基因测序的步骤是什么?
基因测序的方法很多。最早是用sanger测序法,原理是双脱氧链终止法;Sanger法是根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以A、T、C、G结束的四组不同长度的一系列核苷酸,然后在尿素变性的PAGE胶上电泳进行检测,从而获得可见的DNA碱基序列。第二代测序法的原理是“边合成边测序”;第二代测序法是以待测序列为模板,按照碱基互补配对原则进行合成,每新加一个碱基就进行一次扫描,读出这个碱基,最终获得完整的DNA序列。第三代测序法的原理是“单分子测序”与第二代相比,第三代不需要合成,即拿来原始的待测DNA,直接读出碱基顺序,第三代测序方法有多种,但依照的原则都是“单分子测序”。
在基因检测中什么是基因PANEL
基因检测PANEL是高通量量基因检测和基因测序发展起来后用的一个词语,它是指在检测中不只是检测一个位点、一个基因。而是同时检测多个基因、多个位点。这些位点和基因需要按照一个标准进行选择和组合,从而构成一个检测PANEL。因此基因检测PANEL可以翻译成为基因组合、基因集合。基因PANEL是一个基因组合,在基因检测中使用基因PANEL所检测的基因比单一的位点要多,比PCR技术检测的序列要长,相对来说,获得的基因信息量要多一些。但是基因组合本身并没有指明所检测的基因数量的多少。人体内的基因有2万多个编码蛋白质的基因,也有虽然不编码蛋白质,但是在人的疾病发生和天赋潜能中发挥重要作用的基因,人的基因的碱基数量高达64亿中,基因PANEL只是选择了部分基因。而选择这些基因的人具有基因解码能力才能选择得正确。想要了解更多有关基因检测的相关信息,推荐咨询海普洛斯。海普洛斯由中组部国家创业人才领衔,成立七年来,先后获得磐谷创投、软银中国、优选资本、深创投等国内外顶级投资机构多轮注资数亿元,荣膺深圳创新企业70强、2018深圳准独角兽企业、2019深圳领先生物科技企业20强、2020大湾区瞪羚企业、广东省肿瘤液体活检工程技术中心、广东省新型研发机构、深圳市博士后创新实践基地等荣誉。【● 没病有必要做基因检测吗?过来人有话说......】
基因测序是什么意思?
问题一:基因测序中的gap是什么意思 基因(遗传因子)是具有遗传效应的DNA片段。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性)。 带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。组成简单生命最少要265到350个基因。(这涉及到了基因工作组的力量,人类的基因工作组与果蝇的基本相似) 问题二:什么是普通的基因测序,它和高通量测序有什么区别吗 佳学基因为你解答,根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序 (DNA nanoball sequencing)等。 高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。 问题三:什么是普通的基因测序,它和高通量测序有什么区别吗 “普通的基因测序”应该是指“常规DNA测序”吧,是用Sanger法(也就是双脱氧法)进行测序的方法,目前非常普遍的是直接用ABI 3730xl 进行的自动测序,基本上可以做到600bp-800bp的读长。 高通量测序的概念其实是一个相对的概念,在2000年的时候,3700、MegaBace等仪器上的测序也是高通量测序,是相对手工测序或者跑平板胶来说的。 不过到2005年以后,高通量测序就改指第二代测序(Next generation sequencing),454、Solexa(后改为Illumina)和SOLiD等第二代测序,比3730等第一代测序的通量提高了成千上万倍,甚至上亿倍,所以称为高通量测序。 NGS的特点主要有: 1、通量高。一个RUN能产生500Mb-600Gb的数据量。 2、读长相对较短。454(约400-500bp),llumina(100-250bp),SOLiD(75-100)。 3、单位数据的成本非常低。现在很多项目测序的费用。已经非常低。生物信息分析成本变得更为重要了。 问题四:基因测序panel什么意思 基因测序组合套装吧,上下文应该会有介绍的,或者你有啥具体的想了解
基因测序是什么意思
基因测序是一种新型的能够从血液或唾液中分析测定基因全序列的基因检测技术。基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。基因测序相关产品和技术已由实验室研究演变到临床使用,可以说基因测序技术是下一个改变世界的技术。DNA测序是指利用一定的实验室方法分析特定DNA片段的碱基序列,也就是腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶在特定DNA片段的排列方式。DNA测序即测定DNA序列的技术,用DNA测序仪等仪器对已提纯的DNA单链或者双链DNA进行分析,得到腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶在特定DNA片段的排列方式。在分子生物学研究中,DNA测序为进一步研究和改造目的基因提供了科学基础。DNA测序有助于了解人类基因组、其他动物、植物和微生物的完整DNA序列,为进一步研究和改造目的基因提供了科学基础,极大地推动了生物学和医学的研究及发现;近几年来已经快速应用在众多领域,如疾病诊断、微生物鉴定、法医生物学、生物技术、生物系统学中,不断造福人类。基因组测序技术:1、第一代测序技术:1977年,由Frederick Sanger和Coulson发明的双脱氧链终止法或者是由Walter Gibert 和 Allan M. Maxam开创的化学降解法。双脱氧终止法(Sanger测序法)的核心原理:由于ddNTP(四种带有荧光标记的ATCG碱基)的2"和3"都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA的合成反应。在4个DNA合成反应体系中分别加入带有一定比例带有放射性同位素标记的dNTP, 然后利用琼脂糖凝胶电泳和放射自显影后可以根据电泳条带的位置确定待测分子的DNA序列。小扩展---Sanger测序法为科学研究作出的贡献:1996年第一次完成对单细胞真核生物(酿酒酵母)的基因组测序。1998年第一次对多细胞真核生物(线虫)基因组的测序。2000年完成第一个植物基因组(拟南芥)的测序。1990-2003年人类基因组计划(HGP)。化学降解法的核心原理:将一个 DNA 片段的 5" 端磷酸基作放射性标记,再分别采用不同的化学方法修饰和裂解特定碱基,从而产生一系列长度不一而 5" 端被标记的 DNA 片段,这些以特定碱基结尾的片段群通过凝胶电泳分离,再经放射线自显影,确定各片段末端碱基,从而得出目的 DNA 的碱基序列。一代测序的主要特点是合成终止测序,测序读长可达1000bp,准确性高达99.999%,测序成本高,通量低。2、第二代测序技术:所谓的NGS即Next-generation sequencing,翻译为“下一代测序技术”,或者是“第二代测序技术”,也叫高通量测序技术。2003年,454 Life Science公司首先建立了高通量的第二代测序技术,随后推出了454测序仪(后被Roche公司收购。2006年,Illumina公司推出Solexa测序仪。2007年,ABI公司推出SOLiD测序仪。Roche / 454 FLX Pyrosequencer主要技术原理是大规模并行焦磷酸合成测序。即在DNA聚合酶的催化下,dNTP加入到DNA的3"端,并释放一分子焦磷酸,该分子焦磷酸又与APS结合生成ATP,最后荧光素酶催化氧化荧光素的裂解,同时发出荧光,从而进行测定。
什么是基因测序?
基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。目前,世界上最先进的基因测序技术是全基因组测序(Whole-Genome Sequencing),可以对一个生物体携带的所有基因信息进行测序,包括所有核染色体上已知基因和未知功能区域的碱基对测序,以及细胞器基因组的碱基对测序,它是分析基因组最全面的方法,能够从完整遗传密码中获得生命信息。全基因测序能提供高分辨率、精确到逐个碱基的基因组视图,可在最大程度上捕获遗传变异基因,实现一次测序。
什么是基因二代测序?
即第二代DNA测序技术。第二代测序技术的核心思想是边合成边测序,即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技术,但是当时的操作流程复杂,没能形成规模。随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。然而随着科学的发展,传统的Sanger测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。拓展资料基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。基因测序相关产品和技术已由实验室研究演变到临床使用,可以说基因测序技术,是下一个改变世界的技术参考资料:百度百科基因测序
基因测序与基因检测的区别
基因测序是测出DNA上的碱基是A,C,G,T中的哪一个;而基因检测是通过杂交或测序等方法来确定DNA序列中是否含有特定的一段序列,来明确相关的基因某些功能。基因测序只是测定DNA的序列,和站在机器前拍一张X光片是一样的。基因测序的结果拿到一个由A、G、C、T组成的文件。没有对测序结果进行分析和判断,基因检测是检测一个人的DNA在特定的位置是不是A、G、C、T四个字母中的某个特定字母,正如检查体内某个地方是否有肿块一样。而基因解码是根据要求了解相关的基因信息 ,正如看病是为了了解病因、实现治疗一样。是从了解病人需求入手、确定是否需要照X光,是否需要量体温,是否需要看某个地方有肿块,最后根据所有信息判断病情、设计方案。另外基因检测是一种新型的基因检测技术,能够从血液或者唾液中分析测定基因序列,预测患各种疾病的可能,如癌症、白血病、酒量等。一般基因检测是对某一个或者几个基因上特定的片段或者地位点的测序。基因测序是对一个生物体所携带的基因信息的检测,包括所有染色体上所有基因,和非基因的碱基对测序,包括线粒体、核糖体等的检查。想要了解更多关于基因检测的详细情况,推荐咨询海普洛斯。海普诺斯旗下医学检验实验室具有国际顶尖基因测序平台以及完善的国际标准质量体系,已为全国500多家三甲医院、数百家科研院所、体检机构、保险公司、互联网平台以及各地政府提供基因检测技术服务和整体解决方案。【● 没病有必要做基因检测吗?过来人有话说......】
基因测序技术的意义是什么?
1977年,桑格发明了基因测序技术。基因测序技术是解读生命密码的基本手段。随着测序成本的不断降低,现在,人类可以“读”出任意物种的基因组序列。基因测序技术是合成生物学的三大底层技术之一。“读、写、改”分别对应了基因测序、基因合成和基因编辑。读,指如何读取生命信息,对应了基因测序技术。写,指如何复制生命信息,对应了基因合成技术。改,指如何改变生命信息,对应了基因编辑技术。华熙生物作为知名的生物科技公司和生物材料公司,以合成生物科技为驱动,致力于不断提高生命质量、延长生命长度,为人类带来健康、美丽、快乐的生命体验。
基因测序是什么
基因检测的基本原理是运用现代分子生物学和分子遗传学检查基因的结构及其表达功能是否正常。基因检测的途径主要有基因突变的检测、基因连锁分析和mRNA检测。最常用的技术有PCR扩增技术,DNA测序技术,生物芯片技术。基因检测主要是在传染性疾病,遗传性疾病,肿瘤中有重要的应用。基因检测对于肿瘤的早期诊断,肿瘤的临床分类,预后,对肿瘤高危人群的筛选指导,个体化治疗和预防都有重要的作用。
基因测序原理
基因测序技术能锁定个人病变基因,提前预防和治疗。自上世纪90年代初,学界开始涉足"人类基因组计划"。而传统的测序方式是利用光学测序技术。用不同颜色的荧光标记四种不同的碱基,然后用激光光源去捕捉荧光信号从而获得待测基因的序列信息。虽然这种方法检测可靠,但是价格不菲也是有目共睹的,一台仪器的价格大约在50万到75万美元,而检测一次的费用也高达5千到1万美元。通过半导体感应器,仪器对DNA复制时产生的离子流实现直接检测。当试剂通过集成的流体通路进入芯片中,密布于芯片上的反应孔立即成为上百万个微反应体系。这种技术组合,使研究人员能够在短短2小时内获取基因信息。而使用传统的光学测序技术需等待数周乃至数月后才能得到结果。同时,检测一次的费用也降到了最低1千美元过长的测序周期以及上万美元的仪器成本,成了阻碍基因测序进入寻常百姓家的障碍。而运用新技术的基因测序仪大大降低了基因组测序的门槛,使得更多研究人员能够使用这项技术开发多种应用。总部位于美国加州的生命技术公司(Life Technologies),最近正在中国推出台式基因测序仪Ion Proton,并称这款产品可在一天时间内完成个人全基因组测序。这意味着基因测序技术有望走进临床实践,普通老百姓也能得知自己的基因序列。 但是,这款产品还未获得FDA(美国食品及药物管理局)和CFDA(中国国家食品药品监督管理局)的权威认证,其具体作用还有待检验。总部位于深圳的基因组学研究中心华大基因2013年完成对人类全基因组精准测序的创新领导者Complete Genomics(简称"CG")公司的收购,2015年CG推出一款完全集成式的"超级测序仪"Revolocityu2122,澳大利亚健康服务公司Mater和荷兰奈梅亨大学医学中心成为Revolocityu2122测序系统的首批用户。华大基因拥有Complete Genomics,Illumina HiSeq,ABI SOLiD System,Roche GS FLX Platform,Ion Torrent及Ion Proton等新一代测序平台。其中Complete Genomics测序平台华大基因完全拥有自主知识产权。
基因测序的步骤是什么?
PCR产物直接测序技术现已成为分子生物学和基因组学研究中的一个重要技术,广泛用于基因突变检测、遗传性疾病诊断、单核苷酸多态性研究、基因组重叠序列群等.与传统克隆测序技术相比较,直接对PCR扩增的DNA进行测序,省去了耗时的克隆步骤,避免了传统的细菌培养,模板提取等重复性操作,可以从少量的原始样品中得到正确的DNA序列信息.PCR产物直接测序技术具有快速、简便、稳定经济的优点. 试验试剂 PCR扩增的双链DNA模板 长约20个核苷酸的DNA引物 DNA聚合酶 测序胶 0.1mol/L DDT α-32P-dATP dNTP/ddNTP混合物(80μmol/L/8μmol/L) dNTP(dCTP、dGTP 、dTTP 各0.75μmol/L) 测序反应缓冲液:40mmol/L Tris-HCl(pH7.5),20mmol/L MgCl2,50mmol/L NaCl 终止缓冲液:95% 甲酰胺,20mmol/L EDTA,0.05% 溴酚蓝,0.05% 二甲苯腈 试验步骤: 1、 4个微量离心管中各加入dNTP/ddNTP混合物2.5μl,混合物37OC温浴5min,备用. 2、 在一个空的微量离心管中加入1pmol的PCR扩增双链DNA,10pmol测序引物,2μl 5×测序缓冲液,加双蒸水至总体积10μl,96OC加热8min,冰浴泠却1min,4OC 10000g离心10s. 3、 加入2μl预冷的标记混合物(dCTP、dGTP 、dTTP 各0.75μmol/L),α-32P-dATP 5μCi,1μl 0.1mol/L DDT,测序酶2U,加水至15μl,混匀后置冰上2min,标记新合成的DNA链. 4、 在第1步骤的4个管中各加入3.5μl标记反应混合物,37OC温浴5min.每管各加入4μl终止液. 5、 样品在80OC的水浴中热变性5min,每一泳道加2μl 加到测序胶上,电泳分离这些片段. 注意事项: 1.?PCR产物要有一定的长度(>200bp),因为测序结果两端20-30bp的电泳峰图的准确性较低. 2.?纯化PCR产物可通过离子交换层析使扩增的DNA段与反应剩余的dNTP及引物分离;也可通过琼脂糖凝胶电泳,将PCR产物与非特异性扩增产物和引物分离开来;如果扩增的特异性较高时,可直接通过酚:氯仿抽提,乙醇沉淀的方法来纯化. 3.?测序引物设计原则类似于PCR引物设计,可在DNA合成仪上合成20个左右的核苷酸作为引物,经过高压液相层析或聚丙烯酰胺凝胶电泳纯化后,即可用作测序引物. PCR循环测序法 PCR循环测序法是将PCR扩增和核酸序列分析技术相结合,从而形成的一种测定核苷酸序列的研究方法,也称作线性扩增测序.该方法采用PCR仪加热使DNA模板变性,在TaqDNA聚合酶作用下,以温度循环模式在模板上进行多轮的双脱氧核苷酸测序反应,线性扩增标记的DNA分子. PCR循环测序法与以往的测序方法相比,其优点在于:大大减少所需的模板量;能提高测序反应产生的信号,降低了操作的复杂性,且聚合酶的用量减少;可在小量制备的模板上进行筛选反应;高温下进行的测序反应使DNA聚合酶催化的聚合反应能够通过模板二级结构的区域;双链闭环DNA可以直接作为反应模板应用,不用作预先碱变性处理.由于PCR循环测序法能够简单、快速地检测特定序列,因此, PCR循环测序法在核酸序列分析研究中受到广泛的重视. 试验试剂: DNA测序试剂盒 dNTP ddNTP 丙烯酰胺 双丙烯酰胺 尿素 TEMED(N,N,N‘,N"-四甲基乙二胺) 过硫酸铵 6%测序胶:6%丙烯酰胺,7mmol/L 尿素,1×TBE. 10×测序缓冲液:100mmol/L Tris-HCl(pH8.8),500mmol/L KCl,40mmol/L MgCl2,0.01%明胶,20μmol/L dATP,50μmol/L dCTP,50μmol/L dGTP,50μmol/L dTTP 终止混合液:ddATP (600μmol/L),ddCTP (600μmol/L),ddGTP (100μmol/L),ddTTP(1000μmol/L) 终止缓冲液:95%甲酰胺,20mmol/L EDTA,0.05%溴酚蓝,0.05%二甲苯腈 试验步骤 1、 4个小离心管,每个小管加入3μl的终止混合液,将管子放在冰上. 2、 在DNA模板中加入引物(4pmol), 4μl 10×测序缓冲液, 10μlα-32P-dATP, 2U TaqDNA聚合酶,加双蒸水到30μl彻底混匀,每管7μl加入上面4个小管中. 3、 反应液上加30μl的石蜡油. 4、 95OC 30S,50OC 30S,72OC 60S共30个循环,可根据具体的情况进行适当的调整循环条件及循环次数. 5、 反应结束后在油层下加入5μl的终止缓冲液并用加样枪混匀. 6、 上样前将样品在大于80OC的水浴中热变性5min,每一道加2μl加到测序胶上,电泳分离这些片段. 注意事项: 1、 制备测序模板:PCR 扩增的产物可以经过低熔点的琼脂糖凝胶电泳纯化回收后,用于序列分析;可经过柱层析纯化,去除PCR 反应后剩余的dNTP和引物后,用于序列分析.PCR 产物也可不经纯化直接用于测序,但是这种测序产生的结果较差,建议测序之前应进行PCR产物的纯化.各种标准的质粒制备方法所纯化出的质粒均可作为测序模板使用.用标准方法制备的M13噬菌体、粘粒、λDNA都适合用作测序模板用.但要注意的是反应体系中不应有与引物互补的非目的基因序列,否则将会导致测序实验的失败. 2、 测序引物:测序引物是指合成的与测序模板链特异性互补的寡核苷酸序列.可用α-32P-dATP和T4多聚核苷酸激酶对引物的5‘端进行标记,反应体系中引物、激酶和α-32P-dATP要保持在最佳的比例,以得到高比活性的标记引物;也可用α-32P-dATP标记新合成的DNA链.引物的浓度不宜高,否则容易形成引物二聚体,或产生非特异性的扩增引物. 3、 酶:各种缺乏3‘—5‘端外切活性的耐热DNA聚合酶都可以用于循环测序,其中TaqDNA聚合酶在DNA测序中最为常用.虽然应用PCR循环测序法能够简单、快速的进行基因序列的测定,但仍未能适应大规模DNA序列测定的需要,而PCR循环测序法、荧光标记和自动测序仪的联合使用成为大规模基因组测序的主要技术.该技术是采用荧光标记引物或双脱氧核苷三磷酸,反应产物经聚丙烯酰胺凝胶电泳后,经特定的DNA序列分析仪和分析系统处理待测的DNA序列.它的应用减轻了DNA序列测定的工作量,提高了测序的效率.
人类基因组计划中的基因测序工作是指测定什么
人类基因组计划中的基因测序工作是指测定:DNA的碱基对排序。人类基因组计划:1、概念:人类基因的测序并了解其组成、结构、功能和相互关系。英文简称HGP。2、人类基因组计划的目的:测定人类基因组的全部DNA序列,解读其中包含的遗传信息。3、参加人类基因组计划的国家:美国、英国、德国、日本、法国和中国,中国承担1%的测序任务。 4、与人类基因组计划有关的几个时间(l)正式启动时间:1990年。 (2)人类基因组工作草图公开发表时间:2001年 2月。(3)人类基因组测序任务完成时间:2003年。 5、已获数据:人类基因组由大约31.6亿个碱基对组成,已发现的基因约为2.0万-2.5万个。 6、内容:绘制人类遗传信息的地图,主要包括遗传图、物理图、序列图、转录图等。7、意义:对于人类疾病的诊断和预防等具有重要意义。同时有可能导致争夺基因资源、基因歧视等负面效应的出现。
基因测序原理
基因测序原理:组成DNA的脱氧核苷酸只有四种:被称之为A、T、G、C。对应于正常复制过程中需要的是T、A、C、G这四种原材料,这个测序法巧妙的地方在于,他又加了四种材料(都是双脱氧核苷酸)进去,名叫ddT、ddA、ddG、ddC,这个材料有一个好处,就是能和原始的DNA序列配对(如ddT配AddG配C),但是因为特殊的结构,导致复制终止在那个位置。测定过程中,将待测样品分为4份,每份中加入-样改变后的材料。
基因测序结果怎么看
问题一:测序结果怎么分析 测序结果的分析 测序都是从5端进行的,正向和反向测序是指对DNA的两条互补链分别测序,通常两个方向测序结果经校读后完全一致才能认为得到可靠结果。生工测序结果一般都提供两个文档,一个是TEXT的序列文档,一个是用Chromas软件打开的ABI文档。 1.寻找引物 blast.ncbi.nlm.nih.gov/Blast.cgi 比对,去除引物序列,找到目的片段。 在DNAMan上进行比对,看引物能不能比对上(一个不变,一个反向互补),如果比不上,那可能就不是你要的序列,如果能比上,上游以引物第一个为分界线,去除前面的;下有一最后一个为分界线,去除后面的,剩下的就是目的序列。然后在NCBI上Blast.就OK了。 批注:PCR产物进行测序的结果可能不包含引物序列 2.将找到的对应目的片段转成*.txt格式 3.下载BioEdit软件 第一:打开Bioedit软件,导入拼接好的样品序列与标准亚型参考序列 File New Alignment Sequence New Sequence 导入拼接好的样品序列和标准参考序列(从TEXT文档利用复制粘贴工具) Apply and close 保存结果 关闭窗口 第二:点击菜单栏上按钮 Accessory Application ,选择 Clustalw Multiple Alignment File Open Accessory Application Clustalw Multiple Alignment 第三:比对结束后,删除比对序列两端的多余序列,使所有序列等长 选择需要编辑的序列 Sequence Edit Sequence 进行序列的编辑 保存修改后结果 第四:选择 Sequence 菜单下的 Gaps ,点击 Lock Gaps 第五:将比对后的序列保存为Fasta 格式文档 4.下载MAGE4.0软件 1) 打开MEGA软件,选择 File 菜单栏中的 Convert To MEGA Format ,把序列文件的格式转换为meg文档保存; 2) 双击序列的meg文档,选择 Nucleotide Sequences ,点击 OK ; 3) 程序运行中询问是否为蛋白编码序列,选择 NO ; 4) 在MEGA操作界面选择 Phylogeny 菜单栏下 Bootstrap Test of Phylogeny 中的 Neibour-Joining ; 5) 选择 Test of Phylogeny 栏中的 Bootsrap , Replications 设定为1 000;在 Options Summary 栏中的 Model 项中,设定参数为 Kimura 2-Paramete r,最后选择 pute ; 6) 将分析结果采用Los Alamos HIV序列库提供的HIV-BLAST和Subtyping工具进行验证。...>> 问题二:dna测序结果分析怎么看进化图 如果是用Sanger测序的话,电泳得到的条带是模板连的互补链,电泳的方向是有3‘段到5"段的,那么从下往上读,就可以的出互补链,根据反向平行,就可以推倒出模板连的碱基序列。 问题三:怎样分析基因测序结果 1.假设你测的是一个基因的序列,如果已知这个基因的序列,则将你测序得到的基因序列与已知的序列相比对,分析看两者在哪个地方不对应,不对应的地方即为突变的地方.比对的软件有sequencher,或者去NCBI网站点击BLAST进行. 2.如果你测的是一个以前未知的序列,那么要测几个不同的单克隆,将测得的结果进行比对,分析一致的地方以及不一致的地方. 问题四:细菌基因组重测序结果分析报告怎么看 测序只是最基础的,接下来你要做功能基因分析,查找确定哪一些是编码基因的序列,然后做表达检测。。 如果你事先知道自己的目的基因序列,测序结束后,应该可以直接找到。 问题五:高通量基因测序检验报告单怎么看 哪个公司出的,可拨打他们的客服电话。从业人员素质普遍较高,可以很详细解答您的疑问。 问题六:如何看测序的结果与预期相差很大 先注意染色体与基因的关系,一条染色体有多个基因。 所以基因结构变异(碱基对增、减、变)导致一个基因变。染色体结构变异,导致多个基因的重复,缺失,排列顺序的改变等。所以基因突变是某一性状改变,而染色体变异是某一系列性状的改变。
什么是基因测序?怎样进行基因测序的?
是测定人类遗传基因排序(以碱基排序为表现) 分四种碱基 A、T、G、C (以A-T 、 G-C组合再连成双螺旋链状) 母的遗传基因在受精过程中被随机得分开,而孩子能获得其中一部分(理论上一般占50%左右)。孩子和父母间的基因有许多相似点。人类基因测序目的之一就是对血缘程度进行检验========基因就是DNA大分子的一个片断。核酸分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两类,它们共同执掌着细胞的新陈代谢,核酸作为生命的根源是遗传因子的本体,能完全控制细胞的分裂、成长与能量的产生。生命从诞生到死亡,均受核酸支配。与基因密切联系的真正在幕后操纵生命的,是一个崭新的概念———核酸。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。 人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。 随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。 利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。 “基因”这个词是英文“gene”的中文音译,这个译名同“可口可乐”一样非常传神。就是“基本因子”的意思,对于生物体而言,最重要的是要能繁衍后代,把自己的“生命”遗传下去,因此生物体的“基本因子”就是负责遗传的东西,其本质就是我们常说的DNA;换句话说,父母都是通过基因(DNA)把他们各自的特征性状遗传给后代的。 那么基因究竟是什么呢?现代分子生物学知识告诉我们,基因其实就是一小段DNA,通过这一段东西可以制造出各种蛋白质,比如说行使各种功能的酶,通过这些蛋白质进行各种反应,完成生命过程。了解了这些以后,我们很容易就能理解各种遗传现象了,比如儿子为什么会长得象父母,是因为儿子身上继承了父母的基因,这些基因控制的蛋白质会完成与父或母相似的生命现象(但不完全相同,因为除了父亲的基因还有母亲的基因,所以都有些像,或相貌、或性格、或其他的)。不同的生物体所拥有的基因数目也不同,比如说人的基因据估计有10万个以上,而有的微生物则只有不到100个基因。既然基因这么重要,那么人们很快就想到利用基因来为人类服务了,于是,“基因工程”就应运而生了。谈到“工程”,人们很容易联想到建房子之类的事情,实际上这种联想非常正确,只不过这里建的不是房子,而是新的生物体,用的不是砖瓦,而是基因而已。简单地说,基因工程就是利用对基因的操作来改变生物体的生物性状,以达到更好地为人类生活服务的目的。比如说,以前小麦中赖氨酸含量较低,而赖氨酸对人体来说有是必需的,于是人们要做加赖氨酸的面包,即在做面包时外加一些氨基酸。着显然不是长久的解决策略,基因工程则可以为此提供良好的解决办法。科学家们只要找到一个基因,而这个基因制造出来的蛋白质富含赖氨酸,那就可以把这个基因转到小麦里去,这样小麦中就会因为有这个外来的基因而制造出很多富含赖氨酸的蛋白质来,这种面粉做的面包就不会缺赖氨酸。这种对基因的操作最重要的好处是所获得的性状可以遗传,也就是说,后代也会带有新的生物学特征。再举个例子,棉花生产的最大敌人是棉铃虫,每年因棉铃虫造成的棉花产量损失很大,而喷洒农药不但对环境造成很坏的影响,而且残留的农药对棉花的质量也有影响。怎么办呢?科学家们经过研究,发现一种叫苏云金杆菌的细菌体内有一种毒素蛋白,它可以杀死棉铃虫,但对人及其他哺乳动物却没有损害。人们进而从细菌体内找着了那个制造这种毒素的蛋白基因,然后把这个基因转到棉花中,让棉花也制造这种毒素蛋白。结果正如人们预料的那样,棉铃虫再也不敢吃这种基因工程改造过的棉花了,因为一吃它就会被毒死,棉花的产量就此得到提高。 说到这里你也许已经明白了,基因工程实际上是在做改良品种的工作:在农业上,制造出高产、高抗病性、高抗磁性、品质好的农作物新产品;在畜牧业中,制造出产量高、品质好、增重快的禽畜新品种;在医药工业中则是利用细菌、酵母等易于快速增殖的微生物生产出人类需要的各种蛋白药物,降低成本,提高作用结果。应该说,基因工程为人类的生活描绘了一幅美好的前景图画。当然,万事有其利则有其弊,虽然目前人们对于基因工程改良的品种的长期后果还不清楚,但人们已经对其可能存在的危险给予了重视。现在,世界各国均已制定了各种相关法规来规范基因工程产品的管理
基因测序原理是什么?
基因是位于DNA上的,其测序的原理是一样的DNA测序的方法有很多种.目前最常见的是双脱氧终止法了.在测序用的缓冲液中含有四种dNTP及聚合酶.测序时分成四个反应,每个反应除上述成分外分别加入2,3-双脱氧的A,C,G,T核苷三磷酸(称为ddATP,ddCTP,ddGTP,ddTTP),然后进行聚合反应.在第一个反应物中,ddATP会随机地代替dATP参加反应一旦ddATP加入了新合成的DNA链,由于其3位的羟基变成了氢,所以不能继续延伸.所以第一个反应中所产生的DNA链都是到A就终止了;同理第二个反应产生的都是以C结尾的;第三个反应的都以G结尾,第四个反应的都以T结尾,电泳后就可以读出序列了.也许这样说你不一定明白.举一个例子,假如有一个DNA,互补序列是GATCCGAT,我们试着做一下:在第一个反应中由于含有dNTP+ddATP,所以遇到G,T,C三个碱基时没什么问题,但遇到A时,掺入的可能是dATP或ddATP,比如已合成到G,下一个如果参与反应的是ddATP则终止,产生一个仅有2个核苷酸的序列:GA,否则继续延伸,可以产生序列GATCCG,又到了下一个A了.同样有两种情况,如果是ddATP掺入,则产生的序列是GATCCGA,延伸终止,否则可以继续延伸,产生GATCCGAT.所以在第一个反应系统中产生的都是以A结尾的片段:GA,GATCCGA,同理在第二个反应中产生的都是以C结尾的片段:GATC,GATCC,在第三个反应中产生的都是以G结尾的片段:G,GATCCG在第四个反应中产生的都是以T结尾的片段:GAT,GATCCGAT,电泳时按分子量大小排列,A反应的片段长度为2,7;C反应的为4,5;G反应的为1,6;T反应的为3,8,四个反应的产物分别电泳,结果为87654321A||C||G||T||我们可以从右向左读,为GATCCGAT,至此,测序完成
基因测序有什么重要意义
基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。基因测序相关产品和技术已由实验室研究演变到临床使用,可以说基因测序技术,是下一个改变世界的技术[1] 。
基因检测是基因测序吗
基因测序是测出dna上的碱基是a,c,g,t中的哪一个;而基因检测是通过杂交或测序等方法来确定dna序列中是否含有特定的一段序列,来明确相关的基因某些功能。比如耳聋基因检测就是用芯片来检测一个正常人是否携带隐性先天性耳聋基因或者药敏性耳聋基因。测序只是得到dna的序列,而检测是最终要跟功能建立联系。
求教三种基因测序技术的原理
DNA测序技术,即测定DNA序列的技术。在分子生物学研究中,DNA的序列分析是进一步研究和改造目的基因的基础。 技术1:双脱氧链末端终止法和化学降解法。 原理: 1、双脱氧链末端终止法:利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。 2、化学降解法:它通过灵敏的银染方法检测凝胶中的条带。银染提供了一种对于放射性或荧光法来说更加快速,廉价的替代方法。 技术2:单分子测序为主要特征的第三代测序技术。
人类DNA分子中,共有多少对碱基对?大约有多少个基因?
人类基因组有30亿个碱基对人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划
人类基因组计划利弊
现在,人们正拿起了基因测序这一先进武器,在“非典”的战场上与病魔展开较量。4月14日,人类基因组全图正式发表,从此全世界的人们都可以免费获得这份资源;50年前的这个时候,沃森和克里克共同发表了DNA分子的双螺旋结构,从此为人类认识、了解自己打开了关键的一道门。 曾几何时,当人类自身的秘密困扰着我们的时候,我们是那样迷惑;但当这秘密渐渐将大白于天下时,我们不自禁地又犹豫起来。 距离是产生美感的基础,当一切都变得如此清晰,我们还会一如从前吗?科学,是双刃剑,即使在“人类基因组计划”这样从一开始就本着全人类免费共享资源的项目,也曾遇到某些不和谐的声音。 但是,无论科学,还是人为,都要遵循自然的法则。按照中国传统的哲学思想———天之道,损有余补不足。一切的不平衡都会在宗法自然中找到自己的支点。 不知不觉间,人类已经在第21个世纪走过了两个半年头,DNA分子的双螺旋结构也已经发表了50周年。回想50年前,生命奥秘答案初现端倪之时,人们的惊喜、迷惑与期待还仿佛如刚刚掠过的那一缕清风,在我们的耳边、心里留下挥之不去的印象。 时间是最自然的,又是最人为的。自然似乎只通过时间给我们以启示,斗转星移的相应位置造成的物理变化,以及与此有关的生物的生死循环等。作为国际人类基因组计划的执行者,我相信经过我们所有正直的、负责任科学家的努力,人类基因组计划也将造福于人类。 科学是最人为的。科学之所以谓为科学,它是那些自然存在事物的新发现与自然中并不存在的新事物的新发明。科学又是最自然的。所有科学发现与发明都是基于自然界的固有规律。科学又应该是自然与人为的统一。科学是人类文明的一部分,而人类的文明依赖于其对自然的了解和与自然的和谐。 科学是人为的,它才成为我们所担心的一柄“双刃剑”。它给人类带来了繁荣幸福,又给人类带来了新的危险。自然与人为的问题,从根本上来说,是如何认识人类在自然界中位置的问题。整个人类在自然界中的位置,是自然界安排的。随着人类的意识的形成,对自然认识的拓展也随之改变。 我们人类是什么? 我们是如何来到这个世界,又如何离去?为什么你那高高的鼻子那么像你的爸爸?那漂亮的眼睛又像你的妈妈?为什么我们都一样———无疑是人类这个大家庭的一员,可我们大家又都不一样?生死、衰老、人之异同,已困扰了我们几千年,这些问题的答案现在尚可等候。可疾病对我们的危害确是每一个人、每一个家庭、每一个负责的团体与国家政府都不得不考虑的问题。 20世纪是物理学最为风光、最为辉煌、为人类文明与科学进步贡献最大的世纪。对物质原子结构的认识,使物理学进入鼎盛时期。原子弹的爆炸与人类走向太空,更使物理学登峰造极。最后,又以最简单的无机硅研制成芯片。 “不知庐山真面目,只缘身在此山中”。站在太空上,人类以前所未有的视角,重新审视我们的栖息地—地球。它与我们目前所知其他星球的主要区别之一,就是生物的存在。基因使地球郁郁葱葱,生机一片,它使我们对生命的奥秘与神奇充满新的遐想与好奇;也使我们对人类本身的了解提出新的质疑:我们已成为地球的主宰,却不能主宰自己。 世界上仍有一半以上的人,不同程度地受各种慢性病的折磨。曾肆虐一时的传染病,尽管已得到控制,可并没有像天花一样销声匿迹。抗菌素等药物发现的步子越来越慢,相反,自然界抗药的病原微生物越来越多。 肿瘤、心血管疾病等主要死因已成为人类祛除不掉的幽灵。艾滋病的出现与肆虐,使人类深感忧虑。从一战期间死于感冒美国士兵身上分离到的病毒又告诉我们:一不小心,它还可能要我们的性命,因为人类对这种致命的感冒病毒仍没有天生的免疫力。在此同时,医学研究的进展、新药的开发的步伐正在一步步减慢。近几十年没有新的抗生素问世。一种重要的药研究需要耗时12年,相当于三架波音747-400飞机的代价。 人类开始了对人类自己的最大的研究。对于自我、对于生命世界、对大自然开展了空前规模的探索,这就是六国参与的“国际人类基因组计划”。 我至此刻还不知道文明的确切定义是什么。但人类的有文字记载的文明史至少已有五六千年。 科学总是与文明、与道义相连的。人类不仅有了科学的巨大发展,也对人类符合人的自然———人性文明的重建有了新的反省。而重建文明的关键,便是重新认识人类在自然科学界中的位置。这正是人类基因组计划将要对人类做出的最大贡献。 人类基因组研究与自然 20世纪被很多人认为是物理学的世纪。我很欣赏这样的描述:这一世纪从人类认识物质的基本组成———原子结构开始。原子弹爆炸与人类登月是这一世纪最辉煌成就的一部分,而最后以最简单无机硅制造的马铃薯芯片(Chip)使人类进入了信息时代! 20世纪还孕育了另一个世纪:这是从我们重新发现生命的最基本信息———基因开始。50年代的遗传物质结构模型的提出与70年代遗传工程技术的成立使之趋于成熟,而90年代开始的国际人类基因组计划把人类带进了另一个世纪。 现在我想以人类基因组计划的发展来谈一谈人类在自然界中的位置,再谈自然与“人为”的问题。 从前,当我们讨论“科学是双刃剑”时,我们关心的仅仅是人类的敌人可能也会挥起这柄剑,如希特勒、如山本五十六。现在,我们的问题一下子复杂起来了。我们的法律一下子在克隆人类等新问题前变得无所适从,或无能为力。我们把它们归咎于道义或伦理问题。实际上,就是自然与人为的问题。 人类基因组计划在科学上的目的,是测定组成人类基因组的30亿个核苷酸的序列。从而奠定阐明人类所有基因的结构与功能,解读人类的遗传信息,揭开人类奥秘的基础。由于生命物质的一致性与生物进化的连续性,这就意味着揭开生命最终奥秘的关键,也就是人类基因组计划的所有理论、策略与技术,是在研究人类这一最为高级、最为复杂的生物系统中形成的。 规模化就是随着人类基因组计划的启动而诞生,随着人类基因组计划的进展成功而发展的“基因组学”。生物学家第一次从整个基因组的规模去认识、去研究,而不是大家分头一个一个去发现,基因研究将是基因组学区别于基因组(genetics)与所有涉及基因的学科的主要地方。基因组规模也改变了经典的实验室规模,改变了原有的实验方式,这也许是“国际人类基因组计划”只有6个正式成员国与16个中心的原因之一。 生物的序列化即生命科学以序列为基础。这是新时代的生命科学区别于以前的生物学的最主要的特点。随着人类基因组序列图的最终完成,SNP(单核苷酸多态性,即序列差异)的发现以及比较基因组学古代DNA、“食物基因组计划”、“病原与环境基因组计划”(主要是致命致病学)以及与之有关的人类易感性有关序列的推进,有科学、经济、医学意义的主要物种的基因组序列图都将问世。我们从序列中得到的信息,已经比到现在为止的所有生物研究积累的信息还要多。生物学第一次成为以数据(具体的序列数据)为根据与导向,而不是再以假说与概念为导向的科学。即使进化这一生命最实质的特征以及进化的研究,都把因多种模式及其他生物的基因组序列为基础。古代DNA的研究,也不再是因时间与过去了的环境而惟一不能在实验室重复的进化研究,从而揭示生命进化的奥秘与古今生物的联系。这就帮助人们更好地认识人类在生物世界中的关系。 生物的信息化,是借助于电子计算机的威力,也借助于把地球变小的网络。没有它们,国际人类基因组计划的协调与全世界的及时公布是不可能的。没有全部的软件与硬件,人类基因组计划一切都不可能。序列一经读出,它的质控、组装,以至于递交、分析都有赖于生物信息学,而现在开始,序列的意义完全决定于生物信息学。没有电子计算机的分析与正在爆炸的信息的比较,序列又有何用? 人类基因组计划之所以引人注目,首先源于人们对健康的需求。疾病问题是自然影响健康的首要因子,是每一个人、每一对父母、每一个家庭、每一个国家政府所不得不考虑的问题。因为人类对健康的追求,从来都不曾懈怠过。
人类基因组DNA分子量大约是多少?希望具体点啊!谢谢!
The haploid human genome occupies a total of just over 3 billion DNA base pairs.以单倍体计算,人类有23条染色体,共约30亿对DNA碱基。那么人类的双倍染色体共46条,约 60亿对DNA碱基。
人类的基因组中约有()个碱基。
人类的基因组中约有()个碱基。 A.10亿 B.20亿 C.30亿 D.40亿 正确答案:C
人类基因组图谱的解析
参加绘制人类基因组图谱的美、英、日、法、德、中6国科学家2月12日公布了更加准确、清晰、完整的人类基因组图谱。这是在去年完成“工作框架图”的基础上,经过整理、分类和排列后得到的。明天,国际权威科学刊物《自然》将以60多页的篇幅刊登题为《人类基因组的初步测定和分析》的学术论文,对图谱绘制中的许多发现和数据进行介绍。这是人类首次全面介绍人类基因组工作框架图的“基本信息”。据悉,《自然》杂志网站已提前发布论文。同一期杂志还将发表多篇相关论文,涉及人类基因组图谱的绘制方法、染色体端粒图谱、Y染色体图谱、生殖细胞形成过程中染色体交换基因序列的方式、人体单核苷多态性数据等,公众可以在互联网上免费取阅有关原始数据。基因研究起源于孟德尔遗传规律的发现20世纪初孟德尔遗传规律的重新发现,激发了人类探索遗传信息的价值及内涵的兴趣。在过去的一百年中,这些探索极大地推动了生物学的发展。科学家将这些进步分为四个阶段:第一阶段是遗传的细胞基础——染色体的发现。 第二阶段是遗传的分子基础——DNA双螺旋结构的提出。 第三阶段是遗传的信息基础的提出。科学家发现了细胞读取基因中信息的机制,借助重组DNA技术,可以同样读取基因中的信息。 第四阶段是测定一个基因乃至整个基因组。这一努力已取得丰硕的成果。到目前为止已经测定了599种病毒与类病毒,205种自然存在的质粒,185种细胞器,31种真细胞,7种古细菌,一种真菌,两种动物与一种植物。 二十世纪八十年代早期,对人类基因组计划就形成了两个重要共识:全面认识基因组可以极大地加速生物医学研究,可以使研究人员全面地、没有偏差地解决问题。1990年美国能源部与国立卫生院启动这一计划,英国、法国、日本也建立基因组中心开展研究。九十年代后期,人类基因组计划加速,德国和中国相继加入这一计划。中国是1999年9月加入这一国际协作组,负责测定人类基因组全部序列的1%,成为参与这一计划的惟一发展中国家。 人类基因竟然与老鼠蝇虫有许多相似之处科研人员曾经预测人类约有14万个基因,但新的研究却将人类基因总数锁定在2.6383万到3.9114万个之间。也就是说,人类蛋白编码基因总数只是线虫和果蝇基因数目的两倍,只是基因更复杂些。人类蛋白质有61%与果蝇同源,43%与线虫同源,46%与酵母同源。人类17号染色体上的全部基因几乎都可以在小鼠11号染色体上找到。数百个基因可能是由细菌在脊椎动物进化的某个环节水平转移而来的。 在人类基因组上大约1/4的区域是长长的、没有基因的片段。基因密度在第17、第19和第22号染色体上最高,在X染色体、第4、第18号和Y染色体上相对贫瘠。另有35.3%的基因组包含重复的序列,第19号染色体57%是重复的。染色体中心粒旁与端粒附近区域存在大量的近期片断性重复。男性减数分裂的突变率是女性的两倍,染色体的远端及短臂重组率较高。研究还发现,地球上人与人之间99.99%的基因密码是相同的。来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一。 过去10年来,科学家们已绘制出40余种物种的基因组图谱。人类基因组是第一个精确测定的脊椎动物的基因组,也是目前为止测定的最大基因组。比以前测定的任何一种生物的基因组都大25倍以上,是以前测定所有基因组总和的8倍。这是人类自身的基因组信息。绘制生物医学研究的元素周期表基因只占人类DNA的很小一部分,但却代表着人类基因组的主要生物学功能。绘制人类基因组图谱最终的目标是编译出全部人类基因及其编码的蛋白清单,使之成为生物医学研究的元素周期表。基因可以分为编码RNA的基因以及蛋白编码基因,工作框架图是确定人类基因组中心蛋白编码基因。 人类基因组计划为医学进步带来空前机遇,对医学将产生不可估量的、深远的影响,将导致疾病的分子机制的阐明,进而根据这些机制,设计出诊断与治疗的方法。 人类基因组图谱最重要的应用之一,就是将许多生物化学功能未知的疾病基因定位。人体23对染色体由约30亿个碱基对组成,包含数万个基因。找出30亿个碱基对在DNA链上的准确位置,进而识别分析出各种基因及其功能,将使人类最终征服癌症、心脏病、阿尔茨海默氏症等多种顽疾。目前科学家通过克隆的方法,至少定位了30种疾病基因,利用基因组的数据,一些常见的染色体缺失综合症的机制将得以揭示。随着下一步对人体各种致病基因展开全面大搜索,以及对各种基因功能及基因之间相互作用了解的加深,科学家们将在分子水平上深入了解疾病的根本发病机理,将为各种疾病的诊断、防治和新药的开发提供有力武器。了解全部人类的基因与蛋白还可为寻找合适的药物靶点提供便利。此外,人类基因组计划的推进,将会促进生命科学与信息科学、材料科学等相结合,带动一批新兴高技术产业的发展。树起探索生命奥秘的新里程碑人类基因组工作框架图是一个动态的产品,数据每天都在更新,终极目标是绘制完成图。国际协作组将人类基因组计划分为两个阶段,第一阶段是在2000年6月完成的“工作框架图”;第二阶段目前正在进行,即在2001年绘制出人类基因组的完成图。这一任务进展迅速,人类基因组大约有32亿碱基,已经有10亿碱基的序列达到了完成图标准。尽管要绘制完成图还有很多工作要做,但这些信息已经可以使人们对人类基因组有一个总体的认识。 人类基因组图谱初步分析结果是人类探索生命奥秘这一伟大工程的新里程碑,为本世纪人们全面了解这些信息的奥秘奠定了基础。中国科学院院士、我国“863”计划生物技术领域首席科学家强伯勤教授认为,这“说明生命科学已经发展到了更深的阶段,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。”据预测,在未来10至20年里,科学家还将解读大量生物的遗传密码,与此同时,还要完善全部人类基因与蛋白质的清单,对调控区域进行大规模的研究与分析等,基因组研究重点将进入确定基因结构与功能等应用研究阶段,生命科学因此将迎来新的大发展。
人类进行基因组测序有什么意义呢
人类基因组测序意义如下:1、能够有效反应在正常或受控条件中表达的全基因的时空图,从而推动基因新技术发展,促进人类健康。 2、完善人类基因组研究涉及的伦理、法律和社会问题,维护社会稳定。 3、培训正确利用技术和资源进行生物学研究的科学人才,推动科技进步和社会发展。
人类基因组测序:目前到底发现了多少个基因
全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。
科普:什么是人类基因组学
基因组学阐明整个基因组的结构、结构与功能的关系以及基因之间相 互作用的科学。换言之,基因组学是以分子 生物学技术、电子计算机技术和信息网络技术为手段,以生物体内基因组的全部基因为 研究对象,从整体水平上探索全基因组在生 命活动的作用及其内在规律和内外环境影响 机制的科学。从全基因组的整体水平而不是 单个基因水平,研究生命这个具有自身组织 和自装配特性的复杂系统,认识生命活动的 规律,更接近生物的本质和全貌
《基因组人类自传》epub下载在线阅读,求百度网盘云资源
《基因组》([英]马特·里德利(Matt Ridley))电子书网盘下载免费在线阅读链接:https://pan.baidu.com/s/1uC0xeZSmCFUseplR5MZypw提取码:1234书名:基因组作者:[英]马特·里德利(Matt Ridley)译者:李南哲豆瓣评分:8.6出版社:机械工业出版社出版年份:2015-6页数:336内容简介:也许可以说,组成人类基因组的23对染色体的图谱绘制是新世纪最重大的科学发现,它提出的问题与它解答了的问题同样多。这些问题将深刻地影响我们对疾病、寿命和自由意志的思考方式。这些问题将影响你的后半生。这个让人难以置信的突破会有什么后果?《基因组:人类自传》在这方面提供了超群的洞察力。通过在每一对染色体上选择一个新近发现的基因并讲述其故事,马特·里德利叙述了我们这个物种及祖先从生命出现之初到未来医学边缘的历程。他探讨了由于基因组的图谱绘制而出现的科学、哲学等问题,这将帮助你理解这个科学里程碑对你、对你的孩子、对人类意味着什么。作者简介:马特·里德利,先在牛津大学做动物学研究,然后又当了一名记者。他在《经济学人》杂志工作了八年,在《星期日电讯》和《每日电讯》开设了七年专栏。《毫不掩饰》(Warts and All)一书就是他的作品,写的是美国的总统政治;《红色皇后》(The Red Queen)是他口碑最好的一本书,写的是性的进化,由企鹅书局出版;同时他还写了《基因组》(Genome)。他的书曾入围六大文学奖项。他是国际生命中心(International Center for Life)机构的主席,妻子是纽卡斯尔大学心理学系的高级讲师。
人类基因组图谱的解析
参加绘制人类基因组图谱的美、英、日、法、德、中6国科学家2月12日公布了更加准确、清晰、完整的人类基因组图谱。这是在去年完成“工作框架图”的基础上,经过整理、分类和排列后得到的。明天,国际权威科学刊物《自然》将以60多页的篇幅刊登题为《人类基因组的初步测定和分析》的学术论文,对图谱绘制中的许多发现和数据进行介绍。这是人类首次全面介绍人类基因组工作框架图的“基本信息”。据悉,《自然》杂志网站已提前发布论文。同一期杂志还将发表多篇相关论文,涉及人类基因组图谱的绘制方法、染色体端粒图谱、Y染色体图谱、生殖细胞形成过程中染色体交换基因序列的方式、人体单核苷多态性数据等,公众可以在互联网上免费取阅有关原始数据。基因研究起源于孟德尔遗传规律的发现20世纪初孟德尔遗传规律的重新发现,激发了人类探索遗传信息的价值及内涵的兴趣。在过去的一百年中,这些探索极大地推动了生物学的发展。科学家将这些进步分为四个阶段:第一阶段是遗传的细胞基础——染色体的发现。 第二阶段是遗传的分子基础——DNA双螺旋结构的提出。 第三阶段是遗传的信息基础的提出。科学家发现了细胞读取基因中信息的机制,借助重组DNA技术,可以同样读取基因中的信息。 第四阶段是测定一个基因乃至整个基因组。这一努力已取得丰硕的成果。到目前为止已经测定了599种病毒与类病毒,205种自然存在的质粒,185种细胞器,31种真细胞,7种古细菌,一种真菌,两种动物与一种植物。 二十世纪八十年代早期,对人类基因组计划就形成了两个重要共识:全面认识基因组可以极大地加速生物医学研究,可以使研究人员全面地、没有偏差地解决问题。1990年美国能源部与国立卫生院启动这一计划,英国、法国、日本也建立基因组中心开展研究。九十年代后期,人类基因组计划加速,德国和中国相继加入这一计划。中国是1999年9月加入这一国际协作组,负责测定人类基因组全部序列的1%,成为参与这一计划的惟一发展中国家。 人类基因竟然与老鼠蝇虫有许多相似之处科研人员曾经预测人类约有14万个基因,但新的研究却将人类基因总数锁定在2.6383万到3.9114万个之间。也就是说,人类蛋白编码基因总数只是线虫和果蝇基因数目的两倍,只是基因更复杂些。人类蛋白质有61%与果蝇同源,43%与线虫同源,46%与酵母同源。人类17号染色体上的全部基因几乎都可以在小鼠11号染色体上找到。数百个基因可能是由细菌在脊椎动物进化的某个环节水平转移而来的。 在人类基因组上大约1/4的区域是长长的、没有基因的片段。基因密度在第17、第19和第22号染色体上最高,在X染色体、第4、第18号和Y染色体上相对贫瘠。另有35.3%的基因组包含重复的序列,第19号染色体57%是重复的。染色体中心粒旁与端粒附近区域存在大量的近期片断性重复。男性减数分裂的突变率是女性的两倍,染色体的远端及短臂重组率较高。研究还发现,地球上人与人之间99.99%的基因密码是相同的。来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一。 过去10年来,科学家们已绘制出40余种物种的基因组图谱。人类基因组是第一个精确测定的脊椎动物的基因组,也是目前为止测定的最大基因组。比以前测定的任何一种生物的基因组都大25倍以上,是以前测定所有基因组总和的8倍。这是人类自身的基因组信息。绘制生物医学研究的元素周期表基因只占人类DNA的很小一部分,但却代表着人类基因组的主要生物学功能。绘制人类基因组图谱最终的目标是编译出全部人类基因及其编码的蛋白清单,使之成为生物医学研究的元素周期表。基因可以分为编码RNA的基因以及蛋白编码基因,工作框架图是确定人类基因组中心蛋白编码基因。 人类基因组计划为医学进步带来空前机遇,对医学将产生不可估量的、深远的影响,将导致疾病的分子机制的阐明,进而根据这些机制,设计出诊断与治疗的方法。 人类基因组图谱最重要的应用之一,就是将许多生物化学功能未知的疾病基因定位。人体23对染色体由约30亿个碱基对组成,包含数万个基因。找出30亿个碱基对在DNA链上的准确位置,进而识别分析出各种基因及其功能,将使人类最终征服癌症、心脏病、阿尔茨海默氏症等多种顽疾。目前科学家通过克隆的方法,至少定位了30种疾病基因,利用基因组的数据,一些常见的染色体缺失综合症的机制将得以揭示。随着下一步对人体各种致病基因展开全面大搜索,以及对各种基因功能及基因之间相互作用了解的加深,科学家们将在分子水平上深入了解疾病的根本发病机理,将为各种疾病的诊断、防治和新药的开发提供有力武器。了解全部人类的基因与蛋白还可为寻找合适的药物靶点提供便利。此外,人类基因组计划的推进,将会促进生命科学与信息科学、材料科学等相结合,带动一批新兴高技术产业的发展。树起探索生命奥秘的新里程碑人类基因组工作框架图是一个动态的产品,数据每天都在更新,终极目标是绘制完成图。国际协作组将人类基因组计划分为两个阶段,第一阶段是在2000年6月完成的“工作框架图”;第二阶段目前正在进行,即在2001年绘制出人类基因组的完成图。这一任务进展迅速,人类基因组大约有32亿碱基,已经有10亿碱基的序列达到了完成图标准。尽管要绘制完成图还有很多工作要做,但这些信息已经可以使人们对人类基因组有一个总体的认识。 人类基因组图谱初步分析结果是人类探索生命奥秘这一伟大工程的新里程碑,为本世纪人们全面了解这些信息的奥秘奠定了基础。中国科学院院士、我国“863”计划生物技术领域首席科学家强伯勤教授认为,这“说明生命科学已经发展到了更深的阶段,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。”据预测,在未来10至20年里,科学家还将解读大量生物的遗传密码,与此同时,还要完善全部人类基因与蛋白质的清单,对调控区域进行大规模的研究与分析等,基因组研究重点将进入确定基因结构与功能等应用研究阶段,生命科学因此将迎来新的大发展。
人类基因组计划都有哪些国家参与了?
人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
人类基因组和人类单倍体基因组区别
人类基因组是指合成有功能的人体各类细胞中蛋白质及(或)多肽链和RNA 所必须的全部DNA顺序和结构,包括人类的23对染色体上全部的DNA所携带的遗传信息的总和,即30亿个碱基对的序列,估计约含10万个基因。人类基因组首先有两层意义:一是代表我们全人类整体上生生不息,又各有差异的所有遗传信息;二是存在于我们每个人体的所有细胞中的DNA分子,它们都近乎相同。人的单倍体基因组包括3×109碱基对(Basepair, bp),分布在22条常染色体和X、Y性染色体上。
人类基因组承担各个国家比例是什么
1% 。美国,英国,法国,德国,日本,中国。其中我国是唯一的发展中国家,承担百分之一的任务。
人类基因组的核DNA包括线粒体DNA吗
不包括。核DNA在细胞核,线粒体DNA在线粒体。
人的基因各不相同,那为什么还要测人类基因组序列呢?
人类基因组DNA序列分布于22条常染色体和2条性染色体上,目前人们已掌握其信息储存与表达规律的基因,只占其中的一小部分。对人类基因组的研究,并不是为了单纯地积累数据,而是为了揭示大量数据中所蕴藏的内在规律,从而更好地认识和保护生命体。由于载有基因的染色体不能直接用来测序,人类基因组计划的战略构想是将人类的整个基因组一步步由粗到细地进行有序的划分,最后得到可用于测序的重叠度最小的连续克隆系,将基因组分解成为较易操作的小的结构区域的过程称为作图,根据所用标志和手段不同,可分为遗传连锁图、物理图和转录图(也称基因图)。分解得到的大片段DNA一般采用下列步骤进行测序:(1)将待测大片段DNA的克隆体随机切成小片段(约1500bp);(2)将小片段克隆入测序载体;(3)对每kb的DNA进行10个~30个亚克隆的高覆盖率测序;(4)将相互重叠的读出序列组装成连续的多序列的重叠线;(5)从质量最高的读出序列中取得最后的确认序列。 人类基因组计划把“作图”定为测序的前提,目的是保证人类整个基因组的完整性,然而作图速度会限制基因组DNA的测序速度。自宣布成功绘制人类基因组草图和公布人类基因组测序草图至今,对人类基因的研究又取得了一系列重大的发现: 1 人类基因总数在3万个到3.5万个之间,低于原来估计数目的一半。这说明人类在使用基因上比其它物种更为高效。 2 基因组中存在着基因密度较高的“热点”区域和大片不携带人类基因的“荒漠”区域。研究结果表明:基因密度在第17、19和22号染色体上最高,在X、Y、第4号和第18号染色体上密度较小。 3 大约1/3以上基因组包含重复序列,这些重复序列的作用有待进一步研究。 4 所有人都具有99.99%的相同基因,而且不同人种的人比同一人种的人在基因上更为相似,任何两个不同个体之间大约每1000个核苷酸序列中会有一个不同,这称为单核苷酸多态性(SNP),每个人都有自己的一套SNP,它对“个性”起着决定的作用。 人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的。 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。人体内真正发挥作用的是蛋白质,人类功能基因组学便是应用基因组学的知识和工具去了解影响发育和整个生物体特定序列的表达谱。有人将HGP比作生命周期表,因为它不再是从研究个别基因着手,而是力求在细胞水平解决基因组问题,同时研究所有基因及其表达产物,以建立对生命现象的整体认识。目前,研究者已着手通过DNA芯片等新技术对基因的表达展开全面研究,也通过蛋白质芯片的制作,标准化双向蛋白质凝胶电泳、色谱、质谱等分析手段对人类可能存在的几十万种蛋白质或多肽的特征和功能进行研究。科学家预言,蛋白质组的研究将导致药物开发方面实质性的突破,以使人类真正攻克癌症等顽疾。最后,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。
在人类基因组中,中国承担了什么任务
2000年6月,经过中、美、英、日、法、德6国科学家的共同努力,人类基因组序列工作框架图宣布完成,这项重大科研成果为人类了解自己提供了大量的遗传信息。然而,每个人之间基因组并不完全相同,也叫基因组的多态性,这个多态性表现在DNA序列上。统计表明,任意两个人之间的DNA核苷酸差异约占基因组的0.01%,按人类基因组共有30亿对碱基计算,将有300万核苷酸位点的不同。就是这0.01%的差异,决定了人类的遗传多样性。例如,有的人容易生病,而有的人却对疾病的免疫能力特别强;对于某些药物,有的人用就灵验,有的人用就不灵验。 为了整合人类基因组计划中的所有测序成果,从基因组水平检测多个不同种群样品的核苷酸多态性位点,从而建立人类遗传的群体信息资源。中、美、英、日、加5国科学家于2002年10月在美国华盛顿召开会议,并宣布“国际人类基因组单体型图计划”启动。 中国的工作量占国际人类基因组单体型图计划的10%,将负责3号染色体、21号染色体和8号染色体短臂的单体型图构建工作。其他各国承担的构建任务分别是:美国31%,日本25%,英国24%,加拿大10%。 该计划将以世界三大族群(亚、非、欧裔)为研究对象,三大族群样品各占1/3。中国将提供一半的亚裔样品,即占世界各地样品总数的1/6。 中国协作组计划在北京师范大学设点向全社会公开招募志愿参与者,总共采集130个成年健康汉族的血样。据称,这一过程将按照国际生命伦理学的标准,在中美两国有关专家设计下进行。今后数月中,将进行大范围的“社会参与”活动,让公众了解这一研究。对志愿者来说,将在了解基本的遗传学知识与生命伦理学的基础上,详细听取这一项目的介绍,在充分知情、完全自愿的情况下,做出自己愿意不愿意的选择。 据悉,“国际人类基因组单体型图计划”投资1亿美元,历时3年。我国科学家计划在2004年10月31日前完成“中国卷”任务。
人类蛋白质编码基因到底有多少
目前,由西班牙国家癌症中心(CNIO)基础研究副主任和结构计算生物学团队负责人AlfonsoValencia带领的一项研究,将人类蛋白质编码基因数目更新到了19,000个;比最近注释的基因少1700个,远低于最初估计的100,000个生物通报道:构成人类基因组的蛋白质编码基因的实际数目,一直是一个长期讨论的话题。在人类基因组第一稿出来之前,许多研究人员认为,人类蛋白质编码基因的最终数目在40,000到100,000之间。最初的人类基因组测序大幅修改了这个数字,表明最终数字会下降至26,000到30,000之间。随着人类基因组计划的最终草案公布,蛋白质编码基因的数目被再次修改至20,000到25,000之间。最近,Clamp和同事用进化比较表明,蛋白质编码基因最可能的数目更低,只有20500个基因。GENCODE项目最近发布的数据包括20,719个蛋白质编码基因。目前,由西班牙国家癌症中心基础研究副主任和结构计算生物学团队负责人AlfonsoValencia带领的一项研究,将人类蛋白质编码基因数目更新到了19,000个;比最近注释的基因少1700个,远低于最初估计的100,000个。
人类基因组和人类单倍体基因组区别
人类基因组是指合成有功能的人体各类细胞中蛋白质及(或)多肽链和RNA 所必须的全部DNA顺序和结构,包括人类的23对染色体上全部的DNA所携带的遗传信息的总和,即30亿个碱基对的序列,估计约含10万个基因. 人类基因组首先有两层意义:一是代表我们全人类整体上生生不息,又各有差异的所有遗传信息;二是存在于我们每个人体的所有细胞中的DNA分子,它们都近乎相同. 人的单倍体基因组包括3×109碱基对(Basepair,bp),分布在22条常染色体和X、Y性染色体上.
基因对有多少个?人类基因
人类只有一个基因组,大约有2-3万个基因。人类基因组,称人类基因体,由22对染色体以及1条X染色体和一条Y染色体组成的,其人类基因组含有约31.6亿个DNA碱基对。人类只有一个基因组,大约有2-3万个基因。碱基对是一对相互匹配的碱基(即A—T, G—C,A—U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。扩展资料:随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。参考资料来源:百度百科-人类基因组
怎样理解人类基因组多样性
人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对体染色体、1条X染色体和1条Y染色体。人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的少得多,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的约1.5%。人类只有一个基因组,大约有2-3万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在人类基因组阐明30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。
人类基因组的结构特征。
【答案】:人类基因组的结构特征有:(1)人类有24条染色体,分别是22条常染色体、X染色体与Y染色体。含有约30亿个DNA碱基对。碱基对是以氢键相结合的两个含氮碱基,以A、T、C、G四种碱基排列成碱基序列。其中一部分的碱基对组成了大约20000到25000个基因。(2)结构基因是不连续的,内部含有不编码蛋白质的内含子,编码区称为外显子。人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的更少,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的1.5%。(3)基因转录产物为单顺反子,即一个结构基因转录、翻译成一个mRNA分子、一条多肽链。(4)在人类基因组中存在大量的重复序列,短的仅含2个碱基,长的多达数百、上千个碱基,可分为高度重复序列、中度重复序列、低度重复序列三种。高度重复序列重复频率可达106次,包括反向重复序列、卫星DNA等约占10%~15%。
什么是人类基因组?基因组学如何促进医学和生物学的进展?
人类基因组是指人类所有基因的总体遗传信息,它由约30亿个碱基对组成,编码了约20,000~25,000个蛋白质编码基因,以及大量的非编码DNA序列。基因组学是研究基因组的学科,涉及到基因的结构、功能、调控、演化等方面。基因组学的发展对医学和生物学的进展产生了深远的影响,具体包括以下几个方面:1. 疾病研究:基因组学为疾病的研究提供了新的思路和方法。通过对人类基因组的测序和比较,可以识别与疾病相关的基因变异,并探索其遗传机制和作用方式。这有助于识别新的疾病靶点和疾病治疗方法,如基因治疗、靶向治疗等。2. 药物研发:基因组学可以加速新药的研发和上市。通过对药物作用靶点基因的研究,可以发现新的靶点,从而开发新的药物。此外,基因组学还可以应用于药物剂量和副作用预测,提高药物的治疗效果和安全性。3. 生命科学研究:基因组学为生命科学的研究提供了新的视角和手段。通过对不同物种的基因组进行比较,可以探索生命的演化历程和进化机制。此外,基因组学还可以用于研究基因表达调控、细胞信号传导等基本生命过程,推动生命科学的发展。综上所述,基因组学在医学和生物学的研究中发挥着越来越重要的作用,为疾病诊断和治疗、药物研发、生命科学等领域带来了新的机遇和挑战。
人类有几个基因组(高中生物)
人类有两个染色体组,就是一共有携带有人类所需要的所有遗传信息的染色体组两组,又因为人的单倍体细胞(精子和卵子)中所携带的是一个染色体组,也即一个基因组,所以人的体细胞中有两个基因组,单倍体细胞中有一个。
人类基因组数目是多少?
基因是生命遗传的基本单位。由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为3.4万至3.5万个,仅比果蝇多2万个,远小于原先10万个基因的估计。
人类进行基因组测序有什么意义呢
人类基因组测序意义如下:1、能够有效反应在正常或受控条件中表达的全基因的时空图,从而推动基因新技术发展,促进人类健康。 2、完善人类基因组研究涉及的伦理、法律和社会问题,维护社会稳定。 3、培训正确利用技术和资源进行生物学研究的科学人才,推动科技进步和社会发展。
基因库与基因组的区别是什么
基因库和基因组是两个完全不同的概念。 基因库: 基因库是指一个生物种群的全部等位基因的总称,属于遗传范畴。 基因库是指一个生物种群的全部等位基因的总称,它不用提取出来。 基因组: 基因组属于基因工程范畴,用于获得未知序列的目的基因。而基因文库分为基因组文库和CDNA文库。基因组文库含有一种生物的全部基因。而CDNA文库含有一种生物的部分基因。因为CDNA是由信使RNA逆转录得到的,没有了原来基因里的内含子。 基因组是基因工程提取目的基因是要用到,要先提取出来,导入到受体细胞里进行培养保存。
质粒DNA和基因组DNA什么区别
质粒DNA相对比较小,双链,环状,存在于细胞质中 基因组DNA较大,
如何理解基因组的结构及其功能?
首先要从基因组的结构入手,再从基因组的结构是如何影响基因的表达来分析,下来就是基因表达的产物--蛋白了。蛋白具有众多的生理学功能:可以作为结构蛋白,也可以作为酶而催化生化反应等等重要的作用。最后就是代谢产物了,在酶的催化作用下会产生众多的代谢产物。这些代谢产物的水平变化可以反馈,反过来可以影响或者调控基因及蛋白的表达,最终还可以影响代谢产物自身的水平变化。 基因组编辑技术的优点就是可以从基因组水平来改变人类的遗传性状,解决目前困扰人类的疾病等问题。 弊端是目前基因组研究还没有将基因组中许多组件的作用及特性完全阐述清楚,所以基因组的编辑可能会产生一些完全相反的结果或者是一些未知的不理想的结果。 自己发挥一下吧。
病毒基因组的病毒基因组的结构和功能
病毒基因组的结构特点牛乳头瘤病毒基因组结构和功能RNA噬菌体的基因组结构和功能乙肝病毒基因组的结构特点和功能 1.病毒基因组大小相差较大,与细菌或真核细胞相比,病毒的基因组很小,但是不同的病毒之间其基因组相差亦甚大。如乙肝病毒DNA只有3kb大小,所含信息量也较小,只能编码4种蛋白质,而痘病毒的基因组有300kb之大,可以编码几百种蛋白质,不但为病毒复制所涉及的酶类编码,甚至为核苷酸代谢的酶类编码,因此,痘病毒对宿主的依赖性较乙肝病毒小得多。2.病毒基因组可以由DNA组成,也可以由RNA组成,每种病毒颗粒中只含有一种核酸,或为DNA或为RNA,两者一般不共存于同一病毒颗粒中。组成病毒基因组的DNA和RNA可以是单链的,也可以是双链的,可以是闭环分子,也可以是线性分子。如乳头瘤病毒是一种闭环的双链DNA病毒,而腺病毒的基因组则是线性的双链DNA,脊髓灰质炎病毒是一种单链的RNA病毒,而呼肠孤病毒的基因组是双链的RNA分子。一般说来,大多数DNA病毒的基因组双链DNA分子,而大多数RNA病毒的基因组是单链RNA分子。3.多数RNA病毒的基因组是由连续的核糖核酸链组成,但也有些病毒的基因组RNA由不连续的几条核酸链组成如流感病毒的基因组RNA分子是节段性的,由八条RNA分子构成,每条RNA分子都含有编码蛋白质分子的信息;而呼肠孤病毒的基因组由双链的节段性的RNA分子构成,共有10个双链RNA片段,同样每段RNA分子都编码一种蛋白质。目前,还没有发现有节段性的DNA分子构成的病毒基因组。4.基因重叠即同一段DNA片段能够编码两种甚至三种蛋白质分子,这种现象在其它的生物细胞中仅见于线粒体和质粒DNA,所以也可以认为是病毒基因组的结构特点。这种结构使较小的基因组能够携带较多的遗传信息。重叠基因是1977年Sanger在研究ΦX174时发现的。ΦX174是一种单链DNA病毒,宿主为大肠杆菌,因此,又是噬菌体。它感染大肠杆菌后共合成11个蛋白质分子,总分子量为25万左右,相当于6078个核苷酸所容纳的信息量。而该病毒DNA本身只有5375个核苷酸,最多能编码总分子量为20万的蛋白质分子,Sanger在弄清ΦX174的11个基因中有些是重叠的之前,这样一个矛盾长时间无法解决。重叠基因有以下几种情况:(1)一个基因完全在另一个基因里面。如基因A和B是两个不同基因,而B包含在基因A内。同样,基因E在基因D内。(2)部分重叠。如基因K和基因A及C的一部分基因重叠。(3)两个基因只有一个碱基重叠。如基因D的终止密码子的最后一个碱基是J基因起始密码子的第一个碱基(如TAATG)。这些重叠基因尽管它们的DNA大部分相同,但是由于将mRNA翻译成蛋白质时的读框不一样,产生的蛋白质分子往往并不相同。有些重叠基因读框相同,只是起始部位不同,如SV40DNA基因组中,编码三个外壳蛋白VP1、VP2、VP3基因之间有122个碱基的重叠,但密码子的读框不一样。而小t抗原完全在大T抗原基因里面,它们有共同的起始密码子。5.病毒基因组的大部分是用来编码蛋白质的,只有非常小的一份不被翻译,这与真核细胞DNA的冗余现象不同如在ΦX174中不翻译的部份只占217/5375,G4DNA中占282/5577,都不到5%。不翻译的DNA顺序通常是基因表达的控制序列。如ΦX174的H基因和A基因之间的序列(3906-3973),共67个碱基,包括RNA聚合酶结合位,转录的终止信号及核糖体结合位点等基因表达的控制区。乳头瘤病毒是一类感染人和动物的病毒,基因组约8.0Kb,其中不翻译的部份约为1.0kb,该区同样也是其他基因表达的调控区.6.病毒基因组DNA序列中功能上相关的蛋白质的基因或rRNA的基因往往丛集在基因组的一个或几个特定的部位,形成一个功能单位或转录单元。它们可被一起转录成为含有多个mRNA的分子,称为多顺反子mRNA(polycistroniemRNA),然后再加工成各种蛋白质的模板mRNA。如腺病毒晚期基因编码病毒的12种外壳蛋白,在晚期基因转录时是在一个启动子的作用下生成多顺反子mRNA,然后再加工成各种mRNA,编码病毒的各种外壳蛋白,它们在功能上都是相关的;ΦX174基因组中的D-E-J-F-G-H基因也转录在同一mRNA中,然后再翻译成各种蛋白质,其中J、F、G及H都是编码外壳蛋白的,D蛋白与病毒的装配有关,E蛋白负责细菌的裂解,它们在功能上也是相关的。7.除了反转录病毒以外,一切病毒基因组都是单倍体,每个基因在病毒颗粒中只出现一次。反转录病毒基因组有两个拷贝。8.噬菌体(细胞病毒)的基因是连续的;而真核细胞病毒的基因是不连续的,具有内含子,除了正链RNA病毒之外,真核细胞病毒的基因都是先转录成mRNA前体,再经加工才能切除内含子成为成熟的mRNA。更为有趣的是,有些真核病毒的内含子或其中的一部分,对某一个基因来说是内含子,而对另一个基因却是外显子。如SV40和多瘤病毒(polyomavirus)的早期基因就是这样。SV40的早期基因即大T和小t抗原的基因都是从5146开始反时针方向进行,大T抗原基因到2676位终止,而小t抗原到4624位即终止了,但是,从4900到4555之间一段346bp的片段是大T抗原基因的内含子,而该内含子中从4900-4624之间的DNA序列则是小t抗原的编码基因。同样,在多瘤病毒中,大T抗原基因中的内含子则是中T和t抗原的编码基因。 乳头瘤病毒(papillomavirus)是感染人和动物皮肤、粘膜并引起乳头状瘤病变的一种DNA病毒,属于乳多空泡病毒(papovavirus)科。根据病毒感染的宿主不同可以分为牛乳头瘤病毒(BPV),人乳头瘤病毒(HPV)等。目前已发现的乳头瘤病毒基因组都具有相似的结构。下面以BPV为例说明乳头瘤病毒的基因组结构及功能。BPVDNA全长7945bp,为闭环超螺旋结构,在宿主细胞中可以和组蛋白结合形成核小体。以BPVDNA中单一的HpaⅠ酶切位点第一碱基G为1号位,按5"→3"的方向给碱基编号定位。DNA序列分析表明,所有的开放读框(ORF)都存在于一条DNA链上,基因之间有相互重叠。整个BPV基因组分为编码区和非编码区(NCR),编码区又按其编码蛋白质的功能不同,分为早期转录功能区(E区)和晚期转录功能区(L区)。 1.非编码区(NCR)非编码区又称上游调控区(URR)或长控制区(LCR),位于晚期基因L1终止密码子与早期基因E6第一个起始密码子之间,长度在不同的乳头瘤病毒中不一样,在BPV中长约1.0kb。在NCR转录的启动子序列,可以启动早期基因的转录和表达,另外,在该区还有增强子序列,可以被早期基因产物E2蛋白激活,进一步促进早期基因AAC的表达,目前已搞清了BPVNCR区增强子的序列,该序列为TTGGCGGNNG和ATCGGTGCACCGAT回文结构。从NCR的结构特点上可以看出其主要功能是调节BPV基因的表达。2.早期转录功能区(或称早期基因区,E区)BPV的E区含有八个开放读框(ORF),分别为E6、E7、E8、E1、E2、E3、E4、E5,其中E6、E7、E1基因有部份重叠,E8完全在E1中,E3、E4全部包含在E2中,E5与E2部份重叠。E2ORF编码的蛋白产物可以与NCR的增强子结合,而提高或降低早期基因的表达水平。另外,E2ORF与E1ORF协同可以维持乳头瘤病毒DNA的游离状态而不整合到宿主细胞染色体上去。E6和E7ORFs编码的蛋白质可能是致癌蛋白。E6和E7蛋白可以引起宿主向恶性转化成为肿瘤细胞。关于E6、E7蛋白引起细胞转化的机制,现阶段尚不清楚,但有两种解释。[1]在E6、E7蛋白的氨基酸序列中发现有Cys-x-x-Cys重复序列,目前认为该结构是细胞内核酸结合蛋白所具备的特异性结构,因而认为E6、E7蛋白是DNA结合蛋白,可以调节基因的活性,进一步影响宿主细胞的增殖和分化,使该过程失去控制而形成肿瘤;[2]最近,在正常细胞中发现有两种蛋白质分子量分别为53KD和106KD分别称为p53和p106蛋白质。这两种蛋白质缺失或失活往往引起细胞的恶性化。研究发现,乳头瘤病毒的E7和E6蛋白分别可以和p53和p106蛋白质结合而使其失活,这也可能是E6和E7蛋白质导致细胞恶性化的一种机制。3.晚期转录功能区(晚期基因区、L区):L区ORFs有两个,即L1和L2ORF,编码乳头瘤病毒的外壳蛋白,其中L1蛋白是主要外壳蛋白,L2蛋白是次要外壳蛋白。 目前研究最清楚的大肠杆菌RNA噬菌体是MS2,R17,f2和Qβ。它们的基因组小,只有3600到4200个核苷酸,包含四个基因。MS2.R17和f2具有几乎一样的基因组结构。在四个基因中有两个基因编码噬菌体的结构蛋白:一个是A蛋白的基因,长1178个核苷酸。A蛋白(称为成熟蛋白)的功能是使噬菌体能识别宿主,并使其RNA基因组能进入宿主菌,每个噬菌体一般只存在分子的A蛋白。另一个结构蛋白基因长399个核苷酸,编码外壳蛋白以构成病毒颗粒,每个噬菌体有180个分子。基因组的其他部分编码RNA复制酶和一个溶解蛋白,编码溶解蛋白的基因与外壳蛋白和复制酶的基因有部分重叠,但读框与外壳蛋白的读框不一样。在MS2、R17、f2基因组内有许多二级结构,RNA分子内碱基的自我配对,可能对防止RNase降解有一定作用。另外,在编码基因的5"和3"端各有一段非翻译序列,该序列对稳定RNA分子也有一定作用。另一种RNA噬菌体Qβ的基因组略大,与上述RNA噬菌体的基因组有以下不同;[1]没有独立的溶解蛋白基因,但结构蛋白A2(或称成熟蛋白,MaturaitonProtein)即具有溶解蛋白的功能,[2]还编码另一种外壳蛋白A1。 乙肝病毒(HBV)的基因组DNA结构很奇特,是一环状的部分双螺旋结构,长约3.2kb。其中的2/3为双螺旋结构,1/3为单链,这就是说,DNA中的两条链不等长。长链的5"端与3"端无共价连接,而是与一种蛋白质共价相连。长链的5"端以250-300对碱基互补结合。长链为负链,短链为正链。短链的长度视病毒而异,一般长约1.6-2.8kb,约为长链的2/3。短链之间的空隙可由病毒颗粒中的DNA聚合酶充填。乙肝病毒是目前已知的感染人类最小的双链DNA病毒。为了能在细胞内独立复制,病毒在很小的基因组中尽量容纳大量的遗传信息。因而HBV的基因组结构显得特别精密浓缩,充分利用其遗传物质。重叠的基因序列比较多,HBV基因组中已确定的开放读框有4个,分别编码病毒的核壳(C)和包膜(S)蛋白,病毒复制酶(聚合酶)及一种似乎与病毒基因表达有关的蛋白质X。在S基因前面的两个小ORFs与S基因ORF属于同一个读框,可以将ORFS通读下去,编码两种S蛋白相关的抗原,这两种抗原也存在于病毒颗粒的表面,这两个抗原分别称为前-S1(pre-S1)和前-S2(pre-S2)。同样,在ORFC前面也有一短的ORF,称为前-C(pre-C),编码一较大的C蛋白相关抗原。所有这些ORF都在负链DNA(长链)上,其中S基因完全重叠于聚合酶基因中,X基因与聚合酶基因、C基因重叠,C基因与聚合酶也有重叠。最近,Miller等人在HBV基因组中又发现两个ORF,即ORF-5和ORF-6,这两个ORFs与X基因重叠,其中ORF6不是由负链DNA编码的,而是由正链DNA编码。这两个ORF的功能目前尚不清楚。调节序列位于基因内部,这也是HBV节约使用遗传物质的一种方式。与HBV基团组复制有关的序列有:短链顺向复制序列(DR1和DR2)和U5样序列(因与反转录病毒末端的U5序列类似面得名)。DR1和U5位于前-CORF中,是合成DNA长链的起始部位,DR2位于聚合酶基因与X基因重叠处,是DNA短链合成的起始部位。与HBV基因表达有关的信号序列有4种:[1]启动子,[2]增强子,[3]polyA附加信号,[4]糖皮质激素敏感因子(GRE)。由于HBV基因组中的基因分别转录于3种HBVmRNA转录本上,因此,相应地在病毒基因组中每一转录本近5"端也至少应有3种RNA聚合酶Ⅱ启动子,虽然这些启动子的基因序列尚不知,但这些启动子显然存在于编码蛋白质序列内。增强子(ENH)位于聚合酶基因中;polyA附加信号位于CORF中;而GRE位于SORF和聚合酶基因中。GRE是与激素受体结构的DNA片段,结合后能使某一已知基因转录水平增加。GRE有许多增强子的特征:[1]是起顺式作用的因子,[2]在转录的两个方向均有作用,[3]在距其调节的基因不同距离处均可起作用。从以上可以看出HBV基因组结构严密,组织高效,在已知的病毒中是罕见的。HBVDNA不但在结构上有其独特的地方,而且其DNA复制过程也非常特别。当HBVDNA进入宿主细胞后,首先成为完整的闭环双螺旋DNA,以负链为模板合成全长的“+”链RNA(称为前基因组RNA)。该“+”链RNA被包装在未成熟的核心样颗粒中,同时还有DNA聚合酶和一种蛋白质也被包装在颗粒中。在该颗粒中“+”链RNA作为模板由反转录酶催化合成“-”链DNA,具体机制尚不清楚,可能与腺病毒DNA的复制相似,因为在“-链DNA的5"端也有共价结合的蛋白质。“+”链DNA的合成便以该负链DNA为模板和一段RNA为引物而聚合延伸,核心样病毒颗粒在这过程中也成为成熟的病毒颗粒。这时,正链DNA仍没有合成完毕,因而造成病毒基因组两条DNA链长度不一样。
宏转录组 宏基因组 有什么区别
“宏转录组”和“宏基因组 ”的区别是:基因组一般指的是DNA(某些只含有RNA的生物除外),而转录组则指的是RNA。基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。详细内容:《遗传学名词》第二版对“基因组”的释义:单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。转录组(transcriptome)广义上指某一生理条件下,细胞内所有转录产物的集合,包括信使RNA、核糖体RNA、转运RNA及非编码RNA;狭义上指所有mRNA的集合。参考资料百度百科:https://baike.baidu.com/item/基因组/2746983?fr=aladdin
什么是全基因组扫描?其用途是什么?
遗传分析仍是当前对致病相关基因识别、鉴定的主要方法,分为连锁分析和关联研究两种。由于人类基因组多态性的研究以及SNP分型技术的发展,目前全基因组连锁分析和关联研究亦变得切实可行。根据研究规模的大小,可以将疾病遗传分析分为以下几类,即定位克隆、连锁不平衡基因定位、全基因组候选基因分析、候选基因关联研究和定位候选基因克隆,其中定位克隆、连锁不平衡基因定位和全基因组候选基因分析均属于全基因组扫描。 不管是单基因疾病还是多基因疾病,通常是先行全基因组扫描(genome scanning);将疾病相关位点定位于染色体某个区域,然后再行候选基因策略或连锁不平衡分析,确定致病基因位点。如果利用家系进行连锁分析,即采用定位克隆;若是利用群体样本,则应用连锁不平衡分析进行基因定位。全基因组扫描已成功地应用在许多疾病的致病相关基因克隆上,并取得了一定的成果。 全基因组扫描所利用的是在人类基因组大量存在的微卫星或SNP,虽然当前使用较多的仍是微卫星,但由于芯片技术的发展,全基因组高分布密度的商品化SNP芯片相继面世(如Affymetrix公司的10k,100k和500k人基因组SNP芯片),越来越多的研究者使用SNP进行全基因组扫描。由于这些高密度的SNP芯片价格昂贵,不是一般的实验室所能承受。 微卫星全基因组扫描的原理是利用特定的引物将某条染色体上特定位置的微卫星扩增出来,并进行分析。这种分析所使用的微卫星通常具有较高的多态性,在不同的个体其长度不尽相同(也就是微卫星基本单位重复次数的不同),而不同长度的PCR产物则代表某一位点不同的等位基因。该种分析方法实际上是利用平均分布于各条染色体上的密度约为10cM的微卫星,检测每个微卫星是否存在与其邻近的疾病相关基因座位连锁。全基因组扫描并不能直接搜寻具体的疾病相关基因,而是通过研究均匀分布于整个基因组的微卫星标记来间接选择其相关的基因座位。在得到阳性结果后,又可在这些阳性位点附近再加密微卫星标记或利用SNP,用同样的方法来确定哪一个多态性位点与疾病连锁的可能性最大等等。这样在不断地缩小分析范围后,疾病相关基因定位的范围也越来越精细。由于人类基因组序列已知,一旦发现了与疾病相关基因连锁两侧的遗传标记,根据标记位点的具体位置,我们就可以知道定位区域内所有的基因。因此,当定位区域确定后,在该区域内选择候选基因直接进行测序,对所发现的突变在病人和对照组进行分型并分析,搜寻致病基因。另一个方法是直接从公共数据库挑选候选基因编码区、调控区(包括内含子)中的SNP,进行连锁不平衡分析,确定致病基因。
基因和基因组有什么区别?
基因组是生物体所有遗传物质的总和。一个基因组中包含一整套基因。在分子生物学和遗传学领域,基因组指生物体所有遗传物质的总和。这些遗传物质包括DNA或RNA(病毒RNA)。基因组DNA包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。基因组这个术语由德国汉堡大学植物学教授Hans Winkler于1920年创建。在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。扩展资料:当环境中的有害物质进入受精卵或母体,当父母有一定的共同血缘或有一定相同数目的遗传基因关系,在这些情况下,后代的基因组里的基因会发生缺陷,产生疾病。通过使用基因芯片等技术分析人类基因组,可找出致病的遗传缺陷基因区域。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。参考资料来源:百度百科——基因组百度百科——基因
什么是基因组,转录组,蛋白质组
在基因解码知识体系中,基因组是一个个体内全部基因信息组成的总称、而转录组是指具有相对性,可以是一个个体在某一时间、某一条件下的全部转录产物的总称。蛋白质组与转录组具有相似性、都具有时间、空间和组织特异性,是在一定条件下的全部蛋白质产物的总称。佳学基因认为,基因组、转录组、蛋白组都可以在不同角度提供关于人体健康、疾病、天赋潜能的部分信息。但是基因组信息是转录组、蛋白质组信息的最终根源。佳学基因,人类基因信息解读和应用专家。通过铂金至尊全基因组解码提供罕见病、难治疾病、肿瘤的病因分析、用药指导分析和天赋潜能分析等私人定制基因信息解读。
人基因组
分类: 教育/科学 问题描述: 人基因组DNA是23个独立的分子吗? 将人基因组DNA电泳,电泳结果是将有23个条带吗? 解析: 你好 我感觉你对这些概念的蛮混乱的,我就来简单说一下吧众所周知【DNA】(中文全程:脱氧核糖核酸)是双螺旋结构,它由两条【脱氧核苷酸序列】构成。 【脱氧核苷酸序列】就是一串【脱氧核苷酸】 【脱氧核苷酸】是组成DNA的基本单位,由一分子磷酸,一分子脱氧核糖和一分子【碱基】构成,根据碱基的不同分为4种不同的脱氧核苷酸,分别是 鸟嘌呤脱氧核苷酸,简写为G 腺嘌呤脱氧核苷酸,简写为A 胞嘧啶脱氧核苷酸,简写为C 胸腺嘧啶脱氧核苷酸,简写为T 由于脱氧核苷酸的其他构成相同,一般用【碱基】类型代替【脱氧核苷酸】类型 【碱基】便是以上提到的 鸟嘌呤(G) 腺嘌呤(A) 胞嘧啶(C) 胸腺嘧啶(T) 【碱基序列】 也就类似是【脱氧核苷酸序列】 【碱基对】 在DNA的双链中同一位置的碱基会以氢键配对,其中A对T,G对C 如下有一DNA示意图 A链:AAGCTTTACACGATGAG B链:TTCGAAATGTGCTACTC 横看就是【碱基序列】,纵看就是【碱基对】 以上就是DNA的构成 【基因】具有遗传效应的DNA片段,也就是某一碱基序列 你所说的23是指人类【染色体】的对数,人有23对(也就是46个)【染色体】 为什么要说23对呢? 因为【同源染色体】总是成对出现,其中一条来自父方,另一条来自母方 【染色体】就是【染色质】在细胞分裂期的存在方式, 【染色质】是存在于细胞核,能被碱性染料染成深色的物质。 【染色质】在细胞分裂期会高度棒状螺旋化而变化成【染色体】,它主要由蛋白质和DNA构成。 电泳应该会至少得到46条。
“宏转录组”和“宏基因组 ”有什么区别?
“宏转录组”和“宏基因组 ”的区别是:基因组一般指的是DNA(某些只含有RNA的生物除外),而转录组则指的是RNA。基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。详细内容:《遗传学名词》第二版对“基因组”的释义:单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。转录组(transcriptome)广义上指某一生理条件下,细胞内所有转录产物的集合,包括信使RNA、核糖体RNA、转运RNA及非编码RNA;狭义上指所有mRNA的集合。参考资料百度百科:https://baike.baidu.com/item/基因组/2746983?fr=aladdin
基因组学名词解释
基因组学名词解释如下:基因组学的概念最早于1986年由美国遗传学家Thomas H. Roderick提出。基因组学是对生物体所有基因进行集体表征、定量研究及不同基因组比较研究的一门交叉生物学学科。基因组学主要研究基因组的结构、功能、进化、定位和编辑等,以及它们对生物体的影响。相关内容:功能基因组学功能基因组学是分子生物学的一个领域,它试图利用基因组项目(如基因组测序项目)产生的大量数据来描述基因(和蛋白质)的功能和相互作用 。功能基因组学侧重于基因转录、翻译和蛋白质-蛋白质相互作用的动态变化,与基因组提供的DNA序列或结构等静态信息截然相反。功能基因组学试图从基因、RNA转录本和蛋白质产品三个水平上回答有关DNA功能的问题。功能基因组学研究的一个关键特征是它们对这些问题的全基因组方法,通常涉及高通量方法,而不是传统的“个案基因”方法。基因组学的一个主要分支仍然关注于对各种生物体基因组的测序,但全基因组的知识为功能基因组学关注各种条件下基因表达的模式创造了可能。涉及到的最重要的工具是芯片技术和生物信息学。
基因组与染色体组的区别
一、性质不同1、基因组:是细胞内所有遗传信息,这种遗传信息以核苷酸序列形式存储。2、染色体组:是细胞中的一组非同源染色体。二、特征不同1、基因组:.基因组较大。真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点;不存在操纵子结构。真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上。2、染色体组:不论一个染色体组内包含有几个染色体,同一个染色体组的各个染色体的形态、结构和连锁群都彼此不同,但它们却构成了一个完整而协调的体系,缺少其中任何一个都会造成不育或性状的变异。三、影响 不同1、基因组:基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代。2、染色体组:细胞内个别染色体的增加或减少,也会引起生物性状的改变,甚至导致生物体死亡。例如,对玉米和番茄来说,细胞内缺少了一条染色体就不能成活:又如,在黑腹果蝇中,细胞内多一条或者少一条性染色体都会影响果蝇的生育力。参考资料来源:百度百科-基因组参考资料来源:百度百科-染色体组
什么叫亚基因组文库?
基因组DNA文库构建是先从生物体中制备基因组DNA,并用限制性内切酶切割产生一定长度范围的DNA片段,然后在体外将这些DNA片段与适当的λ噬菌体载体或柯斯载体连接成重组的DNA分子,并转化到大肠杆菌受体细胞中,从而完成构建。 基因组文库的建立要比cDNA基因文库的建立来的简单多,而且不容易造成基因遗漏。但从基因组DNA文库分离目的基因也遇到一些麻烦,特别是要获得一个大分子量的目的基因。 披膜病毒科(Togavride)病毒,其下4个属,其中一个属是甲病毒属(Alphavirus),其Genome是单链(+)RNA,其单独即可引起完整的复制周期。而其Genome 3"末端后1/3编码数种病毒结构Propeins,含4100个核苷,这一区域也称为亚基因组mRNA(subenomic RNA),或称为26S mRNA,此区域编码病毒结构蛋白,即病毒颗粒多肽成分。风疹病毒(Rubella virus,RUV)Genome为单链RNA,其Genome3"第6389位核苷酸至亚基因组RNA(subgenomic RNA,24S RNA)起始位点。Sindis virus的基因组的相应区域参与亚基因组RNA的合成。RUV基因组的24 S RNA由3327个核苷酸组成(不包括PolA尾),其5"末端和3"末端同样具有帽状结构和PolA尾,而且被甲基化。24 S RNA与病毒基因组3"相对应,编码病毒的3个结构蛋白,其排列顺序为5"—C—E2—E1—3"。 披膜病毒科(Togavride)病毒,其下4个属,其中一个属是甲病毒属(Alphavirus),其Genome是单链(+)RNA,其单独即可引起完整的复制周期。而其Genome 3"末端后1/3编码数种病毒结构Propeins,含4100个核苷,这一区域也称为亚基因组mRNA(subenomic RNA),或称为26S mRNA,此区域编码病毒结构蛋白,即病毒颗粒多肽成分。风疹病毒(Rubella virus,RUV)Genome为单链RNA,其Genome3"第6389位核苷酸至亚基因组RNA(subgenomic RNA,24S RNA)起始位点。Sindis virus的基因组的相应区域参与亚基因组RNA的合成。RUV基因组的24 S RNA由3327个核苷酸组成(不包括PolA尾),其5"末端和3"末端同样具有帽状结构和PolA尾,而且被甲基化。24 S RNA与病毒基因组3"相对应,编码病毒的3个结构蛋白,其排列顺序为5"—C—E2—E1—3"。 亚基因组 披膜病毒科(Togavride)病毒,其下4个属,其中一个属是甲病毒属(Alphavirus),其Genome是单链(+)RNA,其单独即可引起完整的复制周期。而其Genome 3"末端后1/3编码数种病毒结构Propeins,含4100个核苷,这一区域也称为亚基因组mRNA(subenomic RNA),或称为26S mRNA,此区域编码病毒结构蛋白,即病毒颗粒多肽成分。风疹病毒(Rubella virus,RUV)Genome为单链RNA,其Genome3"第6389位核苷酸至亚基因组RNA(subgenomic RNA,24S RNA)起始位点。Sindis virus的基因组的相应区域参与亚基因组RNA的合成。RUV基因组的24 S RNA由3327个核苷酸组成(不包括PolA尾),其5"末端和3"末端同样具有帽状结构和PolA尾,而且被甲基化。24 S RNA与病毒基因组3"相对应,编码病毒的3个结构蛋白,其排列顺序为5"—C—E2—E1—3"。
什么是基因组学?
科技名词定义中文名称:基因组学 英文名称:genomics 定义1:研究基因组的结构、功能及表达产物的学科。基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。包括三个不同的亚领域,即结构基因组学、功能基因组学和比较基因组学。 应用学科:生物化学与分子生物学(一级学科);总论(二级学科) 定义2:研究生物体全基因组DNA的序列和属性的学科。包括在DNA(基因型)、mRNA(转录物组)和蛋白质(蛋白质组)水平上研究细胞或组织的所有基因。 应用学科:细胞生物学(一级学科);总论(二级学科) 定义3:研究生物体基因组的组成、结构与功能的学科。 应用学科:遗传学(一级学科);总论(二级学科) 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。 基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学与遗传学发展里程碑基因组学的主要工具和方法包括: 生物信息学,遗传分析,基因表达测量和基因功能鉴定。 基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。 相关领域是遗传学,其研究基因以及在遗传中的功能。 1980年,噬菌体 Φ-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。 1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。 2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。 基因组学是研究生物基因组的组成,组内各基因的精确结构、相互关系及表达调控的科学。基因组学、转录组学、蛋白质组学与代谢组学等一同构成系统生物学的组学(omics)生物技术基础。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。编辑本段功能基因组学 基因组DNA测序是人类对自身基因组认识的第一步。随着测序的完成,功能基因组学研究成为研究的主流,它从基因组信息与外界环境相互作用的高度,阐明基因组的功能。功能基因组学的研究内容:人类基因组 DNA 序列变异性研究、基因组表达调控的研究、模式生物体的研究和生物信息学的研究等。 (1)基因组表达及调控的研究。在全细胞的水平,识别所有基因组表达产物mRNA和蛋白质,以及两者的相互作用,阐明基因组表达在发育过程和不同环境压力下的时、空的整体调控网络。 (2)人类基因信息的识别和鉴定。要提取基因组功能信息,识别和鉴定基因序列是必不可少的基础工作。基因识别需采用生物信息学、计算生物学技术和生物学实验手段,并将理论方法和实验结合起来。基于理论的方法主要从已经掌握的大量核酸序列数据入手,发展序列比较、基因组比较及基因预测理论方法。识别基因的生物学手段主要基于以下的原理和思路:根据可表达序列标签(STS);对染色体特异性cosmid进行直接的cDNA选择;根据CpG岛;差异显示及相关原理;外显子捕获及相关原理;基因芯片技术;基因组扫描;突变检测体系,等等。 (3)基因功能信息的提取和鉴定。包括:人类基因突变体的系统鉴定;基因表达谱的绘制;“基因改变-功能改变”的鉴定;蛋白质水平、修饰状态和相互作用的检测。 (4)在测序和基因多样性分析。人类基因组计划得到的基因组序列虽然具有代表性,但是每个人的基因组并非完全一样,基因组序列存在着差异。基因组的差异反映在表型上就形成个体的差异,如黑人与白人的差异,高个与矮个的差异,健康人与遗传病人的差异,等等。出现最多基因多态性就是单核苷酸多态性(SNPs)。 (5)比较基因组学。将人类基因组与模式生物基因组进行比较,这一方面有助于根据同源性方法分析人类基因的功能,另一方面有助于发现人类和其他生物的本质差异,探索遗传语言的奥秘 。编辑本段结构基因组学 结构基因组学是继人类基因组之后又一个国际性大科学热点,主要目的是试图在生物体的整体水平上(如全基因组、全细胞或完整的生物体)测定出(以实验为主、包括理论预测)全部蛋白质分子、 结构基因组学与蛋白折叠蛋白质-蛋白质、蛋白质-核酸、蛋白质-多糖、蛋白质-蛋白质-核酸-多糖、蛋白质与其他生物分子复合体的精细三维结构,以获得一幅完整的、能够在细胞中定位以及在各种生物学代谢途径、生理途径、信号传导途径中全部蛋白质在原子水平的三维结构全息图。在此基础上,使人们有可能在基因组学、蛋白质组学、分子细胞生物学以致生物体整体水平上理解生命的原理。 对疾病机理的阐明、对疾病的防治有重要应用意义。发展回顾 1998年4月,由美国国家医学科学院(NIGMS)和Wellcome Trust发起在英国召开了第一次国际结构基因组会议,美国、法国、英国、德国、加拿大、日本、荷兰、意大利以及以色列的9国科学家参加了会议。2000年9月,美国NIGMS决定首批投入1.5亿美元,在美国建设7个研究中心(目前已经发展成为10个),争取在未来10年内解出1万个蛋白质的三维结构,建立蛋白质的氨基酸残基序列、三维结构和生物功能之间的有机联系,同时也支持结构基因组方法学的研究。2002年,10家大型国际制药公司宣布启动结构基因组研究。2000年11月,日本组织召开国际会议讨论结构基因组计划的有关问题,确定了完成测定3000个蛋白质三维结构的“Protein3000计划”。2001年4月,在美国召开了第二次国际结构基因组会议,表明新一轮大规模的国际合作研究已经开始。主要进展 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。在国际结构基因组研究刚露端倪之时,我国科学家就敏感地抓住了这一新动向,2000年我国开展了结构基因组学的研究。近来,国家863计划、973计划、中国科学院知识创新工程、国家重大攻关项目、自然科学基金先后重点资助了结构基因组学的研究工作和相关技术平台的建设。相关研究工作既有分工、又有交叉合作,并充分地考虑到了我国基因组水平研究的特点和我国在结构解析方法研究在国际上的地位。并计划在参加国际合作的基础上,在逐步建立基因组研究技术平台的同时, 相关图书《药物基因组学 》五年之中完成200-300个蛋白质三维结构的测定。 我国的结构生物学研究队伍近年来不断发展壮大,中国科学院生物物理所、中国科技大学、北京大学、清华大学以及中国科学院物理所、高能所、上海生命科学院、福州物质结构所、上海复旦大学等单位均是我国开展结构基因组研究的重要基地。 我国结构基因组学研究虽然启动时间较短,但已经获得了不少重要进展。 据初步统计,已经完成了近千个克隆,已表达出210个蛋白质,其中有100多个可溶或部分可溶;获得近30个结晶和NMR样品,已经测定出5个结构。
基因组和染色体组
问题一:基因组和染色体组有什么本质区别吗 这是生物上的问题,例如人有46条染色体,染色体组为23条,而基因组为24条,24条为常染色体22条加上XY两条染色题。 问题二:基因组和染色体组什么区别? 问题三:基因组和染色体组的关系 基因组是单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。染色体组是指配子中所包含的染色体或基因的总和。人类的染色体组是23条。人类只有一个基因组,包含22条常染色体和2条性染色体,大约有5-10万个基因。 问题四:基因组与染色体组的区别? 基因组包括24条染色体(22条常染色体和2条性染色体,只有24条染色体齐全,才能包含人类的所有基因) 染色体组则包括23条染色体,也就是配子中的染色体数。 问题五:基因组与染色体组的区别 基因组是单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。 染色体组是指配子中所包含的染色体或基因的总和。 人类的染色体组是23条。 人类只有一个基因组,包含22条常染色体和2条性染色体,大约有5-10万个基因。 问题六:基因组 染色体组 染色体组型 人, 基因组,22个常染色体,外加x女或xy男 染色体组,22常+x女或y男(这个和上面不同) 染色体组型:两套染色体组,46条染色体,44条常染色体和一对性染色体及其他描述染色体大小形状带型等数据。
人体基因到底有多少组,有人说64组,叩谢
人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对体染色体、1条X染色体和1条Y染色体。人类基因组含有约30亿个DNA碱基对,其中一部分的碱基对组成了大约20000到25000个基因。
基因组DNA什么意思
基因组DNA是指有机体在单倍体状态下的DNA全部含量。广义的基因组也指某一体系(如核或细胞器)中的DNA。
基因组的基因组特点
真核生物、原核生物和病毒的基因组有不同的特点。 1.基因组较大。真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点;2.不存在操纵子结构。真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上;3.存在大量的重复序列。真核生物的基因组里存在大量重复序列,通过其重复程度可将其分成高度重复序列、中度重复序列、低度重复序列和单一序列;4.有断裂基因。大多数真核生物为蛋白质编码的基因都含有“居间序列”,即不为多肽编码,其转录产物在mRNA前体的加工过程中被切除的成分;5.真核生物基因转录产物为单顺反子;6.功能相关基因构成各种基因家族。 1.基因组较小,通常只有一个环形或线形的DNA分子;2.通常只有一个DNA复制起点;3.非编码区主要是调控序列;4.存在可移动的DNA序列;5.基因密度非常高,基因组中编码区大于非编码区;6.结构基因没有内含子,多为 单拷贝,结构基因无重叠现象;7.重复序列很少,重复片段为 转座子;8.有编码同工酶的等基因;9.基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;10.功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子。 1. 不同病毒基因组大小相差较大;2.不同病毒基因组可以是不同结构的核酸;3. 除逆转录病毒外,通常为单倍体基因组;4.有的病毒基因组是连续的,有的病毒基因组分节段;5. 有的基因有内含子;6. 病毒基因组大部分为编码序列;7. 基因重叠。即同一段DNA片段能够编码两种或两种以上的蛋白质分子,这种现象在其他生物细胞中仅见于线粒体和质粒DNA。
染色体组型,染色体组,基因组的区别?
染色体组型包括所有染色体组以及的特征基因组只是染色体上很少的一部分
基因、基因组
真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体 ;而在原核生物则无。 真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于Neomura演化支。真核原核间基因的不同(1)真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。(2)真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。(3)原核生物的基因组基本上是单倍体,而真核基因组是二倍体。(4)如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元,共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。(5)原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。(6)原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。(7)原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:①高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。②中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3-×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。③单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。
基因组的那些事儿--基础
正常人都是有22对常染色体加XY性染色体。 基因组 是指生物体所携带的一套完整的 单倍体序列 ,也就是22条+X+Y。每个染色体包括全套基因和间隔序列。他们由A、T、C、G碱基组成,总共长度大约是30亿个碱基。 随着社会的发展,人们对于健康愈发重视,开始涌现了大量的基因检测,它的个性化定制再加上后续的医师指导,更加准确和便捷获得自身健康信息,预计未来会代替传统体检。 基因检测是在分子水平上对人体遗传密码进行破译,通过 单核苷酸多态性 和 GWAS 的分析对人体患病风险进行预测,从而进行预防干预及个体化治疗。目前 全基因组测序 成本(30X)已经不足一万元,这种测序就是来 检测全部的30亿个碱基对是如何排列 的,得到从第一个到第30亿个碱基的排列方式。 全基因组检测帮助确诊引起某个疾病的病因,尤其是癌症病人;或者指导有家族性后发遗传病的病人进行有针对性的治疗,比如安吉丽娜·朱莉接受预防性的双侧乳腺切除。 怎么测: 最常用illumina的二代测序,测序长度在150-250bp,取几百万的细胞破碎后,把所有的染色体随机打断成小片段,一个个进行测序,会测得上亿个片段 【还有一种是三代测序,不需要PCR过程,直接对每一条DNA分子进行测序,长度1w-5w nt(因为没有经过PCR,一直是单链状态测,所以不存在碱基对bp,只能称之为碱基nt),准确度要低一些】 测哪里: 也就是测序的样本从哪里获得? 唾液?:唾液肯定可以提取出DNA,而且也最方便。但是会混在口腔微生物的DNA,即使后来通过比对人类参考基因组来去除污染,但最后大概三成数据是要被浪费的。目前基于取唾液兴起的基因检测是测一部分高频变异位点,那不是做的全基因组测序,是利用基因芯片技术进行,成本在三位数 血液?除非提供者正患有菌血症(外界的细菌经由体表的入口或是感染的入口进入血液系统后,在人体血液内繁殖并随血流在全身播散),一般血液是最纯净的。从血液里面分离白细胞然后提取DNA的技术也是非常成熟的。 一般推荐:全基因组测序,覆盖度30X,也就是90G的raw data,测序策略是PE150,采用illumina的HiSeq X,DNA小片段文库(350bp)进行建库。 几个名词:
人体基因组的大小约为多大?
人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。人类基因组中存在"热点"和大片"荒漠"。 在染色体上有基因成簇密集分布的区域,也有大片的区域只有“无用DNA” ——不包含或含有极少基因的成分。基因组上大约有1/4的区域没有基因的片段。在所有的DNA中,只有1%-1.5%DNA能编码蛋白,在人类基因组中98%以上序列都是所谓的“无用DNA”,分布着300多万个长片断重复序列。这些重复的“无用”序列,决不是无用的,它一定蕴含着人类基因的新功能和奥秘,包含着人类演化和差异的信息。经典分子生物学认为一个基因只能表达一种蛋白质,而人体中存在着非常复杂繁多的蛋白质,提示一个基因可以编码多种蛋白质,蛋白质比基因具有更为重要的意义扩展资料:演化:比较基因组学(Comparative genomics)对于哺乳类基因组的研究显示,人类与大约两亿年前就已经分化的各物种相比,有大约5%的比例在人类基因组中保留了下来,其中包含许多的基因与调控序列。而且人类与大多数已知的脊椎动物间,也享有了一些相同的基因。黑猩猩的基因组与人类的基因组之间,有98.77%是相似的。而平均每一个属于人类的标准蛋白质编码基因,只与属于黑猩猩的同源基因相差两个氨基酸;并且有将近三分之一的人类基因与黑猩猩的同源基因,能够转译出相同的蛋白质。人类的2号染色体,是人类与黑猩猩基因组之间的主要差异,这一条染色体是由黑猩猩的染色体12号与13号融合而成。参考资料来源:百度百科-人类基因组
关于人参考基因组的一些总结
人参考基因组fasta文件的组成部分说明 样性,基因组是由单倍体类型表现的,基因的多样性(如等位基因)无法通过一条序列表示,就有 了alt序列来补充说明,这样的alt序列在测序分析map过程容易产生multiple-mapping低质量的 reads,GATK的zeroMappingQuality会将这样的reads过滤掉。 需要其中一条染色体上的par区域mask掉。 decoy基因组 包含人疱疹病毒EBV基因组的序列。 关于基因组版本 GRCh38版本,也有GRCh38.p6, GRCh38.p11等小版本,p指的patchs指定期对基因组的修补,并且每 次修补并没有扰乱染色体位置信息,两种patch fix patches表示下次主版本发布时将要替换的序列 Novel patches表示上面提到的alternate loci,也就是将新的patches看做变异序列。 analysis set 常用的基因组文件只包含primary assembly,而analysis set 还包含alt序列,PAR序列,decoy基 因组。这些时做基因组变异分析必须的。 1参考基因组的选择 1.1三种选择 如果比对到GRCh37/hg19, ftp://ftp- trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz 如果比对到GRCh37/hg19,并且认为包含decoy序列能够更准确地进行变异检测,使用: ftp://ftp- trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_seque nce/hs37d5.fa.gz 如果比对到GRCh38/hg38,使用: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_fo r_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz 1.2ALT contig序列是为了反映人群多态性的一段替补序列,和原染色体位置对应的序列之间有一 定的差异。放在ref中的隐患是人为增加了重复序列。 用很长的N间隔这些ALT contig序列增加了不必要的ref的size Ensembl 可以下到最新版 ftp://ftp.ensembl.org/pub/release-98/fasta/homo_sapiens/dna/ ftp://ftp.ensembl.org/pub/release-98/gtf/homo_sapiens/ GATK https://software.broadinstitute.org/gatk/download/bundle 包括SNP, InDel这类为变异检测提供参考的文件。 NCBI ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/ 包含很多的文件,NCBI https://www.ncbi.nlm.nih.gov/genome/guide/human/ 包含各种文件ftp://ftp.ensembl.org/pub/release-98/fasta/homo_sapiens/dna/ [1] https://lh3.github.io/2017/11/13/which-human-reference-genome-to-use [2] https://www.biostars.org/p/73100/ [3] https://software.broadinstitute.org/gatk/blog?id=8180 [4] https://genestack.com/blog/2016/07/12/choosing-a-reference-genome/
什么叫做单倍体基因组?
基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。总结上述,某物种的基因组也可称之为它的单倍体基因组。
基因组通常是指什么?
基因组,Genome,一个细胞或者生物体所携带的全部遗传信息。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。==================================================================亲~你好!````(^__^)````很高兴为您解答,祝你学习进步,身体健康,家庭和谐,天天开心!有不明白的可以追问!如果有其他问题请另发或点击向我求助,答题不易,请谅解.如果您认可我的回答,请点击下面的【采纳为满意回答】或者手机提问的朋友在客户端右上角点击【评价】,谢谢!你的好评是我前进的动力!! 你的采纳也会给你带去财富值的。(祝你事事顺心)==================================================================
什么是基因和基因组
基因组是生物体所有遗传物质的总和。一个基因组中包含一整套基因。在分子生物学和遗传学领域,基因组指生物体所有遗传物质的总和。这些遗传物质包括DNA或RNA(病毒RNA)。基因组DNA包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。基因组这个术语由德国汉堡大学植物学教授Hans Winkler于1920年创建。在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。扩展资料:当环境中的有害物质进入受精卵或母体,当父母有一定的共同血缘或有一定相同数目的遗传基因关系,在这些情况下,后代的基因组里的基因会发生缺陷,产生疾病。通过使用基因芯片等技术分析人类基因组,可找出致病的遗传缺陷基因区域。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。参考资料来源:百度百科——基因组百度百科——基因
基因组与染色体组的区别?
一、性质不同1、基因组:生物体所有遗传物质的总和。2、染色体组:人的一个体细胞中全部染色体的数目、大小和形态特征。进行人类染色体组型分析就是根据上述特征对人类染色体进行分组、排列和配对。二、特征不同1、基因组:包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。2、染色体组:一个染色体组内包含有几个染色体,同一个染色体组的各个染色体的形态、结构和连锁群都各自不同,构成了一个完整而协调的体系,缺少其中任何一个都会造成不育或性状的变异。三、含有的染色体数目不同1、基因组:基因组包括24条染色体,即22条常染色体和2条性染色体(X和Y)。2、染色体组:染色体组则包括23条染色体,也就是配子中的染色体数。四、影响不同1、基因组:基因是DNA分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。2、染色体组:细胞内个别染色体的增加或减少,也会引起生物性状的改变,甚至导致生物体死亡。参考资料来源:百度百科-基因组参考资料来源:百度百科-染色体组
基因组的原理简介
详细内容《遗传学名词》第二版对“基因组”的释义:单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。
“基因组”“蛋白组”“转录组”“代谢组”的异同?
代谢组学.基因组学研究的主要是基因组DNA,使用方法目前以二代测序为主,将基因组拆成小片段后再用生物信息学算法进行迭代组装,当然这仅仅是第一步,随后还有繁琐的基因注释等数据分析工作。转录组学研究的是某个时间点的mRNA总和,可以用芯片,也可以用测序.芯片是用已知的基因探针,测序则有可能发现新的mRNA。蛋白组学针对的是全体蛋白,组要以2D-Gel和质谱为主,分为top-down和bottom-up分析方法.理念和基因组类似,将蛋白用特定的物料化学手段分解成小肽段,在通过质量反推蛋白序列,最后进行搜索,标识已知未知的蛋白序列。代谢组分析的代谢产物,是大分子和小分子的混合物,主要也是用液相和质谱。基因组研究包括的内容是:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法,基因组学能为一些疾病提供新的诊断,治疗方法。基因组学还被用于食品与农业部门,基因组学与遗传学发展里程碑。
基因和基因组有什么区别
基因组是生物体所有遗传物质的总和。一个基因组中包含一整套基因。在分子生物学和遗传学领域,基因组指生物体所有遗传物质的总和。这些遗传物质包括DNA或RNA(病毒RNA)。基因组DNA包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。基因组这个术语由德国汉堡大学植物学教授Hans Winkler于1920年创建。在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。扩展资料:当环境中的有害物质进入受精卵或母体,当父母有一定的共同血缘或有一定相同数目的遗传基因关系,在这些情况下,后代的基因组里的基因会发生缺陷,产生疾病。通过使用基因芯片等技术分析人类基因组,可找出致病的遗传缺陷基因区域。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。参考资料来源:百度百科——基因组百度百科——基因
人类基因组是由多少染色体组成的?
人类基因组是由23对染色体(共46个)所构成,每一个染色体皆含有数百个基因,在基因与基因之间,会有一段可能含有调控序列和非编码DNA的基因间区段。人类拥有24种不同的染色体,其中有22个属于体染色体,另外还有两个能够决定性别的性染色体,分别是X染色体与Y染色体。1号到22号染色体的编号顺序,大致符合他们由大到小的尺寸排列。最大的染色体约含有2.5亿个碱基对,最小的则约有3800万个碱基对。这些染色体通常以细丝状存于细胞核内,若将单一细胞内的染色体拉成直线,那么将大约有6英尺长。在人类个体的体细胞中,通常含有来自亲代的1到22对体染色体,再加上来自母亲的X染色体,以及来自父亲的X或Y染色体,总共是46个(23对)染色体。
什么是基因组?什么是基因组学
什么是基因和人类基因组计划 现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。 人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但每一座山峰与山谷。虽然很慢,但非常精确。 随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体康健状状 况将会提高,二十一世纪的医学基础将由此奠定。 利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。
基因组名词解释
基因的解释 [gene] 存在于细胞的染色体上的生物体遗传的基本单位 详细解释 (1).起因;基本 原因 。 郁达夫 《杨梅烧酒》 :“而这一出实在 也是 滑稽 得很的小悲剧,现在却 终于 成了我们两个旧友的再见的基因。” 郭沫若 《羽书集·驳<实庵字说>》 :“我的其它的 不同 性质 的 著作 ,都以同样形式发表了的,也都基因于这样的理由。” (2).[英gene]存在于细胞内有自体繁殖 能力 的遗传的基本单位。 张洁 《爱,是不能 忘记 的》 :“莫非我那‘贼风入耳"的毛病是从她那里来的? 大约 我们的细胞中主管‘贼风入耳"这种遗传性状的是一个 特别 尽职 尽责 的基因。” 词语分解 基的解释 基 ī 建筑物的根脚:基石。 基础 。 奠基 。 根本的,起始的:基本。基业。基层。基点。基准。 根据:基于。 化学上化合物的分子中所含的一部分子原子被看作是一个单位时,称作“基”:基团。基态。氨基。羧基。 因的解释 因 ī 原故,原由,事物发生前已 具备 的条件:原因。因素。因果。病因。 理由:因为(唅 )。因而。 依,顺着,沿袭:因此。因之。 因循 (a.沿袭;b.迟延拖拉)。 因噎废食 。陈陈相因。 果 笔画数:; 部
什么是基因组,和基因有什么关系
基因组是生物体所有遗传物质的总和。一个基因组中包含一整套基因。在分子生物学和遗传学领域,基因组指生物体所有遗传物质的总和。这些遗传物质包括DNA或RNA(病毒RNA)。基因组DNA包括编码DNA和非编码DNA、线粒体DNA和叶绿体DNA。基因组这个术语由德国汉堡大学植物学教授Hans Winkler于1920年创建。在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。扩展资料:当环境中的有害物质进入受精卵或母体,当父母有一定的共同血缘或有一定相同数目的遗传基因关系,在这些情况下,后代的基因组里的基因会发生缺陷,产生疾病。通过使用基因芯片等技术分析人类基因组,可找出致病的遗传缺陷基因区域。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。参考资料来源:百度百科——基因组百度百科——基因
基因和基因组有什么区别?
基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。 《遗传学名词》第二版对“基因组”的释义: 单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。 基因组文库 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。 cDNA文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA。
病毒的基因组是由什么构成的?
1.病毒基因组大小相差较大,与细菌或真核细胞相比,病毒的基因组很小,但是不同的病毒之间其基因组相差亦甚大。如乙肝病毒DNA只有3kb大小,所含信息量也较小,只能编码4种蛋白质,而痘病毒的基因组有300kb之大,可以编码几百种蛋白质,不但为病毒复制所涉及的酶类编码,甚至为核苷酸代谢的酶类编码,因此,痘病毒对宿主的依赖性较乙肝病毒小得多。 2.病毒基因组可以由DNA组成,也可以由RNA组成,每种病毒颗粒中只含有一种核酸,或为 DNA或为RNA,两者一般不共存于同一病毒颗粒中。组成病毒基因组的DNA和RNA可以是单链的,也可以是双链的,可以是闭环分子,也可以是线性分子。如乳头瘤病毒是一种闭环的双链DNA病毒,而腺病毒的基因组则是线性的双链DNA,脊髓灰质炎病毒是一种单链的RNA病毒,而呼肠孤病毒的基因组是双链的 RNA分子。一般说来,大多数DNA病毒的基因组双链DNA分子,而大多数RNA病毒的基因组是单链RNA分子。 3.多数RNA病毒的基因组是由连续的核糖核酸链组成,但也有些病毒的基因组RNA由不连续的几条核酸链组成如流感病毒的基因组RNA分子是节段性的,由八条RNA分子构成,每条RNA分子都含有编码蛋白质分子的信息;而呼肠孤病毒的基因组由双链的节段性的RNA分子构成,共有10个双链RNA片段,同样每段RNA分子都编码一种蛋白质。目前,还没有发现有节段性的DNA分子构成的病毒基因组。 4.基因重叠即同一段DNA片段能够编码两种甚至三种蛋白质分子,这种现象在其它的生物细胞中仅见于线粒体和质粒DNA,所以也可以认为是病毒基因组的结构特点。这种结构使较小的基因组能够携带较多的遗传信息。重叠基因是1977年Sanger在研究ΦX174时发现的。ΦX174是一种单链DNA病毒,宿主为大肠杆菌,因此,又是噬菌体。它感染大肠杆菌后共合成11个蛋白质分子,总分子量为25 万左右,相当于6078个核苷酸所容纳的信息量。而该病毒DNA本身只有5375个核苷酸,最多能编码总分子量为20万的蛋白质分子,Sanger在弄清 ΦX174的11个基因中有些是重叠的之前,这样一个矛盾长时间无法解决。重叠基因有以下几种情况: (1)一个基因完全在另一个基因里面。如基因A和B是两个不同基因,而B包含在基因A内。同样,基因E在基因D内。 (2)部分重叠。如基因K和基因A及C的一部分基因重叠。 (3)两个基因只有一个碱基重叠。如基因D的终止密码子的最后一个碱基是J基因起始密码子的第一个碱基(如TAATG)。这些重叠基因尽管它们的DNA大部分相同,但是由于将mRNA翻译成蛋白质时的读框不一样,产生的蛋白质分子往往并不相同。有些重叠基因读框相同,只是起始部位不同,如SV40DNA基因组中,编码三个外壳蛋白VP1、VP2、VP3基因之间有122个碱基的重叠,但密码子的读框不一样。而小t抗原完全在大T抗原基因里面,它们有共同的起始密码子。 5.病毒基因组的大部分是用来编码蛋白质的,只有非常小的一份不被翻译,这与真核细胞DNA的冗余现象不同如在ΦX174中不翻译的部份只占217/5375,G4DNA中占282/5577,都不到5%。不翻译的DNA顺序通常是基因表达的控制序列。如ΦX174的H基因和A基因之间的序列(3906-3973),共67个碱基,包括RNA聚合酶结合位,转录的终止信号及核糖体结合位点等基因表达的控制区。乳头瘤病毒是一类感染人和动物的病毒,基因组约8.0Kb,其中不翻译的部份约为1.0kb,该区同样也是其他基因表达的调控区. 6.病毒基因组DNA序列中功能上相关的蛋白质的基因或rRNA的基因往往丛集在基因组的一个或几个特定的部位,形成一个功能单位或转录单元。它们可被一起转录成为含有多个mRNA的分子,称为多顺反子 mRNA(polycistroniemRNA),然后再加工成各种蛋白质的模板mRNA。如腺病毒晚期基因编码病毒的12种外壳蛋白,在晚期基因转录时是在一个启动子的作用下生成多顺反子mRNA,然后再加工成各种mRNA,编码病毒的各种外壳蛋白,它们在功能上都是相关的;ΦX174基因组中的D- E-J-F-G-H基因也转录在同一mRNA中,然后再翻译成各种蛋白质,其中J、F、G及H都是编码外壳蛋白的,D蛋白与病毒的装配有关,E蛋白负责细菌的裂解,它们在功能上也是相关的。 7.除了反转录病毒以外,一切病毒基因组都是单倍体,每个基因在病毒颗粒中只出现一次。反转录病毒基因组有两个拷贝。 8.噬菌体(细胞病毒)的基因是连续的;而真核细胞病毒的基因是不连续的,具有内含子,除了正链RNA病毒之外,真核细胞病毒的基因都是先转录成mRNA前体,再经加工才能切除内含子成为成熟的mRNA。更为有趣的是,有些真核病毒的内含子或其中的一部分,对某一个基因来说是内含子,而对另一个基因却是外显子。如SV40和多瘤病毒(polyomavirus)的早期基因就是这样。SV40的早期基因即大T和小t抗原的基因都是从5146开始反时针方向进行,大T抗原基因到2676位终止,而小t抗原到4624位即终止了,但是,从4900到 4555之间一段346bp的片段是大T抗原基因的内含子,而该内含子中从4900-4624之间的DNA序列则是小t抗原的编码基因。同样,在多瘤病毒中,大T抗原基因中的内含子则是中T和t抗原的编码基因。