原核细胞的基因中没有内含子,而真核细胞的基因中有内含子.若将含有内含子的真核基因移入原核细胞,则原核细胞会把内含子也表达出来,就破坏了原有的基因结构.真核细胞的基因结构 在遗传学上通常将能编码蛋白质的基因称为结构基因。真核生物的结构基因是断裂的基因。一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,有人称其为侧翼序列。在侧翼序列上有一系列调控序列(图3-3),主要包括启动子、增强子、终止子等。启动子启动子主要包括以下两个序列:①在5′端转录起始点上游约20~30个核苷酸的地方,有TATA框(TATA box)。TATA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TATA框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。②在5′端转录起始点上游约70~80个核苷酸的地方,有CAAT框(CAAT box)。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAATCT。CAAT框是RNA聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。增强子在5′端转录起始点上游约100个核苷酸以远的位置,有些顺序可以起到增强转录活性的作用,它能使转录活性增强上百倍,因此被称为增强子。当这些顺序不存在时,可大大降低转录水平。研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对不同组织、器官的基因表达有不同的调控作用。例如,人类胰岛素基因5′末端上游约250个核苷酸处有一组织特异性增强子。在胰岛素β细胞中有一种特异性蛋白因子,可以作用于这个区域以增强胰岛素基因的转录。在其他组织细胞中没有这种蛋白因子,所以也就没有此作用。这就是为什么胰岛素基因只有在胰岛素β细胞中才能很好表达的重要原因。终止子在3′端终止密码的下游有一个核苷酸顺序为AATAAA,这一顺序可能对 mRNA的加尾(mRNA尾部添加多聚A)有重要作用。这个顺序的下游是一个反向重复顺序。这个顺序经转录后可形成一个发卡结构(图3-4)。发卡结构阻碍了RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来。同时,RNA聚合酶也从DNA上解离下来,转录终止。AATAAA顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。原核细胞的基因结构 原核生物的基因结构多数以操纵子形式存在(见课本第二节中的乳糖操纵子),即完成同类功能的多个基因聚集在一起,处于同一个启动子的调控之下,下游同时具有一个终止子。两个基因之间存在长度不等的间隔序列,如与乳糖代谢有关酶的基因。在距转录起始点-35和-10(转录起始点上游的核苷酸序列为“-”,下游的核苷酸序列为“+”)附近的序列都有RNA聚合酶识别的信号。RNA聚合酶先与-35附近的序列(称为Pribn-ow框)结合,然后才与-10附近的序列(称为Sexta-ma框)结合。至于RNA聚合酶是如何从一个位置转到另一个位置的,目前尚不清楚。RNA聚合酶一旦与-10附近序列结合,就立即从识别位点上解离下来,DNA双链解开,转录开始。除启动子外,往往还有一些调控转录的其他因子,如调节基因和操纵基因。原核生物基因转录终止之前同样有一段回文序列结构,称为终止子,它的特殊的碱基排列顺序能够阻碍RNA聚合酶的移动,并使其从DNA模板链上脱离下来。真核细胞基因中碱基顺序的一般特点 基因的化学本质是DNA。在原核细胞中一般只有一个大型的DNA分子,在这个DNA分子中,大约1 000个碱基对相当于一个基因。病毒的DNA或RNA约含有几万个碱基,可以构成十几个基因。细菌的DNA约含有几百万个碱基,可以构成几千个基因。真核细胞的基因组要比原核细胞复杂得多。如人体的细胞中有两个基因组,每个基因组的DNA约有3×109个碱基对,长度可达1.1 m左右。根据基因组DNA中碱基顺序重复出现的程度,可以把它分为高度重复顺序、中度重复顺序和单一顺序。高度重复顺序通常是由很短的碱基顺序组成的,约含有2~300个碱基对,其中有的特定顺序只有2~6个碱基对,但重复频率可达106以上,如(CA)n。一些高度重复顺序常常集中在染色体的着丝粒区,其功能可能与减数分裂过程中同源染色体的配对有关。还有一些高度重复顺序在基因组中散在分布,构成基因的间隔或维持染色体的结构。中等重复顺序是由几百至几千个碱基对组成的。不同的中等重复顺序差别较大,平均含有300个左右的碱基对,在基因组中的重复频率一般为102~105次。例如人类特有的ALu顺序大约有300个碱基对。这一顺序在基因组中散在分布,平均每5 000个碱基对中就有一个ALu顺序。ALu顺序的功能,目前了解的还不多,可能与转录的调节有关。单一顺序又称非重复顺序,在基因组中只有一个特定顺序,一般由800~1 000个碱基对组成,它们是编码细胞中各种蛋白质和酶的结构基因。希望这些对你有帮助!

真核生物基因启动子和增强子的异同点?

相同点:都为表达调控的顺式作用元件 不同点:启动子是转录起始位点上游与RNA聚合酶结合的一段DNA序列,而增强子是与启动子作用增强转录的一些片段,他的位置不固定可以在启动子下游或上游.

真核生物中基因的表达必须bd和ad同时存在并发生相互作用吗

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次(图 真核生物基因表达中可能的调控环节).但是,最经济、最主要的调控环节仍然是在转录水平上. (一)DNA水平的调控 DNA水平上的调控是通过改变基因组中有关基因的数量、结构顺序和活性而控制基因的表达.这一类的调控机制包括基因的扩增、重排或化学修饰.其中有些改变是可逆的.1、基因剂量与基因扩增 细胞中有些基因产物的需要量比另一些大得多,细胞保持这种特定比例的方式之一是基因组中不同基因的剂量不同.例如,有A、B两个基因,假如他们的转录、翻译效率相同,若A基因拷贝数比B基因多20 倍,则A基因产物也多20倍.组蛋白基因是基因剂量效应的一个典型实例.为了合成大量组蛋白用于形成染色质,多数物种的基因组含有数百个组蛋白基因拷贝.基因剂量也可经基因扩增临时增加.两栖动物如蟾蜍的卵母细胞很大,是正常体细胞的一百倍,需要合成大量核糖体.核糖体含有rRNA分子,基因组中的rRNA基因数目远远不能满足卵母细胞合成核糖体的需要.所以在卵母细胞发育过程中,rRNA基因数目临时增加了4000倍.卵母细胞的前体同其他体细胞一样,含有约500个rRNA基因(rDNA).在基因扩增后,rRNA基因拷贝数高达2×106.这个数目可使得卵母细胞形成1012个核糖体,以满足胚胎发育早期蛋白质大量合成的需要.在基因扩增之前,这500个rRNA基因以串联方式排列.在发生扩增的3周时间里,rDNA不再是一个单一连续DNA片段,而是形成大量小环即复制环,以增加基因拷贝数目.这种rRNA基因扩增发生在许多生物的卵母细胞发育过程中,包括鱼、昆虫和两栖类动物.目前对这种基因扩增的机制并不清楚.在某些情况下,基因扩增发生在异常的细胞中.例如,人类癌细胞中的许多致癌基因,经大量扩增后高效表达,导致细胞繁殖和生长失控.有些致癌基因扩增的速度与病症的发展及癌细胞扩散程度高度相关.2.基因丢失在一些低等真核生物的细胞分化过程中,有些体细胞可以通过丢失某些基因,从而达到调控基因表达的目的,这是一种极端形式的不可逆的基因调控方式.如某些原生动物、线虫、昆虫和甲壳类动物在个体发育到一定阶段后,许多体细胞常常丢失整条染色体或部分染色体,而只有在将来分化生殖细胞的那些细胞中保留着整套的染色体.在马蛔虫中,个体发育到一定阶段后,体细胞中的染色体破碎,形成许多小的染色体,其中有些小染色体没有着丝粒,它们因不能在细胞分裂中正常分配而丢失,在将来形成生殖细胞的细胞中不存在染色体破碎现象.但是,基因丢失现象在高等真核生物中还未发现.3.DNA重排(基因重排) 基因重排(gene rearrangement)是指DNA分子中核苷酸序列的重新排列.这些序列的重排可以形成新的基因,也可以调节基因的表达.这种重排是由基因组中特定的遗传信息决定的,重排后的基因序列转录成mRNA,翻译成蛋白质.尽管基因组中的DNA序列重排并不是一种普通方式,但它是有些基因调控的重要机制,在真核生物细胞生长发育中起关键作用.⑴酵母交配型转换.啤酒酵母交配型转换是DNA重排的结果.酵母菌有两种交换型,分别a和α.单倍体a和α之间配合才能产生二倍体a/α,经减数分裂及产孢过程形成单倍体四分子,其中a和α的孢子的比例为2:2.如果单独培养基因型a和α的孢子,由于仅有与亲代相同的交配型基因型,所以形成的孢子之间不能发生交配.但酵母菌中有一种同宗配合交配类型,其细胞可转换成对应的交配类型,使细胞之间可发生配合.起始的单倍体孢子(这里是α)发育成一个母细胞及一个芽细胞,芽细胞再长成子细胞.在下一次分裂后,这个母细胞及新形成的子细胞转换成对应的交配型a,结果是两个α 和两个a型细胞.相对应交配型细胞融合形成a/α二倍体合子(交配).再经有丝分裂及产孢过程又形成单倍体孢子.这种交配型转换的基础是遗传物质的重排.控制交配型的MAT基因位于酵母菌第3染色体上,MATa和MATα互为等位基因.含有MATa单倍体细胞为a交配型,具有MATα基因型的细胞为α交配型.MAT位点的两端,还有类似MAT基因的HMLa和HMRa基因,他们分别位于第3染色体左臂和右臂上.这两个基因分别具有与MATα和MATa 相同的序列,但在其基因上游各有一个抑制转录起始的沉默子,所以不表达.交换型转换是由HO内切核酸酶(HO endonuclease)的作用开始的(图8-19).这个内切酶将MATa基因内的一段24bp的双链DNA切开,另一种核酸外切酶在双链DNA的切口,从5′到3′加工产生一段突出的3′单链尾端序列(约500个核苷酸),MATa基因用这一段单链系列插入到MATα基因的同源序列中,以HMLα序列为模板,合成一段新的HMLα基因序列,再通过重组使HMLα整合到MATa序列中,导致基因转换,由MATa转换成MATα.在这个重组过程中,有一段244bp的重组强化子(recombinant enhancer, RE)对重组起顺式调控作用,是基因转换所必须的,RE缺失则不能发生基因转换.这段RE序列也位于第3染色体左臂上,靠近HMLα位点.MAT基因编码一种与MCM1转录因子互作的调控蛋白,控制其它基因转录.MATa和MATα基因产物对MCM1具有不同的影响,因而表现出不同的等位基因特异表达模式.在红色面包霉及其它真菌中出现的四分孢子异常比例,也是重组后产成的基因转换形成的.(2)动物抗体基因重排 一个正常哺乳动物可产生108以上不同的抗体分子,每一种抗体具有与特定抗原结合的能力.抗体是蛋白质,每一种特异抗体具有不同的氨基酸序列.如果抗体的遗传表达是一个基因编码一条多肽链,那么一个哺乳动物就需要108以上的基因来编码抗体,这个数目至少是整个基因组中基因数目(现在估计人类基因组中编码蛋白质的基因大概只有30000个左右)的1000倍.这是不可能实现的!那么哺乳动物是采用什么机制形成如此众多的不同抗体分子的呢?首先我们看一下抗体分子的结构(图 抗体分子结构).抗体包括两条分别约440个氨基酸的重链(heavy chain, H)和两条分别约214个氨基酸的轻链(light chain, L).不同抗体分子的差别主要在重链和轻链的氨基端(N端),故将N端称为变异区(variable region, V),N端的长度约为110个氨基酸.不同抗体羧基端(C端)的序列非常相似,称为恒定区(constant region, C).抗体的轻链、重链之间和两条重链之间由二硫键连接,形成一种四链(H2L2)结构的免疫球蛋白分子.在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的.完整的重链基因由VH、D、J和C四个基因片断组合而成,完整的轻链基因由VL、J和C三3个片段组合而成.人的第14号染色体上具有86个重链变异区片段(VH),30个多样区片段(diverse,D),9个连接区片段(jioning,J)以及11个恒定区片段(C).轻链基因分为3个片段,变异区(VL),连接区(J)和恒定区(C).人类的轻链分为2型:κ型(Kappa轻链,κ)和λ型(Lambda轻链,λ).κ轻链基因位于第2号染色体上,λ轻链基因位于第22号染色体 随着B淋巴细胞的发育,基因组中的抗体基因在DNA水平发生重组,形成编码抗体的完整基因(图 人类抗体重链基因结构).在每一个重链分子重排时,首先V区段与D区段连接,然后与J区段连接,最后与C区段连接,形成一个完整的抗体重链基因.每一个淋巴细胞中只有一种重排的抗体基因.轻链的重排方式与重链基本相似(图 人类抗体κ链基因结构),所不同的是轻链由3个不同的片断组成.重链和轻链基因重排后转录,再翻译成蛋白质,由二硫键连接,形成抗体分子.产生免疫球蛋白分子多样性的遗传控制:重链和轻链的不同组合,κ、λ、H;在重链中,V、D、J和C片段的组合;κ轻链中V和C的组合;λ轻链中V、J和C的组合;此外,基因片段之间的连接点也可以在几个bp的范围内移动.因此,可以从约300个抗体基因片段中产生109 数量级的免疫球蛋白分子.3. DNA甲基化和去甲基化 在真核生物DNA分子中,少数胞嘧啶碱基第5碳上的氢可以在甲基化酶的催化下被一个甲基取代,使胞嘧啶甲基化(methylation).甲基化多发生在5′-CG-3′二核苷酸对上.有时CG二核苷酸对上的两个C都甲基化,称为完全甲基化,只有一个C甲基化称为半甲基化.甲基化酶可识别这种半甲基化DNA分子,使另一条链上的胞嘧啶也甲基化.DNA的甲基化可以引起基因的失活.活跃表达的基因都是甲基化不足的基因.表达活性与甲基化程度呈负相关.甲基化的程度可以在转录的充分激活和完全阻遏之间起调节作用.把甲基化和未甲基化的病毒DNA或细胞核基因分别导入活细胞,已甲基化的基因不表达,而未甲基化的能够表达.在大鼠个体发育过程中,核内DNA甲基化的水平失不断提高的,14d的胚胎肝脏只有8%的rDNA甲基化,18d的胚胎肝脏有30%的rDNA甲基化,而成年大鼠肝组织中rDNA的甲基化程度高达60%.某些玉米Ac转座因子在没有任何DNA序列变化的情况下,失去了转座酶基因活性,就是因为这个基因的富含CG区域发生了高度甲基化.经化学处理去甲基化后,又可使转座酶基因活性恢复.(二)转录水平的调控 持家基因和奢侈基因在多细胞的高等真核生物中,各种类型的细胞中都有相同的一些基因在表达,这些基因的产物是维持细胞的正常结构、运动、以及参与新成代谢等生命活动所必须的,由于它们的功能对于每一个细胞开说都是必不可少的,所以将这些基因称为持家基因(house keeping gene).如组蛋白基因、核糖体蛋白基因、线粒体蛋白基因、糖酵解酶基因等.在哺乳动物中,持家基因大约有10000个左右.另一类基因是组织特异性基因(tissue-specific gene),又称为奢侈基因(luxury gene).这类基因与细胞的特定功能有关,是在各种组织中选择性表达的基因.如表皮的角蛋白基因、肌细胞中的肌动蛋白基因和肌球蛋白基因等.据估计,各类细胞中的奢侈基因的总和大于持家基因的数目.持家基因和奢侈基因的表达调控通常发生在转录水平.前面介绍了细菌中的基因经诱导可使表达效率提高千倍以上.这种极端的调控水平很难发生在真核生物基因表达中(酵母菌除外).大多数真核生物基因经诱导可提高几倍至数十倍的表达效率.多数真核生物基因转录水平的调控是正调控.1、真核基因表达调控的顺式作用元件顺式作用元件(cis-acting element)是指DNA分子上对基因表达有调节活性的特定核苷酸序列.顺式作用元件的活性只影响同一DNA分子上的基因.这种DNA序列多位于基因上游或内含子中.真核基因的顺式作用元件按其功能可以分为:启动子、增强子和静止子.启动子的结构和功能启动子是转录因子和RNA聚合酶的结合位点,位于受其调控的基因上游,邻近基因转录起始点,是基因的一部分(图 真核生物启动子元件).TATA框(TATA box):中心位于-30位置,是RNA聚合酶Ⅱ识别和结合位点.富含AT碱基,一般有8bp,改变其中任何一个碱基都会显著降低转录活性,又称为Hogness box.如人类的β珠蛋白基因启动子中TATA序列发生突变,β珠蛋白产量就会大幅度下降而引起贫血症. CAAT框(CAAT box):位于-70~-80位置,共有序列GGCC(T)CAATCT.决定启动子的起始频率.兔的β珠蛋白基因的CAAT框变成TTCCAATCT,其转录效率只有原来的12%.GC框(GC box):-110位置,GGGCGG.增强转录活性.真核基因的启动子有三个元件构成,而原核基因的启动子一般只有两个元件,-10位置的TATAbox和-35位置的TTGACAbox.增强子的结构和功能增强子(enhancer),又称强化子(transcriptional enhancer),是一种远端调控元件,至少距转录起始点上游100bp以上,通常位于-700~-1000处,所以又称为上游激活序列(upstream activator sequence, UAS).增强子区的跨度一般有100-200bp,和启动子一样,由一个或多个各具特征的DNA序列组成,常由8-12bp的核心序列和其他序列相间排列.增强子也要通过与特定的蛋白质因子(转录因子)结合而实现其对转录的增强作用.静止子是一种类似增强子但起负调控作用的顺式作用元件.有人称为沉默基因.静止子与相应的反式作用因子结合后,可以使正调控系统失去作用.2、真核基因调控的反式作用因子不论是启动子还是增强子序列,他们的转录调节功能都是通过与特定的DNA结合蛋白的相互作用而实现的.真核生物的RNA聚合酶与原核生物的RNA聚合酶不同,它本身不能启动转录,纯化了的真核生物RNA聚合酶在体外是不能启动转录的.因此必须事先有一套转录因子装配到启动子上,RNA聚合酶才能启动转录.这些转录因子一般并不是RNA聚合酶的组成成分.能直接或间接识别各种顺式调控元件并与之结合从而调控基因转录效率的各种蛋白质分子称为反式作用因子 (trans-acting factor).能激活真核生物基因转录的蛋白质称为转录因子(transcription factor, TF).转录因子是参与正调控的反式作用因子,是转录起始过程中RNA聚合酶所需要的辅助因子.这类DNA结合蛋白有很多种,顺式调控元件也有多种,正是不同的DNA序列和不同的DNA结合蛋白之间在空间结构上的相互作用,以及蛋白质与蛋白质之间的相互作用,构成了复杂的基因转录调控机制.反式作用因子的结构特征反式作用因子一般都具有三个不同功能结构域(domain).①DNA结合结构域 与顺式调控元件结合的部位.对大量转录调控因子结构的研究表明,DNA结合结构域大多在100bp以下.大体上有4种结构特征:α螺旋-转角-α螺旋(helix-turn-helix, HTH)结构(图 螺旋-转角-螺旋)、锌指(zinc finger)结构(图 锌指结构)、亮氨酸拉链(leucine zipper)结构(图 亮氨酸拉链)等.②激活基因转录的功能结构域 一般有20-100个氨基酸组成.有时一个反式作用因子可能有一个以上的转录激活区.结构特征有:含有很多带负电荷的α螺旋、富含谷氨酰胺或者富含脯氨酸.③与其他蛋白质因子结合的结构域不同的反式调控因子(转录因子)与顺式调控元件相互作用,启动转录的效率不同.2.选择性启动子 有些真核生物基因具有两个或两个以上的启动子,用于在不同细胞中表达.不同启动子可产生不同的初级转录产物和不相同的蛋白质编码序列.果蝇的乙醇脱氢酶基因是一个典型的例子.这个基因的结构见图8-31A.在幼虫(图8-31B)和成虫期(图8-31C)分别利用不同启动子进行转录.成虫期的转录具有一段很长的5"端前导序列,其中大多数在mRNA加工中去掉.多启动子可使幼虫和成虫具有独立的转录调控.(三)转录后调控在真核生物中,蛋白质基因的转录产物统称为核不均一RNA,必须经过加工才能成为成熟的mRNA分子.在第三章已经讲过,加工过程包括三个方面:加帽、加尾和去掉内含子.转录后的内含子剪切过程在基因表达的调控中具有重要意义.选择性mRNA切割 我们知道,在DNA水平上,真核生物基因与原核生物基因有一个明显的不同之处,也就是真核生物的基因是不连续的,外显子与内含子相间排列,而转录的时候外显子和内含子是一起转录的.转录以后必须降内含子切除,才能形成成熟的mRNA分子.这个过程成为剪接(splicing).同一初级转录产物在不同细胞中可以用不同方式切割加工,形成不同的成熟mRNA分子,使翻译成的蛋白质在含量或组成上都可能不同(图 选择性剪接). (四)翻译水平的调控在真核生物中,基因表达的调控主要发生在转录水平上,但是,翻译水平的调控也是十分重要的.阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译.铁蛋白的功能是在细胞内贮存铁.铁蛋白mRNA的翻译取决于铁的供应.铁供应充足,则铁蛋白合成就多.当细胞中没有铁时,阻遏蛋白与铁蛋白mRNA结合,阻止翻译的进行.当细胞中有铁存在时,阻遏蛋白就不与铁蛋白mRNA结合,使翻译得以进行.成熟的mRNA可以失活状态贮存起来.(五)翻译后调控从mRNA翻译成蛋白质,并不意味着基因表达的调控就结束了.直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性.在蛋白质翻译后的加工过程中,还有一系列的调控机制.1.蛋白质折叠线性多肽链必须折叠成一定的空间结构,才具有生物学功能.在细胞中,蛋白质的折叠必须有伴蛋白的作用下才能完成折叠.2.蛋白酶切割末端切割有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位.信号肽必须切除多肽链才具有功能.脊椎动物胰腺中形成的胰岛素,最初的长度是105个氨基酸,称为前胰岛素原,在加工中首先将氨基端的24个氨基酸残基切除,成为前体胰岛素,再将中间的一段切除,留下两端有活性的部分,即21个氨基酸残基的A链和30个残基的B链,这两条链再由两个二硫键连接成有生物活性的胰岛素.多聚蛋白质的切割有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子.如脑下丘腺产生的一种多肽链,包括4种不同的激素分子,经蛋白酶切割以后成型.在不同的细胞中切割的方式和位点不同,从而产生多种不同的激素,适应不同细胞生长发育的需要.3、蛋白质的化学修饰简单的化学修饰是将一些小的化学基团,如乙酰基、甲基、磷酸基加到氨基酸侧链上,或者加到氨基端或羧基端.这种修饰的方式是特异的,不同蛋白质可以有完全相同的修饰,相同的蛋白质可以有完全不同的修饰.有些蛋白质经磷酸化活化以后,在基因表达中具有重要的调控作用.复杂的修饰是蛋白质的糖基化(glycosylation),就是将一些分子量很大的碳水化合物加到多肽链上.人类的ABO血型也是蛋白质化学修饰的典型例子.控制ABO血型的是一个复等位基因座位,编码负责将糖基加到红细胞膜上的糖蛋白分子上的酶.这个座位上有三个基因(alleles),编码三个不同的酶.一个是将N-乙酰-半乳糖胺(N-acety-galactosamine)加到糖蛋白上,表现为A血型.第二个酶是将半乳糖(galactose)加到糖蛋白上,表现为B血型.第三个基因编码的是一个没有功能的酶,不能将任何糖加到糖蛋白上,表现为O血型.4、切除蛋白质内含子有些mRNA翻译的最初产物同DNA转录的最初产物一样,具有内含子(intein)序列,位于多肽链序列的中间,经剪接后,蛋白质的外显子(extein)才能连接成为成熟的蛋白质.蛋白质内含子的切割位点十分保守.内含子前面的氨基酸通常是半胱氨酸,仅有少数是丝氨酸,而后面总是组氨酸-天门冬酰氨,紧接着内含子的外显子序列通常是半胱氨酸、丝氨酸或苏氨酸.内含子内的有些序列也是十分保守的.内含子的一个重要特点是具有自动切割加工的能力.例如,果蝇胚胎发育有一种蛋白质Hedgehog,其内含子就能将本身的前提蛋白切割成两个有功能的蛋白质分子.内含子的另一个特点是,有些切割下来的内含子具有核酸内切酶活性.这种酶可以识别DNA序列中与编码自身序列对应但没有自身编码序列的位置,并将其切开,使内含子的编码序列插入这个位置.如果一个细胞中与这个内含子有关的基因是杂合体,一个含有编码内含子的序列,另一个不含编码内含子的序列,加工切割下来的蛋白质内含子可以切开没有编码内含子序列的DNA,使其插入相应序列,使杂合体成为纯合体.

真核基因顺式作用元件包括启动子、增强子及沉默子,其中增强子的作用是

【答案】:A增强子是真核生物顺式作用元件之一。它是远离转录起始点能够增强启动子转录活性的DNA序列,可决定基因的时间和空间特异性表达,发挥作用的方式与方向和距离无关。故A项符合。

真核生物基因启动子和增强子的异同点???

增强子(enhancer)指增加同它连锁的基因转录频率的DNA序列。增强子是通过启动子来增加转录的。增强子能大大增强启动子的活性。增强子有别于启动子处有两点:[1]增强子对于启动子的位置不固定,而能有很大的变动;[2]它能在两个方向产生相作用。一个增强子并不限于促进某一特殊启动子的转录,它能刺激在它附近的任一启动子。首先被发现的增强子是SV40增强子。两个增强子位于基因组的两个串连的72nbp重复中,约在转录起始点上游200bp处,每个72bp重复中有一个。缺失实验显示两个重复缺失一个并不产生什么影响,而如两个均缺失即将大大降低活体内的转录。有人发现,如果将β珠蛋白基因放在含有72bp重复的DNA分子中,它的转录作用在活体内将增高约200倍以上,甚至当此72bp顺序位于离转录起点上游1400bp或下游3000bp时仍有作用。各个基因中的增强子顺序差别较大,但有一个基本的核心顺序(core sequence):AAAGGTGTGGGTTTGG

作为基因表达的重要调节原件,增强子通常具有什么特征

  特征  ①增强子提高同一条DNA链上基因转录效率,可以远距离起作用,通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基 因的上游或下游都能起作用。  ]②增强子的作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。而将启动子倒置就不能起作用,可见增强子与启动子是很不相同的。  ③增强子要有启动子才能发挥作用,没有启动子存在,增强子不能表现活性。但增强子对启动子没有严格的专一性,同一增强子可以影响不同类型启动子的转 录。例如当含有增强子的病毒基因组整合入宿主细胞基因组时,可能够增强整合区附近宿主某些基因的转录;当增强子随某些染色体段落移位时,也能提高移到的新 位置周围基因的转录。使某些癌基因转录表达增强,可能是肿瘤发生的因素之一。  ④增强子的作用机理虽然还不明确,但与其他顺式调控元件一样,必须与特定的蛋白质因子结合后才能发挥增强转录的作用。增强子一般具有组织或细胞特异 性,许多增强子只在某些细胞或组织中表现活性,是由这些细胞或组织中具有特异性蛋白质因子所决定的。

增强子和启动子成环连接为什么能活化基因转录

增强子和启动子是基因转录调控中的两个重要元素,它们能够活化基因转录的原因在于它们之间的环连接机制。具体来说,增强子和启动子之间的环连接可以形成一个类似于DNA环绕的空间结构,这个结构可以吸引一系列转录因子的结合,从而促进基因转录的启动。同时,这个环连接结构也能够防止转录因子的结合过早终止或者被其他因素干扰,从而保证基因转录的稳定进行。此外,增强子和启动子之间的环连接也可以影响染色质的结构和状态,进而影响基因转录的启动。环连接可以改变染色质的超结构,从而促进染色质的松弛和开放,使得基因转录因子更容易进入DNA序列中并与启动子结合。因此,增强子和启动子之间的环连接是基因转录调控中非常重要的机制,能够有效地活化基因转录。

增强子,跳跃基因与启动子的关系

启动子是启动编码的基因片段,DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,包括促进这一过程的调节蛋白的结合位点。 增强子是存在于基因组中的对基因表达有调控作用的DNA调控元件。位置不定,结合转录因子后,可增强基因表达。跳跃基因是是那些能够进行自我复制,并能在生物染色体间移动的基因物质。其实都是基因片段,也都是调控作用的部分。增强子是强化表达,启动子是开始的标志,跳跃基因是可以移动转座的那种。

增强子和绝缘子在基因表达调控中的作用和特点有哪些

特征 ①增强子提高同一条DNA链上基因转录效率,可以远距离起作用,通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基 因的上游或下游都能起作用。 ]②增强子的作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。

为什么慢病毒抑制基因表达后mrna明显下降,但是蛋白表达却没有变化

a、dna的甲基化和组蛋白的乙酰化不一定引起基因沉默,a错误;b、增强子是通过启动子来增加转录的,有效的增强子可以位于基因的5′端,也可位于基因的3′端,有的还可位于基因的内含子中,所以增强子不一定位于所有基因的上游,b正确;c、转录因子是一群能与基因5′端上游特定序列专一性结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子,c错误;d、细胞的分化是基因选择性表达,所以通常不发生重编程,d错误.

增强子通过启动子增强邻近基因转录效率的DNA顺序,本身不具备启动子活性。( )

【答案】:正确解析: style="color: rgb(51, 51, 51); font-family: arial, 宋体, sans-serif; font-size: 14px; text-indent: 28px; background-color: rgb(255, 255, 255);">增强子是DNA上一小段可与蛋白质结合的区域,与蛋白质结合之后,基因的转录作用将会加强。增强子可能位于基因上游,也可能位于下游。且不一定接近所要作用的基因。增强子能大大增强启动子的活性,但本身不是启动子,也不具备启动子活性。

真核生物基因启动子和增强子的异同点

相同点:都为表达调控的顺式作用元件不同点:启动子是转录起始位点上游与RNA聚合酶结合的一段DNA序列,而增强子是与启动子作用增强转录的一些片段,他的位置不固定可以在启动子下游或上游。

小白求助 shRNA序列和基因的CDS是什么关系

CDS是Coding sequence,蛋白编码序列.ORF是open reading frame,开放阅读框.⑴开放阅读框是不被终止子打断的一段核酸序列,可能包含编码蛋白的碱基序列;不是所有开放阅读框都能被表达出蛋白产物,或者能表达出占有优势...进行CDS分析,首先要有一段氨基酸序列(基因序列要转换成氨基酸序列),在NCBI首页上第二排链接里点BLAST,进入BLAST页面,在BLAST页面最下方的Specialized BLAST里的第三个链接(Find conserved domains in your sequence (cds))就是CDS分析,输入你的氨基酸序列,就会显示相应的结果。

怎么利用ura3筛选酿酒酵母端粒控制基因

酿酒酵母是第一个完成基因组测序的真核生物,测序工作于1996年完成。酿酒酵母的基因组包含大约1200万碱基对,分成16组染色体,共有6275个基因,其中可能约有5800个真正具有功能。据估计其基因约有23%与人类同源。酵母基因组数据库包含有酵母基因组的详细注释(annotation),是研究真核细胞遗传学和生理学的重要工具。另一个重要的酿酒酵母数据库[1]由慕尼黑蛋白质序列信息中心维护。在酿酒酵母测序计划开始之前,人们通过传统的遗传学方法已确定了酵母中编码RNA或蛋白质的大约2600个基因。通过对酿酒酵母的完整基因组测序,发现在12068kb的全基因组序列中有5885个编码专一性蛋白质的开放阅读框。这意味着在酵母基因组中平均每隔2kb就存在一个编码蛋白质的基因,即整个基因组有72%的核苷酸顺序由开放阅读框组成。这说明酵母基因比其它高等真核生物基因排列紧密。如在线虫基因组中,平均每隔6kb存在一个编码蛋白质的基因;在人类基因组中,平均每隔30kb或的碱基才能发现一个编码蛋白质的基因。酵母基因组的紧密性是因为基因间隔区较短与基因中内含子稀少。酵母基因组的开放阅读框平均长度为1450bp即483个密码子,最长的是位于Ⅻ号染色体上的一个功能未知的开放阅读框(4910个密码子),还有极少数的开放阅读框长度超过1500个密码子。在酵母基因组中,也有编码短蛋白的基因,例如,编码由40个氨基酸组成的细胞质膜蛋白脂质的PMP1基因。此外,酵母基因组中还包含:约140个编码RNA的基因,排列在Ⅻ号染色体的长末端;40个编码SnRNA的基因,散布于16条染色体;属于43个家族的275个tRNA基因也广泛分布于基因组中。表1提供了酵母基因在各染色体上分布的大致情况。表1酵母染色体简况染色体编号长度(bp)基因数tRNA基因数I23×103894Ⅱ80718841013Ⅲ315×10318210Ⅳ153197479627V56920227113Ⅵ270×10312910Ⅶ109093657233Ⅷ561×10326911Ⅸ43988622110X74544237924Ⅺ66644833116Ⅻ107817153422ⅫI92443045921ⅪV78432841915XV109228356020XⅥ94806148717序列测定揭示了酵母基因组中大范围的碱基组成变化。多数酵母染色体由不同程度的、大范围的GC丰富DNA序列和GC缺乏DNA序列镶嵌组成。这种GC含量的变化与染色体的结构、基因的密度以及重组频率有关。GC含量高的区域一般位于染色体臂的中部,这些区域的基因密度较高;GC含量低的区域一般靠近端粒和着丝粒,这些区域内基因数目较为贫乏。Simchen等证实,酵母的遗传重组即双链断裂的相对发生率与染色体的GC丰富区相耦合,而且不同染色体的重组频率有所差别,较小的Ⅰ、Ⅲ、Ⅳ和Ⅸ号染色体的重组频率比整个基因组的平均重组频率高。酵母基因组另一个明显的特征是含有许多DNA重复序列,其中一部分为完全相同的DNA序列,如rDNA与CUP1基因、Ty因子及其衍生的单一LTR序列等。在开放阅读框或者基因的间隔区包含大量的三核苷酸重复,引起了人们的高度重视。因为一部分人类遗传疾病是由三核苷酸重复数目的变化所引起的。还有的DNA序列彼此间具有较高的同源性,这些DNA序列被称为遗传丰余(geneticredundancy)。酵母多条染色体末端具有长度超过几十个kb的高度同源区,它们是遗传丰余的主要区域,这些区域至今仍然在发生着频繁的DNA重组过程。遗传丰余的另一种形式是单个基因重复,其中以分散类型最为典型,另外还有一种较为少见的类型是成簇分布的基因家族。成簇同源区(clusterhomologyregion,简称CHR)是酵母基因组测序揭示的一些位于多条染色体的同源大片段,各片段含有相互对应的多个同源基因,它们的排列顺序与转录方向十分保守,同时还可能存在小片段的插入或缺失。这些特征表明,成簇同源区是介于染色体大片段重复与完全分化之间的中间产物,因此是研究基因组进化的良好材料,被称为基因重复的化石。染色体末端重复、单个基因重复与成簇同源区组成了酵母基因组遗传丰余的大致结构。研究表明,遗传丰余中的一组基因往往具有相同或相似的生理功能,因而它们中单个或少数几个基因的突变并不能表现出可以辨别的表型,这对酵母基因的功能研究是很不利的。所以许多酵母遗传学家认为,弄清遗传丰余的真正本质和功能意义,以及发展与此有关的实验方法,是揭示酵母基因组全部基因功能的主要困难和中心问题。

知道基因的GB序号AK095997,怎么查基因名称

这个问题提得很有水平,基因名称一般是据其编码的蛋白质命名的,故有时不必追究其名称。这个基因在NCBI上的定义为(人类11号染色体上的74个开放阅读框),只需在NCBI中的gene & expression中输入序号即可获得该基因的定义

比较基因和开放阅读框两个概念内涵的异同

可以去佳学基因测个天赋基因检测,结果可以看出小孩的阅读能力和语言能力,主要可以从六大方面去检测小孩的能力,比如认知、记忆、情景记忆、语言、音乐与舞蹈、运动。检测结果报告里会直接给出评分,比如较差、平均、良好、优秀。

装载体,基因插入酶切位点后,删多少碱基

一般都会在表达蛋白前面加入序列标签,一般都是组氨酸标签,便于后续的蛋白纯化.但是不要加的太长了,还有就是多出的碱基一定要是3个3个一组的,不能打破了你的蛋白的开放阅读框.多出几个残基对蛋白的影响不会太大,基本可以忽略.这个就要看你的启动子序列之后有没有ATG,如果没有的话就需要加入,有的话就不需要.

求基因组dna文库与c基因文库的区别对比

基因组dna文库:指由有机体的一整套核基因组及细胞器基因组的DNA,连接到载体上,导入进宿舍细胞中,而建立的文库。c基因文库:指由基因组表达的所有RNA,再反转录成CDNA,连接到载体上,导入进宿舍细胞中,而建立的文库。显然,基因组DNA文库比c基因文库大得多,资料也要齐全的多,但是要在基因组DNA文库中找到一个基因也比较困难。虽然,c基因文库没有像基因组DNA文库保存的那么完整,但是对于基因研究,就非常实用,因为该文库保存在现成的基因开放阅读框,可以很方便的使用。

怎样快速找到基因序列的开放阅读框

可以先到NCBI的数据库去找,里面会有基因的详细信息,有一些软件分析的时候也会给出已知的基因的ORF。如果没有就要自己分析了,一般是有ATG作为起始密码子,在这个ATG前有3种终止密码子中的一个。

开放阅读框跟结构基因到底有什么不同

开放阅读框跟结构基因到底有什么不同开放阅读框(Open Reading Frame, ORF)是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么。这是因为在没有其它信息的前提下,DNA序列可能按六种框架阅读和翻译(每条链三种,对应三种不同的起始位点)。ORF识别包括检测这六个阅读框架并决定哪一个包含以启动子和终止子为界限的DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个真正的单一的基因产物。ORF的识别是证明一个新的DNA序列为特定的蛋白质编码基因的部分或全部的先决条件。ORF开放阅读框[open reading frame,ORF] 是结构基因的正常核苷酸序列,从起始密码子到终止密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。

怎样快速找到基因序列的开放阅读框

开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什麽。这是因为在没有其它信息的前提下,DNA序列可以按六种框架阅读和翻译(每条链三种,对应三种不同的起始密码子)。ORF识别包括检测这六个阅读框架并决定哪一个包含以启动子和终止子为界限的DNA序列而其内部不包含启动子或密码子,符合这些条件的序列有可能对应一个真正的单一的基因产物。

简述克隆真核生物基因组已知基因全长ORF的基本过程。ORF是开放式阅读框。

首先设计好引物,提取RNA、转录成cDNA,扩增、克隆到合适载体

某一基因开放阅读框中的一个碱基突变(替换、插入或缺失)会对该基因编码产物产生什么影响?

某一基因开放阅读框中有一个建议会对飞机产生一个异常好的效果和质量。

开放阅读框lab基因是什么

开放阅读框lab基因是如下。1、根据查询相关资料信息显示,开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。2、是从起始密码子到终止密码子之间的序列,连续翻译一段多肽链。3、以计算机为工具对生物信息进行储存、检索和分析的科学。

开放阅读框跟结构基因到底有什么不同?

开放阅读框:指从起始密码子AUG到终止密码子UAG、UGA、UAA之间,可被翻译成蛋白质的编码序列. 结构基因:以原和生物举例说,一个完整操纵子包括启动子、调节基因、结构基因,只有结构基因才是编码蛋白质的基因,其它的是调控序列. 当转录发生后,结构基因可被转录成mRNA,其中包含一个(真核)或多个(原核)开放阅读框,还有5"UTR,以及3"UTR.

基因、外显子和开放阅读框的区别。

【答案】:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断,也就是被翻译的区域。外显子为基因上及其转录初级产物上可表达的序列,或转录初级产物上通过拼接作用而保留于成熟的RNA中的核苷酸序列或基因中与成熟RNA相对应的DNA序列。[考点]基因、外显子与开放阅读框的三个概念的内涵。

人的生殖细胞中的基因数目是体细胞中数目的多少有法

首先,等位基因的存在使得2条同源染色体上所携带的基因大致数量是相等的。但是对性染色体而言,Y染色体的基因数量小于X染色体,而Y染色体上有一部分基因在X染色体上没有等位基因,因此分析这个问题需要区分男性还是女性男性:生殖细胞中的基因数量会略少于体细胞中的数量,因为男性体细胞中的基因数量=22条常染色体上的基因数量+X性染色体上的基因数量+Y染色体上特有的基因数量(虽然Y染色体上基因数量小于X染色体,但是Y染色体上有一部分基因在X染色体上没有等位基因),而配子中的基因数量=22条常染色体上的基因数量+X染色体上的基因数量/Y染色体上的基因数量女性:由于女性只存在X染色体而没有Y染色体,因此体细胞中基因的数量和配子中的基因数量是相等的当然,以上的基因数量指的是基因的种类,而不是绝对数量

基因数量最多的生物是什么?

水蚤. 科学家发现一种水蚤有30907个遗传因子(基因),比人类多5000个

人体23对染色体上有多少基因

1、分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp;其中G+C含量偏低,仅占38%,而2号染色体中G+C的含量最多;到目前仍有9%的碱基对序列未被确定,19号染色体是含基因最丰富的染色体,而13号染色体含基因量最少等等(具体信息可参见cmbi 特别报道:生命科学的重大进展)。  2、目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。

在生物进化过程中,生物体中的基因的数量是怎样增加的,为什么会增加?

进化过程中,群体中某些个体的基因发生了变异,而若这些变异更能适应外界环境,这些特异基因个体就可能保留下来,替代老基因群体,随着生物进化各种组织结构的复杂化,生物体内控制相对性状的基因也在复杂化。所以增加么

差异基因数量越多代表什么

差异基因数量越多代表该生物的基因状况越复杂,越有研究价值。差异基因(differentialgene),是指一个基因在RNA水平处在不同环境压力、时间、空间等方面下,表达有显著性差异的基因。在不同因素下基因突变或者甲基化等结构发生改变导致差异的基因。随着实验技术的不断进步,差异基因开始被越来越多的研究者所关注,医生不再停留在表型和蛋白层面,而是追溯他们的上游对核酸进行挖掘。

线虫为什么需要两千个基因

人有大约25000个基因,果蝇只有14000个,而线虫(专指完成基因测序的秀丽隐杆线虫)就有近20000个(不是两千个).基因数量与生物高等复杂程度不成严格正比. 但随着生物体复杂程度的提高,基因组中重复程度也越高,这可体现在DNA结构域数量上.基因有结构基因(编码蛋白质的基本而必需的基因)和调节基因(编码阻遏或激活结构基因转录的蛋白质的基因)两种,后者数量可能非常庞大且功能机制远复杂于前者.对于高等生物,一个结构基因受到不同调节基因调控,不同区段可转录表达出不同产物,从而大大提高了基因使用效率,从而体现其高等的进化地位. 低等生物由于缺乏这种灵活高效的机制,故结构基因比例要远大于高等生物,甚至绝对数量也更大,根本上说这是生物进化保守性决定的.而且正因为其调节基因很少,调控表达的方案就少很多,也决定了其低等地位.

人的体细胞中染色体、dna和基因三者的数目都是多少啊

人的体细胞内有23对,46条染色体,非复制分裂期间,每条染色体上一个dna,每对同源染色体,一条来着父亲,一条来着母亲。人的体细胞中有成千上万的基因。。。不可技术。。希望能帮到你,麻烦点击好评,祝福你永远幸福。

染色体,DNA,基因有什么数量关系

1、如果染色体没有复制,一条染色体上只有一个DNA分子;若染色体进行了复制,但着丝点未分离,一条染色体上就有两个DNA分子。2、一个DNA分子上有多个基因。

每条染色体含几个基因

各条染色体上含的基因数量 相差很大,不均等(同源染色体上的基因数量是相等的,这里拿基因组说事儿)人类基因组测序之后,通过ORF对基因进行估计的结果也证实了这点。不仅跟染色体的长短大小(碱基数目)有关,也跟其上所含的重复序列等“垃圾”的多少也有关。比如 人的Y染色体上的基因是很少的以至于 女人不含有这个染色体也不至于导致严重问题——虽然含有性别决定基因。至于各含有几个,这个问题在没有最后用实验确证之前,谁也不敢肯定——即便是预测和估计了基因数目。

每个人体内基因数目一样吗

如果说基因总数的话肯定是不同的,因为每个人体的细胞不是一样多的,但是每个细胞的基因数目一样,人体的每一个体细胞的基因都是相同的,因为人最初都是从受精卵通过细胞的分裂和分化形成的。只是不同组织的基因表达不同而已。染色体是位于细胞中的,每一个细胞都包含了一个人的全部基因(除了通过减数分裂产生的性细胞,只有原基因的一半)都有46条染色体。基因(遗传因子)是具有遗传效应的DNA片段。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。碳原子构建智能原子群。结构基因基因中编码RNA或蛋白质的碱基序列。(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。非结构基因结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;其中包括:启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。Poly(A)加尾信号:结构基因末端保守的AATAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。

一条染色体上有个多少基因?

正常人有46条染色体,有46个DNA分子,含有数万对基因,那么1条染色体上有一个DNA分子,多个基因。当细胞不分裂时,染色体在细胞核中是不可见的,在显微镜下也是如此。然而,构成染色体的DNA在细胞分裂过程中变得更紧密,在显微镜下可见。染色体有种属特异性,随生物种类、细胞类型及发育阶段不同,其数量、大小和形态存在差异。扩展资料:减数分裂过程中的染色体重组和随后的有性繁殖在遗传多样性中发挥着重要作用。如果染色体不稳定性和易位发生的话,细胞有丝分裂将出现灾难,细胞启动细胞凋亡导致其自身死亡。细胞突变会阻碍这一过程,从而导致癌症发展。与真核生物相比,原核染色体含有更少的基于序列的结构。细菌通常具有一个复制起点,而一些古菌含有多个复制起点。原核生物的基因不含内含子,并以操纵子的形式组成基因表达调控单元,这与真核生物也不同。

体细胞和配子中基因的数量关系如何?

体细胞中染色体是成对的,染色体上的基因也是成对的。配子中只有成对的染色体的一条,基因也只有成对基因的一个。

同一对染色体中基因的数量是一定的吗

人有23对染色体,其中22对常染色体,1对性染色体,每一对均互为同源染色体。但性染色体分X Y,存在同源区段和非同源区段,同源区段的染色体数量一样,而非同源区段的基因数量则不一定一样。望采纳!

染色体,DNA,基因之间有什么关系?有什么数量关系??

DNA+蛋白质=染色体基因是具有遗传效应的DNA片段在细胞有丝分裂间期,染色体数=DNA数=2N在细胞有丝分裂前、中期,2*染色体数=DNA数=4N在细胞有丝分裂后期,染色体数=DNA数=4N然后形成子细胞,数目与间期数目相同在细胞减数分裂间期,染色体数=DNA数=2N在细胞减数分裂一期,2*染色体数=DNA数=4N在细胞减数分裂二期的前、中期,2*染色体数=DNA数=2N在细胞减数分裂二期后期,染色体数=DNA数=2N然后形成配子,染色体数=DNA数=N不知讲明白了没有,要是还不明白就发消息给我

每一条染色体上带的基因都是一样多的吗?

不是。染色体在体细胞中是成对存在的,每条染色体上都带有一定数量的基因,但是并不是每条染色体所带的基因数量都是一样的,比如第1号染色体是最大的,所含有遗传信息最多;而第21号染色体最小,其携带的基因较少,比最大的1号染色体小了差不多五倍。

如何计算基因的数量?

“系统生物学”,已经得到充分的宣传,使许多人不得不用系统论这个口号了。当然,在还原论向系统论转变的初期,出现表面的系统论,实际的还原论,这是非常自然的事情,这只是向真正的完全的系统论前进的一个过程,真正的完全的系统论是肯定会实现的,比较几年前,还根本没有人愿意说自己是系统论的时候,我们会感觉已经有了非常大的进步了。我们研究人类基因组最关心的问题,就是将染色体上所有的基因序列都测序出来,并且定位清楚,简单的说,目标就是将人类基因组从第一个碱基开始,一直到最后一个碱基结束,真正完整的呈现出来。

一条染色体上有几个基因几个dna

一条染色体上有一个DNA分子(细胞分裂期除外),不同物种的DNA分子上所含的基因数量有很大差异,同一物种不同染色体上DNA分子上所含基因数量也有差异

茶树基因的数量有多少

36591个。在2018年国内对茶树的研究团队表明:在茶树测序结果中发现,茶树基因组序列达到了3.02亿个碱基对,重复序列高达80.9%,总共从里面注释出36591个编码基因,基因组大小3.02Gb。

说明如何检测转录基因的数量。

【答案】:从的Rot1/2实验中,我们知道海胆的特异DNA中只有2.7%在原肠胚期转录为mRNA。根据Cot1/2分析,特异DNA占海胆基因组的75%。而海胆基因组共有8.1×108个核苷酸,因此转录为mRNA的特异DNA的量是0.027×0.75×8.1×108=1.6×107个核苷酸。如果平均每个基因约有2000个核苷酸长,被转录的单一序列DNA将代表8000个基因。

病毒含多少基因?

当然不是一个,不过病毒也有好多种,基因数量不同的,病毒和细菌,植物,动物一样,也是一个大类。你说动物含多少基因?人有1千万个左右,同是动物,草履虫就没这么多了。病毒基因组大概有100多KB吧,一个基因大约在几百Bp到10KB不等。有些病毒基因序列存在嵌套现象,就是这个基因的一部分同时也是那个基因的一部分。不过大多数基因都是并排排列的。你可以估算出来病毒基因大概的数量级了。

Y染色体上的基因数目

通过PubMed查询即可知道:人类Y染色体上的基因数量是429个,Y染色体大小是59.37Mb。

人类基因组编码基因编码了多少个蛋白质

人类基因组编码基因编码了多少个蛋白质由美国国立人类基因组研究所(nhgri)和能源部(doe)领导的ihgsc不久前宣布,人类基因组测序工作已圆满完成,其发表在2004年10月21日nature(2004,431:931)上的分析报告对2001年2月发表的初步分析报告进行了补充。这篇最新分析报告不但为世人展现了一张精度大于99%、误差小于10万分之一的精确版人类基因组图谱,而且还进一步纠正了蛋白编码基因的数量,仅为2万~2.5万个,而非原先估计的3万~3.5万个。新基因组图谱 准确率达99.999%旨在破译人类基因组常染色质遗传密码的人类基因组计划(hgp)自1990年启动至2003年结束,历时共13年, 该计划由ihgsc来完成。ihgsc是由法国、德国、日本、中国、英国和美国等6个国家20个研究所的科学家组成的开放性国际协作组织,全球2800余名科学家参加了ihgsc的工作。

人体基因是什么

人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对常染色体,1对性染色体。人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。 全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的少得多,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的约1.5%。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。人类只有一个基因组,大约有2-3万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在人类基因组阐明30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。人类基因组计划的目的测出人类基因组DNA的30亿个碱基对的序列,发现所有的人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。

父母穷,孩子的大脑和基因都会遭殃,Nature证实了......

日上三杆尤在眠,这里是怎么睡都睡不够的深空小编。小编整理了半天,给大家带来了这篇文章。不吊大家胃口了,一起来了解一下。低收入家庭环境中长大的儿童更容易患上神经精神疾病,这是一个医疗界长期观察到的现象。在近几年甚至有不少研究通过影像学扫描发现,低收入家庭的儿童大脑构造都与收入更高的家庭长大的同龄人出现了不同。但是,这种不同仍然没有得到非常明确的解释,依然有不少观点认为可能是环境因素:包括环境中的压力、营养状况、环境污染等等。然而,Nature报道了一项研究,解释了穷人家的儿童为什么更容易发生神经精神疾病。被贫穷吞噬的大脑皮质发表在Nature的一项研究用经济收入来做标杆,测量了“穷”对神经生理的影响。一群来自哥伦比亚大学的研究者扫描了1099名儿童的大脑,在校正了年龄、性别、种族基因的差距之后,他们分析发现,家庭年收入低于2万5000美元的儿童,与家庭年收入15万美元的儿童相比,大脑表层皮质直接就少了6%。他们进一步发现,对那些收入最低的家庭来说,几千美元的收入差距就足以造成儿童脑神经结构的重大改变,尤其是在掌管语言功能和判断抉择功能的脑区域!并且,他们的测试显示,儿童的认知功能,比如读写和记忆能力,会随着家庭收入的下降而下降。如上图,横坐标是家庭年收入,纵坐标为校正后的皮质表面积。当年收入低于5万的时候,曲线变得更陡,在收入越低的区域,曲线变化率越高。正说明对最低收入家庭的儿童来说,几千美元的年收入改变造成的神经功能影响非常大。上图下方的大脑地图中,暖色调标示的是变化最急剧的大脑皮质区,冷色调标示的是受收入影响最表浅的区域。虽然研究者也认为家长受教育程度与儿童脑皮质结构有关,但是在固化社会,受教育程度与家庭收入的关系本身就是正比。家长受教育年限与儿童大脑皮质表面积关系,呈正比为了证明这种脑结构的改变不是由于后天营养的关系,研究者接着转战产房,他们扫描了44名刚出生不久的由不同收入家庭产下的女婴的大脑。结果发现即使刚刚来到人世,低收入家庭的孩子的大脑就已经比富裕家庭的孩子更小了。父母贫穷,增加下一代精神疾病发病率对那些收入最低的家庭来说,带来孩子的影响还可能在精神疾病上。一项致力于“贫穷DNA”对精神疾病影响的研究由美国杜克大学的团队开展。由于精神疾病众多,研究团队选择了家庭经济收入较低,但抑郁障碍发病率较高的儿童作为追踪目标。除了差别化的发病率,选择抑郁障碍的另一原因是,现在已经能确定基因SLC6A4与抑郁障碍有绝对的相关性。该基因负责编码一种转运蛋白,这种蛋白能够把大脑的信号分子5-羟色胺转运到神经元中。为了避免不同人种中出现基因差距,这个研究组采集了183名11-15岁高加索儿童的血样,并且对他们进行了抑郁障碍和抑郁程度测试。同时他们通过大脑扫描来观察和记录这些孩子对压力的反应。然后研究者花了三年时间追踪这些儿童的情况,多次重复上述操作。结果研究者发现经济收入较低的家庭的孩子,他们的SLC6A4基因的甲基化基团更多,这使得5-羟色胺的转运减少。这样会让他们的大脑中的5-羟色胺含量对比起富足家庭的儿童更低,因此更容易导致抑郁障碍。并且他们指出,这种同个基因的不同改变,是在出生前就存在的。也就是说,穷人之所以更容易发生精神疾病,是由于贫穷把他们的表观遗传因素都改变了,他们的DNA使得他们生来就更容易患病。值得注意的是,5-羟色胺水平不止关乎抑郁障碍,实际上它与包括精神分裂症在内的多种精神障碍有关。研究者只是为了便于追踪和测试而选择了抑郁障碍。与贫穷相关的脆弱染色体如果认为上面一个编码转运蛋白的基因太小的话,我们来看个大一点的遗传物质——染色体。上图中红色的部分是端粒酶,它的主要作用是保护染色体不随时间磨损。很不幸的是,近年发表在PNAS上的研究表明,穷人连用来保护染色体的端粒酶都更短一开始,研究组调查了40名来自美国各大城市的9岁小男孩的染色体情况,发现家庭贫穷的孩子的端粒酶比家境较好的短19%。得到这个令人震惊的结论后,这个研究组快速的把样本量扩容到了5000,分析结果之后,他们发现,母亲的受教育程度对家庭收入、儿童成长环境有极大的影响。经过统计,高中以上学历的母亲的孩子,其端粒酶比高中文化以下母亲生的孩子要长32%。家庭关系和生长环境动荡不安的儿童与相对安定的儿童比较,他们的端粒酶短40%以上。那么这个用来保护染色体的端粒酶长短到底有什么重要影响呢?研究表明,这又与精神疾病有关。端粒酶的长短与大脑中5-羟色胺和多巴胺的转运有关,端粒酶越短,其大脑中多巴胺和5-羟色胺的水平越低,抑郁障碍、双相障碍和其他一些精神障碍的发生率就越高。注:深色柱状为生活环境优渥儿童的数据,浅色柱状为环境较差较贫穷的儿童的数据。纵坐标为端粒酶长度,横坐标表示多巴胺敏感纯合子基因数量。如何减少悲剧发生?即使不考虑贫困中艰难的成长环境、生长中要面对的更多风险因素,光是从基因上、从刚出生的生理结构上来说,低收入家庭的儿童已经趋势性地出现了与富足家庭儿童的不同。这几项针对精神疾病、神经功能的研究更是指向了一件非常麻烦的事:如果贫困群体的数量加大,那么精神疾病的发病数量甚至发病率在总人口中都会增加。从更大的角度来说,中低收入国家和高收入国家之间也会出现该类疾病的发病率差距。并且由于整个国家社会层面的收入难以在短时间改变,无法通过改善外在环境来降低疾病发病率。根据美国近年公布的医疗花费数据,在胖人近三分之一的美国,最为花钱的医疗投入竟然不是代谢病也不是心血管疾病,而是精神病的治疗。报告称,2013年一年,美国在治疗精神障碍上就花掉了2010亿美元,花销超过心血管疾病540亿美元。中国的国民平均收入和医疗投入并不比美国高,按照上述研究,精神类疾病的发病率很难比美国更低,而人口基数更是决定了患者数量数倍于美国。根据国家卫计委发布的《中国的医疗卫生事业》白皮书中所述,中国卫生总费用为24345.91亿元人民币,据《柳叶刀》援引“卫计委统计年鉴”数据,其中仅0.3%用于精神疾病卫生,即73亿人民币左右,投入仅有美国的0.5%。WHO在2014年发布数据称,平均每4人里就有1人受到精神疾病的困扰,2013年中华医学会精神病学分会主任委员于欣称中国的精神疾病发病率已经超过17%。从上述数据不难看出,即使按照最保守的数据估计,中国精神病患者的数量也有美国的3倍以上,而投入上,美国是中国的180倍以上。这就造成绝大多数中国的精神病患者无法接受治疗,世界平均水平每1万人有1名精神科医生,中国每1万人只有0.149名精神科医生,《柳叶刀》统计称,中国仅有8%的精神疾病患者接受过医疗。“儿科医生荒”最近常常谈,“精神科医生荒”却从上到下无人问津。其实这种整体的不重视,与上述三项针对不同收入阶层的研究结果在原理上殊途同归。甚至有医生认为,中国近期的许多恶性伤医事件中的精神疾病患者,也符合上述研究的趋势,即患者倾向于来自较低收入环境。要减少这样的悲剧,除了加大精神卫生的投入,让更多患者能及时得到治疗,提高整体的国民收入,让更多人脱离贫困,提高整体受教育程度尤其是女性受教育程度也是相当关键的。因为现在看来,提高收入和受教育程度,可以直接减少先天易患精神病的基因和生理状况出现。看来穷,还真是一种病啊......欲要知晓更多《父母穷,孩子的大脑和基因都会遭殃,Nature证实了......》的更多资讯,请持续关注深空的科技资讯栏目,深空小编将持续为您更新更多的科技资讯。王者之心2点击试玩

基因数目的计算@

C 生殖细胞里有7×109/1×103=7*106个基因,生殖细胞里有20/2=10条染色体,所以有7*106/10=7×105

染色体,DNA,基因有什么数量关系

具体的关系式 蛋白质 细胞核——染色体—— DNA——基因 有一定得从属关系 人体总共有23对染色体 其中包括21对常染色体和一对X染色体和一对Y染色体

人只有25000个基因DNA,章鱼到底有多少个?

对于地球生命来说,各种生物都具有不一样的特点,并且有不一样的皮肤,组织结构等差异。而有一种生物可以说是地球上非常特殊的物种,那就是章鱼。章鱼被称为生物界的“伪装大师”,能够利用自己的外表来避免掠食者的入侵,这是它们的一个天生本领,所以不少的科学家通过研究证明,章鱼可能是地球上最聪明的生物群物种之一。早在2015年的时候,日本诺贝尔得主科学家布伦纳在《自然》杂志上就公布出了这样的一个结果,那就是通过对章鱼的分析,章鱼是拥有33000组基因,而如今最为智慧的人类也仅有大约20000到25000个基因,含有约31.6亿个DNA碱基对,在最低值的情况下,章鱼是比我们人类大概还多出10000组,可以想象,章鱼的基因是多么的强大,比人类还多,这跟它是生物界最聪明的生物之一没有什么差别。同时章鱼的大佬也非常的复杂,能够模拟至少15个不同物种的运动,行为方式等。同时通过基因解码,科学家们还发现章鱼拥有一套和人类相似的基因,也就是说它们具有与人类一样的基因,当然这并非是完全都有。在这相似的基因组之中,它们能够建立神经网络,这样就成就了它具有一个“超凡”的学习能力。所以大家都怀疑章鱼可能并非是我们地球生物,而是来自外太空的生物。同时科学家们还有一个惊人的发现,那就是章鱼拥有一个特殊的功能,那就是“拥有改进基因编码的能力”。这个是令科学家们最困惑的,并且也是希望弄清楚的。在人类的科学之中,要想改造基因还需要借助外力才可能,而章鱼自己就能做到,这是最罕见的一幕。章鱼具有“超凡”的能力从行走,章鱼的基因改造等方面的研究就可以知道,确实章鱼的进化能力已经超过了我们人类的想象。至少至今还没有遇到过第二个生物具有这么强的能力,章鱼作为与人类差异最大的生物之一。但是也存在少数的显示指出,那就是它的发达眼睛,这也是科学家们找到与人类唯一相似较高的地方。

生物的染色体,DNA,基因的数量关系是什么?

基因数量>DNA数量≥染色体数目哪里不明白请追问,满意请采纳,希望对你有帮助~

基因突变并未改变染色体上基因的数量 那么基因的增添或缺失不是改变染色体上基因的数量了么?

基因的增添或缺失已经不是基因突变的范畴了,遗传物质的变化分三类:基因突变、基因重组、染色体变异,基因的增添或缺失属于第三类或第二类,基因突变仅仅指原来的一个基因发生了变化,然后便显出了与原来不同的性状而已——由一个基因变成另一个,基因数量当然不变

染色体,DNA,基因有什么数量关系

1、如果染色体没有复制,一条染色体上只有一个DNA分子;若染色体进行了复制,但着丝点未分离,一条染色体上就有两个DNA分子。2、一个DNA分子上有多个基因。

基因和染色体从数量和位置两方面讲分别具有什么关系?

基因包括DNA、染色体 基因在细胞核、线粒体、叶绿体、拟核中染色体是在细胞核中,每个人共有23对染色体,其长度大约为0.7米

是什么让生物的基因数量变大?

染色体变异 染色体数量上的变异可以使其数目变多,基因数量也就变大。形态上的变异可以使染色体变长,基因数量也有可能变大。

同一对染色体中基因的数量是一定的吗

一对同源染色体中基因的数量不一定相等。一般来说,常染色体中同源染色体的大小和形态都是相同的,所以含有的基因数量也相同。但是,对于X、Y 这样的性染色体,大小都不一样,所以这两条染色体上的基因的数量是不相等的,例如:人类的色盲基因只存在于X染色体上,而Y染色体上就没的它的等位基因。

种群数量足够大和基因库中基因必须足够多不一样吗

种群数量处于变化之中,则基因库也随之变化吗,当然变化,因为基因库指的是一个种群全部个体所含有的全部基因(可以理解包含了基因的种类和数量),所以种群数量在变的话,基因库也在变化.搜狗问问 - wenwen.sogou.com

人有多少基因 又是怎么数清的

人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对体染色体、1条X染色体和1条Y染色体。人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的少得多,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的约1.5%。虽然没有全部破译,但是就已经了解的部分来说是发挥巨大作用。

人有多少个基因对

自1991年美国国家卫生院(NIH)就其发现的几千个未知功能的人类基因组部分序列,即所谓已表达序列标记(expressed sequence tags,Esr)向美国专利与商标局(PTO)提交专利申请以来,由NIH的行动引起的争论几乎没有停止过。在生命科学界,这场争论的焦点主要集中于是建立开放的数据库以使公众免费得到这些遗传信息,还是通过专利获得排他垄断权。而在知识产权界,争论的焦点则主要是未知功能的DNA片段(例如EST和SNP等基因标志)能否获得专利,以及针对EST和SNP专利申请应采用什么样的专利性标准问题(特别是充分公开和实用性要求)。 1998年欧共体通过并发布了生物技术发明专利指令,并且继后美国专利与商标局于1999年12月,发布了针对美国专利法第112条书面描述要求修订的专利申请内部审查指南和实用性审查指南。自此,问题似乎在逐步得到澄清,争论似乎也在逐渐平息下来(尽管迄今仍有一些法律界人士对上述规程和准则的某些细节提出异议)。然而,当中国国内也可能面临国际上已争论了将近十年之久的相似问题时,概要了解基因组部分序列特别是ESr的技术背景和特征,回顾国际上那场争论的经过和已提出的法律解决途径与对策,对于处理我国面临的相似问题,可能会有一定的启示作用。 一、技术背景 为了充分理解ESr的实用性等专利性条件问题,有必要首先对分子生物学,特别是EST的某些基本概念简要总结如下。 DNA是由字母A、T、G和C所代表的四种不同的核苷酸组成的。因此,DNA序列可由一长串按不同顺序排列的上述字母来表示,例如AGGTCGAATCCGTAC.染色体DNA实际上是由两条互补的核苷酸链构成的双链分子。以A-T和G-c配对方式存在的核苷酸称为碱基对。如果上述序列为染色体DNA,它应该是如下所示的一串碱基对: A G G T C G A A T C C G T A C | | | | | | | | | | | | | | | T C C A G C T T A G G C A T G DNA链中每三个连续的核苷酸代表一个翻译成21种氨基酸之一的密码子,而所说的21种氨基酸是构成蛋白质的基本成分。由DNA的密码子拼出蛋白质的序列。 基因是编码生物体内基本成分即蛋白质的DNA序列。基因组是生物体细胞染色体中成套基因的总称。基因组序列中除包括编码特定蛋白质的结构基因(外显子)外,还包括更大数量的基因转录(即由DNA转录成信息BNA(mRNA))和翻译(即由mRNA翻译成蛋白质)调控区和及其他非编码区(内含子)。原定于2005年完成的人类基因组合作计划的主要目的就是弄清人类基因组中包括大约10万个基因的大约30亿个DNA基本构成单位即碱基(或核苷酸)的排列顺序,得到人类基因组的高分辨率基因图谱。 在活的生物体中,只有基因组DNA的编码区才被拷贝成具有真正生物学功能的分子,即由一长串不同的氨基酸连接成的蛋白质。因此,这些DNA编码区是负责各种表型功能的大多数遗传信息的载体。但这些DNA编码区只代表总DNA的3-5%,其余为调节编码区表达水平的非编码区。 到目前为止,大多数生物技术研究仍是基于反向工作方式。例如,首先从生物体中分离出一种有特定生物学性质的蛋白质,并测定该蛋白质的氨基酸序列。然后可根据已测知的氨基酸序列,由单个核苷酸合成一小段称探针的DNA序列。这样,在将探针与生物体的DNA样品混合后,探针将与DNA序列上能够与之互补的一段DNA精确杂交,从而有可能分离出编码特定蛋白质的确切基因。一般情况下,使用生化分离技术只能从生物学样品中得到很微量的蛋白质。但如果分离到编码蛋白质的基因,就可以使用常规基因工程技术,用基因转染适当的宿主细胞系,然后大批量培养被转染的宿主细胞,从而可由宿主细胞表达产生大量所需要的蛋白质。 按照这种策略,科学家已克隆并表达了包括人干扰素和自介素等免疫系统调节蛋白质及骨和脑等组织其他活性蛋白质在内的数千种完整人类基因编码的蛋白质。其中,商业上获得极大成功的一个典型例子是主要用于治疗肾性贫血的红细胞生成素(EPO)。一旦使用一组探针分离得到基因,科学就可将其插入到载体中,并在大肠杆菌或哺乳动物细胞系(表达系统)中表达之。可以大批量培养经过基因工程改造的细胞,并从而可以收集并纯化得到足够用于治疗贫血病人的大量脚或其他生物学活性蛋白质。 与上述从已知的蛋白质开始寻找基因的策略相反,人类基因组研究则代表了DNA研究的一个新的方向。例如,NIH的科学家Crag Venter早在二十世纪八十年代后期就建立了一种从cDNA库中快速选择DNA片段并测定其序列的方法,进而使用这种方法随机测定了一大批不知编码什么蛋白质的人DNA的片段。可以使用常规方法(如聚合酶链反应技术),由选择的并估计包括DNA编码区的DNA片段合成得到双链形式分离的cDNA片段。然后将这些片段连接到载体上并在适当的表达系统中由之转录成相应的多肽或蛋白质。因此,cDNA反映了已表达的DNA序列,故后来将这样的片段称为“已表达序列标志”。与核苷酸数据库进行同源性比较显示,NIH早期专利申请所包括的2,412个片段中,大约有83%与以前已知的序列无关。 因此可以认为,EST是在随机选择并经序列分析后分离得到的和(或)进行了特性鉴定的核酸。与按照传统方法分离并鉴定的核酸不同的是,当确定EST片段的序列时尚不知道由之编码的蛋白质的功能。在相关研究中,首先是在分子水平上对FST分子进行鉴定,然后借助计算机程序指认可能由之编码的蛋白质及其潜在功能。一般说来,鉴定EST分子可包括几个特定的步骤:首先确定部分序列信息并将其储存在数据库中。然后用该序列信息作为探针与数据库中的已知序列数据进行比较。在有些情况下,经过这种同源性检索可以在核苷酸序列水平上揭示出与编码已知功能之蛋白质的另一种核酸相关的特定EST序列。最后,选择这样的EST分子并进一步分析之。 由此可见,每个EST片段的序列都是与单个人类基因的一部分互补的。虽然这些片段可长达几百个碱基,但大多都不跨越相应基因的编码区。实际上,这些片段的序列本身并不是基因,而是与人类基因互补的部分DNA序列。每个片段都可以看作是可在体内被转录的人类基因的标志,直接针对已表达的基因。因此,可将其作为探针,用于确定基因在染色体上的定位、鉴定和分离整个基因,甚至还有可能借助同源性比较来鉴定基因或相应蛋白质的生物学功能。也可能使用EST序列进行法医学分析、组织特异性或个体特异性鉴定,以及疾病相关基因鉴定。此外,还可使用EST片段制备可阻断基因表达的反义序列或三螺旋探针。 二、事实回顾 二十世纪八十年代后期,美国国家卫生院所属国家神经病和中风研究所的生化学家Crag Venter建立了一种在没有进行全基因作图和测序情况下获得基因遗传信息的手段,并在基因组课题框架内分析和初步鉴定了几千个代表某些已表达基因互补的DNA(cDNA)片段。当时的NIH院长Bemadine Healy受到国会准许将政府资助的科研成果转让给企业这一政策的鼓励,也考虑到巨额政府投资的回收,同时抱着将来保有这些序列的优先占有权这一愿望,于1991年就Venter等人的研究成果向美国专利与商标局(PTO)提交了发明名称为“人类基因转录产物的序列特征”的专利申请(申请序号07/716831)。 令NIH始料未及的是,它的行动轰动了全社会,特别是在生命科学界和知识产权界引发了一场旷时持久的激烈争论。首先被激怒的是科学家们,许多人认为对这些未知功能的DNA序列授予独占权,必将会引发一场专利许可战,对生物医药研究与技术发展造成巨大冲击。另外,认为个别机构或个人垄断其发现的序列,还将阻碍生物技术实验室之间的合作,从而减慢人类基因组研究计划的进展步伐。NIH的行动也引起了法律界的强烈反响。例如,华盛顿大学国家法律中心的Stephen Maebius指出:NIH在人类基因组研究的早期阶段寻求部分DNA序列的专利保护,很可能会造成许多从事人类基因组开发的私人公司竞相靠专利“立桩圈地”的局面,从而延缓建立在基因测序基础上的相应蛋白质产品的研究与开发。Maebius 还建议PTO依据以前的有关判例(例如最后由最高法院作出裁决的Bnmn诉Mansou案),采用所谓的“实际实用性”(Practicalutility)这一专利性标准严格把关,以防止在发现其能够为人类带来直接益处的之前批准有关DNA片段的专利。 1992年8月,美国专利与商标局(PTO)主要以缺乏非显而易见性(创造性)和实用性,以及没有提供足够的书面描述为理由,在初步审查中驳回了NIH的专利申请。驳回后,NIH尚有机会将其意见提交到专利申诉委员会或上诉法院,以求得更深层次的裁决。但NIH继任院长Harold Varmus在放弃权利要求的压力(主要来自美国卫生与福利部)下,决定不再申诉(1993年2月)。很显然,作为一个靠政府提供财政资助的非赢利性研究机构,此时它在这一涉及全球性研究计划的问题上正在改变自己的立场,并加入了一些政治上的考虑。1994年初,NIH又采取了一个令科学界震惊的行动:宣布撤回已提交的涉及6,869个部分DNA序列的专利申请。对此,Varmus解释说:寻求这些部分序列的专利并不符合公众和科学界的最大利益。差不多与此同时,英国医学研究理事会(MRC)也主动撤回了它的涉及1,200个部分DNA序列的专利申请。 尽管PTO驳回了NIH的早期专利申请,但一些在基因“淘金热”中涌现出来的公司,例如已在基因片段研究上投入了大量资金的人类基因组科学公司(HGS)与其非赢利性合作伙伴基因组研究所(TIGR),以及Incyte医药公司等,仍在冒险申请专利。到1997年初,PTO至少受理了350件复盖500,000个以上基因标记的专利申请。其中最大的一个申请包括18,500个序列。显然,这些专利申请的权利要求范围都是很宽的。申请人希望在他们深入研究了这些序列所牵涉的特定基因后,依据最初的EST专利申请日来证明他们是基因的第一个发现者。在加快工厂化测序进展的同时,他们曾希望NIH牵头通过诉讼程序尽早解决基因片段的专利性问题,但Varmus和他的法律顾问们没有接受这一建议。1997年8月,Varmnus至PTO局长Lehman的公开信进一步表明NIH管理层已成为EST专利的强烈反对者。 HGS的总裁William Haseltine曾试图说服怀疑者:“已表达序列标志作为研究工具是可以获得专利的”。其主要投资人George Poste也坚称:对EST授予专利与批准BRCAI乳癌基因这样的生物标记专利没有什么不同。但生物技术团体中的反对者则不同意这些论点。例如,Genzyme公司的顾问Mank Hoffer(遗传学试验和医药产品开发者之一)嘲笑说:“他们在要求保护一堆大小不等的螺栓”,理由是“这些螺栓可用于制造汽车。”甚至PTO局长Lehman也说:“这些材料大多都是数据……,单单数据是不能授予专利的。”负责整个人类基因组测序项目的人类基因组组织(HUGO)当时则明确表示反对授予EST专利。 针对个别从事大规模cDNA测序的公司(特别是私人公司)抢先寻求专利保护,并且提出超过其实际研究成果的宽范围权利要求的作法,包括NIH在内的一些公共科研团体、基金管理机构及大公司(如Merck公司)则投资建立公共数据库,并鼓励研究人员在公共数据库中保存序列信息,以暗中破坏涉及人类基因组的独占权利要求。这一反击行动在一定程度上削弱了HGS、Incyte等公司累积的私有数据库的价值。投资分析家Matthew Manrray表示了这种担忧:“由于快速公布DNA数据,使得基因组公司就基因发现投资牟利的机会受到相当程度的限制”,而且“一旦完整人类基因组序列投入公共区域,获得基因专利将会更加成问题。” 可见,在人类基因组的部分DNA序列问题上,一直存在着建立公共数据库和寻求专利这两种不同的态度和作法。公众能否得到并分享包括EST和SNP在内的人类基因组部分序列信息,已成为争论最多的问题。在此期间,虽然许多专利律师和专利法律研究人员都认为,未经特征鉴定并且未知功能的基因片段,因其本身缺乏商业上的实用价值而不能被授予专利权,但PTO除初步驳回NIH的早期申请外,对其他EST申请并未作任何法律处理。另外,由于NIH没有提出申诉,所以FID申诉委员会和联邦巡回法院也未介入这一争论。人们都在等待和期盼着FTO或法院早日拿出政策或相关判例,以求得最终解决基因组DNA片段专利的不确定性和相关法律问题。 几乎被DNA片段淹没的PTO局长Lehman估计,他的全体生物技术部工作人员既使什么事都不干,也要花费将近一年的时间整理和区分这些序列。为此,他首先被迫采取了一个减少EST专利权利要求积压的对策:规定每件申请不得包括10个以上的序列。这就意味着为保留其目前的权利要求,有关公司必须提交数千件新的申请,从而增加一大笔法定费用(每件400―800美元)。这一政策也一定程度上促使这些公司仅就其已彻底研究清楚并证明具有实际实用性的序列申请专利。 1998年5月,美国专利与商标局生物技术审查部主任John Doll在Nature杂志上发表文章指出:因为包括EST在内的DNA序列是人为干预的制造品或其组合物,即已从天然来源分离和纯化出来的游离分子,或者是构成重组分子或载体的一部分,所以属于可授予专利的主题材料。但Doll也特别强调,与其他技术领域的发明一样,涉及DNA序列的发明必须满足专利法规定的新颖性、非显而易见性和实用性,以及提供足够的书面描述等专利性条件,之后才能被批准为专利。关于EST的专利性,Doll进一步解释说:“我们不妨将整个基因和其包括的重要DNA片段分别比作电视机和显像管。很显然,对显像管授予专利权并不阻碍其他人获得电视机的专利。” Doll提出的观点基本上代表了PTO的观点。在长时期因为实用性问题而不愿批准EST等DNA片段的专利后,此时美国专利局实际上已改变了它原来的观点。 在欧洲,欧共体于1998年7月公布了生物技术发明专利指令(98/44/EC),从而使基因和基因片段的专利问题再次以一个新的角度凸现出来。欧共体成员国即使不完全照搬该指令,至少也要在其国家法中体现指令的中心思想和目标。另外,为了法律的确定性和欧洲范围内专利法的协调统一,欧洲专利局(EPO)应在实践中严格执行该指令。特别值得注意的是,该指令第5条述及:1.处在不同的形成和发育阶段的人体,以及简单地发现其元件之一,包括基因序列或部分序列,不能构成可专利的发明;2.从人体分离的或借助技术程序生产的元件,包括基因序列或部分序列,即使其结构与天然元件完全相同,也构成可专利的发明;3.专利申请中必须公开已测序的基因或其部分序列的工业可应用性。 针对反映十分突出的EST专利性问题,特别是有关EST的书面描述和实用性问题,美国专利与商标局(PTO)于1998年向社会发出征集对原内部审查指南的意见的通知书。在充分考虑了其所收到的13个个人和19个组织的答复意见之后,PTO于1999年12月公布了涉及美国专利法第112条“书面描述”要求修改的内部审查指南,由于有些意见要求Fro对最后的(1995年)实用性审查指南进行必要的修改和澄清,所以PIO还同时公布了修改的实用性审查指南,借以澄清其在这些问题上的观点。 三、已表达序列标志(EST)的专利性 尽管不同技术领域里所谓“本领域普通技术人员”水平可能有很大不同,但对一件具体的专利申请,不管它是涉及计算机芯片、机械装置、药物或是DNA片段,专利局都将依据专利法规定的同样专利性标准进行审查。在每个技术领域中,不管发明的主题是否为开创性的、十分复杂的或是竞争性的,在其权利要求被批准之前都必须符合所有的专利性条件,即发明的主题未落入专利保护排除的范围内(专利法第25条)、发明具有新颖性、创造性和实用性(专利法第26条),并且说明书必须对发明作出足够清楚完整的描述,以使本领域技术人员在阅读了说明书之后即能够重复或再现发明(专利法第26条)。 以下仅就EST的这些专利性问题作进一步地讨论。 (一)是否构成专利保护的主题: 与其他技术领域相比,自然界衍生的物质因其属于“发现”而不能获得专利。但作为一个普通原则,从自然界分离的或以其他技术手段得到的物质,即使其与天然等同物相同,也不能排除其专利性。无可置疑,如能满足专利性的所有要求,基因工程领域的专利可授予天然存在的编码有用蛋白质的人、动物或植物基因,以及与基因相联系的其他材料,如质粒构建体、重组蛋白质、被转化的细胞及转基因植物和动物等。 然而,从生物体中得到基因片段或DNA序列是否构成可获得专利的发明主题呢?答案应是肯定的。首先,虽然构成EST的DNA是以其序列所给出的信息为特征的,但DNA本身也是化学物质,特别是作为EST的cDNA本来就不是生物体中天然固有的。借助人为手段(如提取、筛选等)从其天然来源中分离的化学物质或微生物被看作是新产生的物质。虽然可以用简要的甚至自动化常规手段得到Esr片段,但其中仍需人的智力活动和技术上的人为干预,即得到这些DNA片段实际是技术处理的结果,是人为创造的或分离的化学物质。 (二)新颖性 因为构成EST的DNA是化学物质,而且EST不同于构成全长度基因的DNA序列,所以相对于构成全长度基因序列的DNA而言,EST并不能成为现有技术的一部分,即不失去新颖性。然而,关于EST的已知信息可使构成全长度基因序列的DNA失去创造性。另一方面,因为EST序列不同于包括EST的较长基因序列,所以EST的专利并不能破坏较长基因序列的新颖性。然而,关于EST的信息有可能使构成EST的较长基因序列失去创造性。 目前国际上普遍认为,与全长度基因或包括部分序列的较长基因大片段相比,如果尚未以特定形式公开过基因的部分序列,则涉及该基因部分序列的发明应是具有新颖性的。这就提示,如果权利要求的DNA序列与以前公开的较长序列完全重叠或部分相同序列重叠,则权利要求的DNA序列的新颖性将取决于它的特定长度。当序列区域只有部分重叠时,一般在非交叠区域中很可能存在一个提供新颖性的结构元件。一般说来,在先公开部分基因序列并不影响完整基因的新颖性,因为后者还包括有新的基因区域。例如,在先发明人虽已就其中包括某个重要基因的DNA大片段获得了专利,但后来真正确定基因的可读框并分离出该基因的人,以及从同一基因中分离出许多DNA片段(如EST或SNP)的人,仍可获得第二个专利。 另外,技术发展的促进因素不只限于发现相应的全长度基因。即使权利要求的DNA与已知的DNA序列完全相同,发明人和申请人仍可在充分认识并描述新的功能的基础上获得该DNA序列的用途专利(这里所说的用途除直接用作药物外,还包括其第二用途或其他非药物用途)。因此,包括EST在内的DNA序列象其他常规化学物质一样,不仅可获得绝对的产品保护,还可就其未曾公开过的新的有益用途获得专利。 (三)创造性 如何判断EST相关发明的创造性,是目前专利法律界遇到的一个难以处理的特殊问题。首先,虽然DNA在本质上也是一种化学物质,但生物体内所有DNA都是由仅仅四种普通碱基组成的,其化学性质没有直接依据于结构的实质性特征,故不能简单地基于DNA化学结构的相似性或非相似性比较来判断创造性(或美国专利法所称的非显而易见性)。另一方面,EST实际上是从已建立的cDNA库中随机选择并经过序列测定的DNA片段,得到EST的方法基本上是标准化的。在这种技术背景下,如果不考虑其特殊的技术性质,而仅仅基于常规结构非显而易见性标准对每个具有新的序列的EST片段授予专利,显然是与保护并鼓励对工业发展作出贡献的发明这一专利立法宗旨相违背的。 针对这一问题,有的学者认为可基于现有技术(例如标准的自动化方法)来比较和判断EST“获取方法”(obtainment process)的非显而易见性。如果有证据足以推翻获取方法的显而易见性(例如方法本身的困难程度和有关DNA的不可预见的优点),就判定该DNA是非显而易见的。相反,如果提不出这样的证据,便有理由因显而易见而否认其专利性。 然而应该看到,特别是对于医药和生物技术领域的发明,发明的创造性往往是与实用性密切联系在一起的。对于常规药用化学物质或天然提取物,常常可通过改变合成或提取条件来获得预期的物质,进而可基于结构或组成来推测并实现预期的使用效果。但DNA序列则完成不同。EST作为信息载体,它所提供给人们的是遗传信息,而有用遗传信息的获取往往带有一定的随机性和偶然性。因此,以“获取方法”的创造性作为推断EST创造性的标准,至少是有一定局限性的。实际上,在确定了部分基因序列的常规分离和测序方法之后,发明对现有技术的贡献就在于权利要求的DNA能实现怎样的技术结果。也就是说,DNA序列创造性不是取决于如何得到权利要求的DNA,而是在于该DNA能完成或成就什么。当然,如果在发现序列的有益用途和特征(什么)中克服了技术难题(为何),而且在专利申请中予以充分公开,则这些研究成果也足以体现发明的创造性。 在判断EST的创造性时,一般首先考虑两个重要因素:一是在发掘有益用途中克服客观技术难题,二是EST序列具有不可预见的特征或特殊优点。在技术迅速发展的过程中,技术难题将会变得不那么重要,因此不可预见的结果主要是与特定EST序列或一组不均一DNA分子所携带之信息的特殊功能直接相关。一个或一组以常规自动化手段筛选并分离得到的EST,如果它们只用作探针,其可能被认为是显而易见的或缺乏创造性的,因为在与DNA的相反链杂交中难以获得不可预见的技术效果。相反,如果这些EST具有除作为探针以外的某些实用性特征,即使其包括已知的序列数据,则也可被认为是有创造性的。 另外还应指出的是,作为一个原则,在判断发明的创造性和保护范围时,应注意专利所授予的垄断权是否与发明对现有技术所作出的贡献相匹配,即应在发明所提供的技术贡献与专利权利要求所限定的垄断权之间找到一个合理的平衡点。 数目 不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。

基因数是指

基因数量指人体内的基因数这个数量很庞大。在物种进化过程中,高等生命的出现似乎受到RNA聚合酶II的影响。这种酶将基因编码的信息转录成mRNA,进而成为蛋白质合成的依据。RNA聚合酶在进化过程中高度保守,其许多结构特征在细菌到人类的不同物种间也具有保守性。单细胞生无在5亿年前已经存在,它们携带的数千个基因造就不同的细胞功能。进一步的发展似乎依赖于产生更多的基因。对于一个高度发展的生物(如人类,生物谷注),这种进化形式可能导致形成数百万个基因。但是,人类基因组测序结果的公布让研究人员非常惊讶:人类只有大约25000个基因,这个数字比果蝇或线虫没有多太多。进化似乎发现了更有效的途径来利用已有的基因。但是到底是什么原因造成这种情况呢?在12月14日的《科学》杂志上,来自德国环境与健康研究中心的临床分子生物学和肿瘤遗传性研究所的DirkEick博士的研究组和英国牛津大学的ShonaMurphy研究组分别公布的结果揭示出了这个谜团的冰山一角,并且使人们对RNA聚合酶II的一种特殊结构的作用有了新的了解。他们的早期观察发现,基因表达并不是只是酶结合到基因座的过程来调节的,而是在从DNA到RNA的活泼转录阶段也发生调节作用。在这个阶段,这种拼接的RNA在基因转录过程中产生,并且在极端情况下能够产生编码数千个不同蛋白质的一个RNA分子。但是,RNA聚合酶II已经发展出一种包含一个7氨基酸许列的重复片段的结构。在人类中,这个结果称之为carboxyterminal结构域或CTD,它具有52个这样的重复。而且,这些片段的位置就在RNA聚合酶II产生RNA的地方。在较简单的生物中,CTD更短:线虫有36个重复,酵母只有26个,但是许多单细胞生物和细菌根本就没有形成一个明显的CTD结构。尽管CTD在高等生物中是细胞基因表达所必须的,但RNA的基因特异性成熟过程的细节还不清楚。DirkEick和ShonaMurphy的研究责目前已经证实在特定基因产物加工和成熟过程中,CTD的7位丝氨酸磷酸化的差异。这些结果为进一步发现CTD谜团的片段、增加我们对基因调节的了解提供了基础。鉴于其重要性,对基因调节机制的了解实我们在分子水平上了解癌症和其他疾病、开发出新疗法至关重要。

人体里有多少个基因?

(1)拿人体来说,其生殖细胞中有23条染色体,从现在的研究看到,每条染色体上就是一个DNA大分子,可在这大分子上并没看到有孟德尔所假想的那样的“基因”。如果定要认为“基因”就在DNA分子上,那么细胞核内的23个DNA分子如何能控制人体各种各样数不胜数的性状呢?学者们设想DNA分子能分成许许多多的片段,每个片段就是一个基因(所以把“基因”称为DNA片段),由每个“片段”分别去控制人体各种各样性状。那么,人体上应有多少不同的性状?应分出多少不同的DNA“片段”(基因)呢?现在学者们正在对此进行激烈的争论,有人认为有10万个基因,有人认为6万个,有人认为3万个,有人认为至少有12万个。不管怎么说,这“基因”数大家都会认为至少是在2万个以上,而每个DNA分子上至少有上千个基因。这就是说,每个DNA分子至少要分成上千个“片段”。那么,这种假设能否成立?让我们来思考一些最具体最起码的问题。 ①、从人们的研究看到DNA分子本身排列有序,分子中的各原子都有化学键相连,结合紧密,并未分成天然的“片段”,那么要把它们分成上千个片段,且彼此间互不牵连,能独立分离,自由组合,这分开它们,克服化学键作用的力在哪儿? ②、即便DNA能分成“片段”,那么当DNA分子分成上千个片段后,它还是不是一个完整的分子?它到底是以一个完整的分子发挥作用,产生功能,还是它本身没有功能,只让它上面的“片段”各行其是,各自将各不相同的所谓遗传信息“转录”给RNA,再“转译”给蛋白质,从而各自操纵生物五花八门的性状?从常识看,任何一个分子(无论有机物或无机物分子)都有作为分子的特有功能,而不可能分成“片段”,若要在外力的作用下,强行分成“片段”,其性质也完全变了,DNA分子能例外吗? ③、退一万步说,即便DNA分子不仅能自由地分成上千个片段,而且每个片段也能独自操纵蛋白质,那么在受精卵细胞内有上万的片段(基因),当它们各自发挥“功能”而又共同操纵一个个体的发育时,彼此不“打架”,不相互干扰吗?如何能使个体有条不紊的发育?仅靠几个“调节基因”、“操纵基因”或别的什么特殊“基因”来起作用能行吗?再说它们本身又受谁调节、操纵? ④、我们再来看生物的性状。每一个活的生物个体,都是一个不可分割的统一整体,机体的各部之间,即所有的“性状”之间,都是相互关联的。拿人来说,人的力气大小,跑步的快慢等性状,可直接看到它们与全身的健康情况、平时的锻炼情况等直接相关,不是由某一“基因”能单独控制得了的。即便有些性状看起来似乎只由某一器官控制,譬如人的嗓音,有的尖(锐),有的钝,这似乎只与声带有关,但实际它却与体内的雌雄激素等都有关,以前的太监,作了阉割手术后,其嗓音也会起变化。再有,各种性状也是随内外环境的变化而变化的。人的皮肤颜色不仅受阳光照射的影响,也受自身内在状况的影响,有的病人脸色发青、发黄或苍白等。尤其是人的舌,其舌质与舌苔随时随身体状况的变化而有明显变化(中医由此而查知人体的疾病与健康状况),从这里更可直接看到人体的局部与整体是息息相关的,不是彼此独立互不影响的。只怕正是这无数的事实与种种的问题也促使基因理论的学者们思考,因而对基因概念不断进行修改(称其为“发展”),只是,发展到后来的基因概念是怎样的呢?在《基因概念的发展》(自然杂志,1979,2)一文中所述的概念却与孟德尔所假设的概念完全不同了。孟德尔假设的基因概念是:基因间互不牵连,能独立分离,自由组合。一个基因控制一个性状,且不因环境的变化而改变,即能稳定的遗传。而文中所述发展了的概念却是:“基因间形成相互制约的统一整体,每个基因是这个整体中的一个组成部分。”“一个基因可以影响许多性状,许多基因影响同一性状”。并且“是与内外环境相互作用的”。我们看,这发展了的概念却正好是对孟德尔两规律进行否定:既然称“基因间形成为相互制约的统一整体”,那它就不可能互不牵连,独立分离,自由组合。尤其是“一个基因可以影响许多性状,许多基因影响同一性状。”这就更不可能按纯数学的排列组合关系推导出后代的性状及数量比。 “基因”概念的发展不仅直接否定了遗传学的“两基本规律”,而且从理论上讲也使“基因工程”无法下手操作,因为按原有的基因概念:一个基因控制一个性状,且互不牵连,那么通过对“基因”的剪接、重组,就可创造出新物种来。而发展了的概念却说“一个基因可以影响许多性状,许多基因影响同一性状”,那么如何能下手将控制所需性状的基因切割下来,而不影响其它性状呢?其实,不仅发展后的基因概念使“基因工程”无法下手操作,就是原有的基因概念,要下手切割基因,从逻辑上也说不过去,我们就拿孟德尔假设的控制碗豆(茎)高矮的基因来说,如果真有高、矮基因,它们又可以被切割出来,那么当人们把它们切割下来后,这碗豆还有没有高矮?若没有了高矮,这会是什么东西?若变成了别的东西,那这基因控制的就不仅仅是高矮,而是整个植株的状况!若说还有另一种情况:出现了新高矮,那这控制新高矮的基因又从何来?自然,在这方面我们还可以提出许多基因理论无法解释、无法自圆其说的问题来,但无需再多提,下面我们从另外的角度来分析。(2)由于DNA有忠实的复制性,因而确定“基因”在DNA上,DNA是遗传物质。可是人们不仅看到DNA与RNA都有忠实的复制性,近年来,还看到蛋白质也有忠实的复制性。中国科学院昆明动物研究所研究员刘次全,还作出了蛋白质复制,氨基酸配对模型。那么当它们几者都有复制性时,这“基因”该确定在何处?再有,原来以为蛋白质没有复制性,因而认为需听从DNA的遗传指令,现在蛋白质自身有复制性时,它还听不听DNA指令?还有,现在人们还看到一些无机物小分子也有复制性,也就是说复制性并不是生物的特有性质,决定生物与非生物有不同本质的地方并不在这儿。(3)从世界六国科学家联手合作的“人类基因组计划”所公布的一些资料看,也显示了“基因”理论的种种矛盾与自我否定。例如,按照基因决定性状的理论,人与人之间各种“性状”的明显差异,尤其是不同人种之间的巨大差异,应该在DNA上能直接反映出来。然而,资料上显示的却相反:“地球上的每个人与所有的其他人共享99.99%的相同的基因密码。来自不同人种的人,比来自同一人种的人,在基因上有更多的相似之处。” 现在科学家们也在进一步反思与修改“基因”理论:“一个基因等于一个疾病或一个基因制造一个关键蛋白质的概念正在消失。”“停止一次只考虑一个基因的习惯,开始试图把集合作为一个复杂系统来一起思考。”的确,科学家们通过对“人类基因组计划”的实施,其认识又进了一步,但要真正走出误区,还必须认识错误之根源。(4)认为DNA揭示了生命的本质及奥秘,那么,DNA的本质特征是什么?即是忠实的复制性(不变性)与变异无规律性。由此会得出什么结论?前面提到的雅克·莫诺,他在书中说:这忠实的复制性是“最根本的生物不变量”,“生物的一切属性都是以这种基本的分子不变性为基础”,它“抵制一切变革,一切进化。”这难道就是生物的本质与奥秘?由此怎不会得出我们前面所例举的那些荒谬结论?这“忠实的复制性”,实际是一种机械的、死的,连非生物也具有的特性,生物所具有的强大的生命活力,不断变化发展的特性,尤其是人所具有的无限的学习、认知、应变、创造等等能力,从DNA里丝毫体现不出来,也没任何“基因”能操纵得了。 “变异无规律性”,这不仅不是生物的特性,在非生物物质里也找不到,宇宙万事万物都有其变化的规律性,我们研究任何学问都是研究那门学问中物质的运动变化规律性。这DNA所具有的“基本特性”,是与生物所具有的最本质的特性完全相反的。人们会问:孟德尔试验中所出现的性状变化,难道不是事实?难道没有它的物质基础?难道不需要人们去寻找与认识其物质基础(实体)?

人的基因有多少?

1、分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp;其中G+C含量偏低,仅占38%,而2号染色体中G+C的含量最多;到目前仍有9%的碱基对序列未被确定,19号染色体是含基因最丰富的染色体,而13号染色体含基因量最少等等(具体信息可参见cmbi 特别报道:生命科学的重大进展)。 2、目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。 3、基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。这将对我们目前的许多观念产生重大的挑战,它为后基因组时代中生物医学的发展提供新的非凡的机遇。但由于基因剪切,EST数据库的重复以及一些技术和方法上的误差,将来亦可能人类的基因数会多于4万。

人类基因组的基因数目为什么比预想的要少???

因为存在可变剪切,所以基因的总数比潜在的蛋白质数目少。人类的可变剪接程度比昆虫和线虫的大,约60%的人类基因可能存在可变剪接。因此跟其他真核生物相比,人类蛋白质组增加的程度大于基因增加的程度。从人类基因组其中的两条染色体上抽出一些基因进行可变剪接研究,发现导致蛋白质序列改变的基因可变剪接的比率高达80%,如此可使得蛋白质组的成员增加到50000~60000种。

请计算人类基因组共有多少编码蛋白质的基因

人类基因组共有多少编码蛋白质的基因由美国国立人类基因组研究所(nhgri)和能源部(doe)领导的ihgsc不久前宣布,人类基因组测序工作已圆满完成,其发表在2004年10月21日nature(2004,431:931)上的分析报告对2001年2月发表的初步分析报告进行了补充。这篇最新分析报告不但为世人展现了一张精度大于99%、误差小于10万分之一的精确版人类基因组图谱,而且还进一步纠正了蛋白编码基因的数量,仅为2万~2.5万个,而非原先估计的3万~3.5万个。新基因组图谱 准确率达99.999%旨在破译人类基因组常染色质遗传密码的人类基因组计划(hgp)自1990年启动至2003年结束,历时共13年, 该计划由ihgsc来完成。ihgsc是由法国、德国、日本、中国、英国和美国等6个国家20个研究所的科学家组成的开放性国际协作组织,全球2800余名科学家参加了ihgsc的工作。

对人类的基因个数是最多的吗

对人类的基因个数是最多的全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。

真菌基因组基因数量范围

在微生物家族中,真菌是最为庞杂的一支。它们种类多、数量大、繁殖快、分布广,与人类的关系极为密切。小型的真菌,只有在显微镜下才能一睹它们的芳容;较大型的真菌,如灵芝、香菇、木耳之类,已经大到人人可见。不过即使是真菌家族中最小的成员——酵母菌和霉菌,它们与细菌、放线菌相比,也要大几倍至几十倍。所以真菌的基因组可大可小,范围是相当大的。目前已经测序完毕的酵母中编码RNA或蛋白质的大约2600个基因。通过对酿酒酵母的完整基因组测序,发现在12068kb的全基因组序列中有5885个编码专一性蛋白质的开放阅读框。这意味着在酵母基因组中平均每隔2kb就存在一个编码蛋白质的基因,即整个基因组有72%的核苷酸顺序由开放阅读框组成。这说明酵母基因比其它高等真核生物基因排列紧密。如在线虫基因组中,平均每隔6kb存在一个编码蛋白质的基因;在人类基因组中,平均每隔30kb或更多的碱基才能发现一个编码蛋白质的基因。酵母基因组的紧密性是因为基因间隔区较短与基因中内含子稀少。酵母基因组的开放阅读框平均长度为1450bp即483个密码子,最长的是位于XII号染色体上的一个功能未知的开放阅读框(4910个密码子),还有极少数的开放阅读框长度超过1500个密码子。在酵母基因组中,也有编码短蛋白的基因,例如,编码由40个氨基酸组成的细胞质膜蛋白脂质的PMP1基因。此外,酵母基因组中还包含:约140个编码RNA的基因,排列在XII号染色体的长末端;40个编码SnRNA的基因,散布于16条染色体;属于43个家族的275个tRNA基因也广泛分布于基因组中。

人大约有多少个基因?多少个DNA分子?

几年前最好的估计是人类具有10万个基因,而当人类基因组计划完成后,一下子下降为3万个基因。运用目前最流行的4种基因搜索程序对人类基因组全序列进行搜索,“基因智慧”的结果是24500个,“双生扫描”的结果是25600个,“基因身份证”的结果是32400个,“基因扫描”的结果是45000个,而最近更多的人则倾向于是2万个基因。(1)拿人体来说,其生殖细胞中有23条染色体,从现在的研究看到,每条染色体上就是一个DNA大分子,可在这大分子上并没看到有孟德尔所假想的那样的“基因”。如果定要认为“基因”就在DNA分子上,那么细胞核内的23个DNA分子如何能控制人体各种各样数不胜数的性状呢?学者们设想DNA分子能分成许许多多的片段,每个片段就是一个基因(所以把“基因”称为DNA片段),由每个“片段”分别去控制人体各种各样性状。那么,人体上应有多少不同的性状?应分出多少不同的DNA“片段”(基因)呢?现在学者们正在对此进行激烈的争论,有人认为有10万个基因,有人认为6万个,有人认为3万个,有人认为至少有12万个。不管怎么说,这“基因”数大家都会认为至少是在2万个以上,而每个DNA分子上至少有上千个基因。这就是说,每个DNA分子至少要分成上千个“片段”。那么,这种假设能否成立?让我们来思考一些最具体最起码的问题。 ①、从人们的研究看到DNA分子本身排列有序,分子中的各原子都有化学键相连,结合紧密,并未分成天然的“片段”,那么要把它们分成上千个片段,且彼此间互不牵连,能独立分离,自由组合,这分开它们,克服化学键作用的力在哪儿? ②、即便DNA能分成“片段”,那么当DNA分子分成上千个片段后,它还是不是一个完整的分子?它到底是以一个完整的分子发挥作用,产生功能,还是它本身没有功能,只让它上面的“片段”各行其是,各自将各不相同的所谓遗传信息“转录”给RNA,再“转译”给蛋白质,从而各自操纵生物五花八门的性状?从常识看,任何一个分子(无论有机物或无机物分子)都有作为分子的特有功能,而不可能分成“片段”,若要在外力的作用下,强行分成“片段”,其性质也完全变了,DNA分子能例外吗? ③、退一万步说,即便DNA分子不仅能自由地分成上千个片段,而且每个片段也能独自操纵蛋白质,那么在受精卵细胞内有上万的片段(基因),当它们各自发挥“功能”而又共同操纵一个个体的发育时,彼此不“打架”,不相互干扰吗?如何能使个体有条不紊的发育?仅靠几个“调节基因”、“操纵基因”或别的什么特殊“基因”来起作用能行吗?再说它们本身又受谁调节、操纵? ④、我们再来看生物的性状。每一个活的生物个体,都是一个不可分割的统一整体,机体的各部之间,即所有的“性状”之间,都是相互关联的。拿人来说,人的力气大小,跑步的快慢等性状,可直接看到它们与全身的健康情况、平时的锻炼情况等直接相关,不是由某一“基因”能单独控制得了的。即便有些性状看起来似乎只由某一器官控制,譬如人的嗓音,有的尖(锐),有的钝,这似乎只与声带有关,但实际它却与体内的雌雄激素等都有关,以前的太监,作了阉割手术后,其嗓音也会起变化。再有,各种性状也是随内外环境的变化而变化的。人的皮肤颜色不仅受阳光照射的影响,也受自身内在状况的影响,有的病人脸色发青、发黄或苍白等。尤其是人的舌,其舌质与舌苔随时随身体状况的变化而有明显变化(中医由此而查知人体的疾病与健康状况),从这里更可直接看到人体的局部与整体是息息相关的,不是彼此独立互不影响的。 只怕正是这无数的事实与种种的问题也促使基因理论的学者们思考,因而对基因概念不断进行修改(称其为“发展”),只是,发展到后来的基因概念是怎样的呢?在《基因概念的发展》(自然杂志,1979,2)一文中所述的概念却与孟德尔所假设的概念完全不同了。孟德尔假设的基因概念是:基因间互不牵连,能独立分离,自由组合。一个基因控制一个性状,且不因环境的变化而改变,即能稳定的遗传。而文中所述发展了的概念却是:“基因间形成相互制约的统一整体,每个基因是这个整体中的一个组成部分。”“一个基因可以影响许多性状,许多基因影响同一性状”。并且“是与内外环境相互作用的”。我们看,这发展了的概念却正好是对孟德尔两规律进行否定:既然称“基因间形成为相互制约的统一整体”,那它就不可能互不牵连,独立分离,自由组合。尤其是“一个基因可以影响许多性状,许多基因影响同一性状。”这就更不可能按纯数学的排列组合关系推导出后代的性状及数量比。 “基因”概念的发展不仅直接否定了遗传学的“两基本规律”,而且从理论上讲也使“基因工程”无法下手操作,因为按原有的基因概念:一个基因控制一个性状,且互不牵连,那么通过对“基因”的剪接、重组,就可创造出新物种来。而发展了的概念却说“一个基因可以影响许多性状,许多基因影响同一性状”,那么如何能下手将控制所需性状的基因切割下来,而不影响其它性状呢? 其实,不仅发展后的基因概念使“基因工程”无法下手操作,就是原有的基因概念,要下手切割基因,从逻辑上也说不过去,我们就拿孟德尔假设的控制碗豆(茎)高矮的基因来说,如果真有高、矮基因,它们又可以被切割出来,那么当人们把它们切割下来后,这碗豆还有没有高矮?若没有了高矮,这会是什么东西?若变成了别的东西,那这基因控制的就不仅仅是高矮,而是整个植株的状况!若说还有另一种情况:出现了新高矮,那这控制新高矮的基因又从何来? 自然,在这方面我们还可以提出许多基因理论无法解释、无法自圆其说的问题来,但无需再多提,下面我们从另外的角度来分析。 (2)由于DNA有忠实的复制性,因而确定“基因”在DNA上,DNA是遗传物质。可是人们不仅看到DNA与RNA都有忠实的复制性,近年来,还看到蛋白质也有忠实的复制性。中国科学院昆明动物研究所研究员刘次全,还作出了蛋白质复制,氨基酸配对模型。那么当它们几者都有复制性时,这“基因”该确定在何处?再有,原来以为蛋白质没有复制性,因而认为需听从DNA的遗传指令,现在蛋白质自身有复制性时,它还听不听DNA指令? 还有,现在人们还看到一些无机物小分子也有复制性,也就是说复制性并不是生物的特有性质,决定生物与非生物有不同本质的地方并不在这儿。 (3)从世界六国科学家联手合作的“人类基因组计划”所公布的一些资料看,也显示了“基因”理论的种种矛盾与自我否定。例如,按照基因决定性状的理论,人与人之间各种“性状”的明显差异,尤其是不同人种之间的巨大差异,应该在DNA上能直接反映出来。然而,资料上显示的却相反:“地球上的每个人与所有的其他人共享99.99%的相同的基因密码。来自不同人种的人,比来自同一人种的人,在基因上有更多的相似之处。” 现在科学家们也在进一步反思与修改“基因”理论:“一个基因等于一个疾病或一个基因制造一个关键蛋白质的概念正在消失。”“停止一次只考虑一个基因的习惯,开始试图把集合作为一个复杂系统来一起思考。”的确,科学家们通过对“人类基因组计划”的实施,其认识又进了一步,但要真正走出误区,还必须认识错误之根源。 (4)认为DNA揭示了生命的本质及奥秘,那么,DNA的本质特征是什么?即是忠实的复制性(不变性)与变异无规律性。由此会得出什么结论?前面提到的雅克·莫诺,他在书中说:这忠实的复制性是“最根本的生物不变量”,“生物的一切属性都是以这种基本的分子不变性为基础”,它“抵制一切变革,一切进化。”这难道就是生物的本质与奥秘?由此怎不会得出我们前面所例举的那些荒谬结论? 这“忠实的复制性”,实际是一种机械的、死的,连非生物也具有的特性,生物所具有的强大的生命活力,不断变化发展的特性,尤其是人所具有的无限的学习、认知、应变、创造等等能力,从DNA里丝毫体现不出来,也没任何“基因”能操纵得了。 “变异无规律性”,这不仅不是生物的特性,在非生物物质里也找不到,宇宙万事万物都有其变化的规律性,我们研究任何学问都是研究那门学问中物质的运动变化规律性。这DNA所具有的“基本特性”,是与生物所具有的最本质的特性完全相反的。人们会问:孟德尔试验中所出现的性状变化,难道不是事实?难道没有它的物质基础?难道不需要人们去寻找与认识其物质基础(实体)?

怎么算基因型有多少个

4种。对于aa基因来说,可以产生的配子有a和a两种。同理对于bb基因,也有b和b两种。但是对于dd,只能产生d这一种。所以是2*2*1=4种。

科学家如何计算基因的数量?

原核生物广泛存在几个独立的蛋白质编码序列公用一个或一组启动子的情况,所以,一般提到原核生物的基因,启动子和终止子这种很容易被好几个“基因”共用的转录水平的元件,是常常不被纳入“基因”的界限的。方便起见,多数情况下我们仅以蛋白质翻译的起点和终点——也就是起始密码子和终止密码子——无比可信的界限,作为基因的边界。真核生物则不同,绝大部分编码蛋白质的“基因”,都独享一套转录调控元件(启动子、终止子)。而且真核生物的非翻译区(UTR),存在着更丰富的调控元件。所以在定义基因时,把UTR区和参与转录调控的启动子和终止子也算作基因内,也是没啥问题的。但真核生物更加麻烦的是,调控序列区域可能很长很长,更加难以预测,不存在像起始密码子和终止密码子这么明确的界限。所以其实,无论是原核生物或是真核生物,在多数情况下,我们谈论“基因”,指的是“从起始密码子到终止密码子的部分”。有些时候,比如我们拿到的基因注释信息里,基因还包括两侧UTR的部分,也就是完整的“转录区”,那是因为有足够的转录组测序帮我们确定了这个没那么容易看清的“边界”。并非我们不想让启动子到终止子这样整个完整的功能区块被纳入“基因”的范畴,只是我们对于DNA这种上帝的语言的理解还太多有限,还没发确切摸清这样的边界罢了。

生物体内的DNA分子数目为什么大于基因数目

因为一个DNA分子上有多个基因。基因的定义是“具有遗传效应的DNA片段”。所以一个DNA分子上可以有多个基因,它们在DNA上呈线性排列,来控制生物的遗传性状。比如人有23对同源染色体,每个染色体上正常情况下有一个DNA分子(也就是说有46个DNA分子),但人的基因数目大约是20000到25000个。

等位基因不是杂合子才有吗,为什么基因频率中最后算的是全部的基因型总数呢?

1,在一个群体内,同源染色体的某个相同座位上的等位基因超过2个以上时,就称作复等位基因;2,等位基因是指位于同源染色体的同一位置上,控制相对性状的基因,不同的等位基因组合产生不同基因型,包括纯合子与杂合子;3,纯合子是指在同源染色体同一位点上的两个等位基因相同的基因型个体;如果某一座位上有20个复等位基因,则所能形成的纯合子基因型为20个。4,杂合子是指在同源染色体同一位点上的两个等位基因不相同的基因型个体;如果某一座位上有20个复等位基因,则所能形成的杂合子基因型为(20*19)/2个,即190个。标准答案: 210解题捷径:复等位基因数量与可能的基因型种类的关系可以用下述公式表示: N(N-1)/2,其中N表示复等位基因数目,考生直接套用公式计算即可,不必再去推理。
 首页 上一页  9 10 11 12 13 14 15 16 17 18 19  下一页  尾页