腺嘌呤 黄嘌呤 次黄嘌呤的化学结构式及它们之间的代谢关系是什么?
腺苷酸分解产生次黄嘌呤,次黄嘌呤氧化成黄嘌呤。
次黄嘌呤的制备方法
氰乙酸乙酯与乙醇钠、硫脲经环合反应得到2-巯基-4-氨基-6-羟基嘧啶,再经亚硝化、还原、消除、环合,制得6-羟基嘌呤 。
次黄嘌呤(I)为什么会与A、U、C配对?
这是由于结构的关系 次黄嘌呤(I) 是 G A 的前体 可以和A、U、C 以氢键配对 G因为比A少了一个 =0所以不行
培养基中次黄嘌呤钠的作用
在培养基中加入适量的次黄嘌呤或cAMP可增加配子体的产生,也有实验证明,cAMP对疟原虫有致死作用,不适用于诱导配子体产生。不同的恶性疟原虫分离株,甚至同一分离株的不同克隆产生配子体的能力也有明显差异,一些可产生较高的配子体血症,另一些则不产生明显的配子体血症。恶性疟原虫配子体体外培养技木已广泛用于研究疟原虫有性体的发育过程、免疫学及抗疟药物。
次黄嘌呤的介绍
本品水中溶解度为0.078/100m1(19℃)1.4g/100ml(100℃)。溶于稀酸和碱,如0.5mol/L硫酸或10mol/L氢氧化钠中,100℃,1h后小于5%分解。在生物学上,次黄嘌呤用大写字母“I”表示,可以由鸟嘌呤脱去一个氨基得到。
次黄嘌呤i对应的碱基是什么
次黄嘌呤i对应的碱基是稀有碱基。次黄嘌呤是稀有碱基,可以与A、C、U配对。体外试验表明,有些情况下也可与与G配对;该现象称为摆动现象。由于存在摆动现象,使得一个tRNA反密码子可以和一个以上的mRNA密码子结合。
次黄嘌呤核苷酸元素来源顺口溜
嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及co2等为原料合成嘌呤核苷酸的过程。 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(imp),然后imp再转变成腺嘌呤核苷酸(amp)与鸟嘌呤核苷酸(gmp)。 嘌呤环各元素来源如下:n1由天冬氨酸提供,c2由n10-甲酰fh4提供、c8由n5,n10-甲炔fh4提供,n3、n9由谷氨酰胺提供,c4、c5、n7由甘氨酸提供,c6由co2提供。 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。 反应过程中的关键酶包括prpp酰胺转移酶、prpp合成酶。prpp酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。imp、amp及gmp使活性形式转变成无活性形式,而prpp则相反。 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的prpp合成酶和prpp酰胺转移酶活性可被合成产物imp、amp及gmp等抑制;在形成amp和gmp过程中,过量的amp控制amp的生成,不影响gmp的合成,过量的gmp控制gmp的生成,不影响amp的合成;imp转变成amp时需要gtp,而imp转变成gmp时需要atp。
嘌呤 腺嘌呤 鸟嘌呤 黄嘌呤 次黄嘌呤 分别是什么,是什么关系?
你好!首先祝你身体健康!以下我来给你谈谈关于“痛风与嘌呤”的问题。 痛风是一种嘌吟代谢紊乱所致的疾病,其临床表现为高尿酸血症及因此而引起的急性或慢性痛风性关节炎反复发作。久病者有尿酸盐沉积,引起关节肿胀畸形,并常累及肾脏引起慢性间质性肾炎和尿酸肾结石形成。由于嘌岭代谢紊乱常伴有脂肪代谢紊乱,可引起高脂血症及心血管疾病。 尿酸是嘌呤代谢的终末产物。如果嘌呤(特别是次黄嘌呤)合成增加或代谢过多,体内产生的尿酸就增多,过多的尿酸沉积在关节及其周围组织、肾脏及皮下结缔组织等部位,便引起痛风发作。 1)引起原因 引起嘌吟代谢紊乱的原因有以下二则: 1. 可能是由于嘌呤合成与分解代谢中的酶有缺陷,引起尿酸生成增加。 2. 是由肾脏功能减低或药物引起尿酸重吸收增加及肾小管对尿酸的分泌减少导致尿酸排泄减少。 不管是尿酸生成过多或者是尿酸排泄减少,最终都可能引起高尿酸血症并发生痛风。 在临床上,称前者为原发性痛风,后者为继发性痛风,一般说后者较前者多见。 2)食物含量 痛风病系由于嘌呤代谢失调,导致尿酸产生过多或排泄减少而引起的反复发作急性或慢性痛风性关节炎,血尿酸浓度增高。我们血中的尿酸一半来自体内合成,一半来自高蛋白高嘌呤饮食。所以痛风病应尽量少摄入嘌呤以减少体内尿酸生成。 1. 在日常生活中,含嘌呤较少的食物有: ① 谷类,如精白米、富强粉、玉米、精白面包、馒头、面条、通心粉等。 ② 蔬菜类,如卷心菜、胡萝卜、芹菜、黄瓜等。各种蛋类、乳类和各种水果等。 2. 含嘌呤较高的食物主要是: ① 高蛋白的肉类(尤其是内脏)、豆制品、凤尾鱼、沙丁鱼等。痛风病者应忌食或少食这类食品。 ② 由于长期限制肉类、豆制品等的摄入,故应适当补充铁剂和维生素B、C、E等。 以上回答如果满意,请不要辜负我的一片好意,及时采纳为答案。
引物中使用次黄嘌呤
题主是否想询问“引物中能否使用次黄嘌呤”可以使用。根据查询相关公开信息显示,次黄嘌呤是一种DNA碱基修饰物,可以通过DNA甲基化酶将甲基基团添加到DNA上。在PCR扩增中,引物中使用次黄嘌呤可以增加PCR扩增的特异性和选择性,从而提高PCR扩增的效率和准确性。
次黄嘌呤核苷酸合成需要几个atp
体内嘌呤核苷酸的合成有下列两条途径: (1)从头合成途径:利用磷酸核糖、氨基酸、一碳单位和co等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸,此途径在肝细胞胞液中进行,反应步骤较为复杂,可分为两阶段 1)首先合成次黄嘌呤核苷酸(imp),共经历11步反应,其起始阶段的磷酸核糖焦磷酸(prpp)合成酶和prpp酰胺转移酶是两个关键酶。 2)imp再转变成腺嘌呤核苷酸(amp)和鸟嘌呤核苷酸(gmp)。 反应特点:嘌呤核苷酸是在磷酸核糖分子上逐步合成的,imp的合成需5个atp、6~p。amp或gmp的合成,再需消耗1个atp。 (2)补救合成途径:细胞利用现成的游离嘌呤碱或嘌呤核苷重新合成嘌呤核苷酸,称为补救合成途径,其反应过程较简单,合成部位是脑、骨髓,两种特异性不同的酶——腺嘌呤磷酸核糖转移酶(aprt)和次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hgprt)参与嘌呤核苷酸的补救合成。
次黄嘌呤生成黄嘌呤反应式
次黄嘌呤H2O+O2黄嘌呤H2O2+O2+2。次黄嘌呤是一种常见的嘌呤化合物,具有高活性的6-羟基功能团。黄嘌呤是嘌呤代谢后的一种产物,对人体有利的一面,也有有害的一面。次黄嘌呤生成黄嘌呤反应式是次黄嘌呤H2O+O2黄嘌呤H2O2+O2+2。
次黄嘌呤识别哪几种核苷酸
嘌呤核苷酸(AMP)和次黄嘌呤核苷酸(XMP)。次黄嘌呤(英语:Hypoxanthine)也称6-羟基嘌呤,是一种天然存在的嘌呤衍生物,它的核苷酸肌苷酸是核酸的嘌呤核苷酸的合成前体,可以识别嘌呤核苷酸(AMP)和次黄嘌呤核苷酸(XMP)。
七甲基鸟嘌呤是稀有碱基吗
不是。稀有碱基,称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成,七甲基鸟嘌呤是人工合成碱基。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,他们是天然存,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。
次黄嘌呤最常见稀有碱基
次黄嘌呤是最常见稀有碱基。根据查询相关资料信息显示,次黄嘌呤的制备方式简单,对生存环境的要求低,是最常见的稀有碱基。次黄嘌呤是集生物发酵、化学合成核苷类抗病毒药品,可以帮助铁的吸收,促进智力的发育,用作巯嘌呤和硫唑嘌呤的原料。
腺嘌呤 腺苷 腺苷酸 腺苷三磷酸 脱氧三磷酸腺苷 腺嘌呤脱氧核苷酸 核糖 脱氧核糖的区别?
核糖脱氧核糖都是五碳糖,两者差一个氧。腺嘌呤是碱基。腺苷是腺嘌呤和核糖组成的。腺苷三磷酸是腺苷和三个磷酸组成的。腺嘌呤脱氧核苷酸是由腺嘌呤和脱氧核糖还有磷酸组成的,三者都是一个。由名子类推就知道了。
嘌呤食物的嘌呤核苷酸的合成代谢:
体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。 1.嘌呤核苷酸的从头合成 肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。 2.嘌呤核苷酸的补救合成 反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。 3.嘌呤核苷酸的相互转变 IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。 4.脱氧核苷酸的生成 体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。 5.嘌呤核苷酸的抗代谢物 ①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。 ②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。 ③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。
临床最常用嘌呤类似物有哪些?
核苷酸抗代谢物中,常用嘌呤类似物是巯嘌呤,常用嘧啶类似物是氟尿嘧啶 。嘌呤核苷酸代谢的终产物为尿酸,该产物增多导致的疾病称为痛风症 。体内脱氧核苷酸是由核糖核苷酸还原而成,催化此反应的酶是核糖核苷酸还原酶 。
核苷酸的嘌呤核苷酸
体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。⒈嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。⒉嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。⒊嘌呤核苷酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。⒋脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。⒌嘌呤核苷酸的抗代谢物①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。 分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。⒈从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。⒉补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。⒊自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。
嘌呤的合成代谢
嘌呤核苷酸的合成代谢 体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。1.嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。2.嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。3.嘌呤核苷酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。4.脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。5.嘌呤核苷酸的抗代谢物① 嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。② 氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。③ 叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。
红细胞中嘌呤核苷酸代谢或合成途径。
体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。⒈嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。⒉嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。⒊嘌呤核苷酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。⒋脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。⒌嘌呤核苷酸的抗代谢物①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。⒈从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。⒉补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。⒊自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。
嘌呤核苷酸代谢的终产物增多导致的疾病称
正确答案:D解析:核苷酸抗代谢物中,常用嘌呤类似物是巯嘌呤,常用嘧啶类似物是氟尿嘧啶。嘌呤核苷酸代谢的终产物为尿酸,该产物增多导致的疾病称为痛风症。体内脱氧核苷酸是由核糖核苷酸还原而成,催化此反应的酶是核糖核苷酸还原酶。
又称为腺嘌呤,是生物体内辅酶与核酸的组成和活性成分,具有刺激骨髓白细胞增生作用的是
【答案】:D本题考查升白细胞药的药理作用与作用机制。(1)重组人粒细胞集落刺激因子(rhG—CSF):是利用基因重组技术生产的人粒细胞集落刺激因子,粒细胞集落刺激因子是调节骨髓中粒系造血的主要细胞因子之一,选择性作用于粒系造血祖细胞,促进其增殖、分化,并可增加粒系终末分化细胞的功能。(2)重组人粒细胞巨噬细胞集落刺激因子(rhGM—CSF):作用于造血祖细胞,促进其增殖和分化,其重要作用是刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及嗜酸性细胞的多种功能。(3)蛋白同化激素俗称合成类固醇,是一类拟雄性激素的人工合成的甾体激素,临床上应用的主要有甲睾酮、丙酸睾酮、十一酸睾酮、丙酸诺龙、司坦唑醇、群勃龙、脱氢异雄酮等。由于其主要结构与雄激素颇为相似,因此具有与雄激素相似的生理作用,但其雄性化作用甚弱,而蛋白同化作用却很强,临床上有多种用途,其中一种用途是作为升白药物使用,能刺激骨髓造血功能,使红细胞和血红蛋白量升高。(4)利可君(利血生)是一种噻唑羧酸类升白细胞药,为半胱氨酸的衍生物,能分解为半胱氨酸和醛,具有促进骨髓内粒细胞生长和成熟的作用,可促进白细胞增生。(5)小檗胺是从小檗科植物中提取的双苄基异喹啉类生物碱,其作用广泛,具有促进白细胞增生、抗炎、降血压、抗肿瘤、抗心肌缺氧缺血、抗心律失常等作用。(6)维生素B4又称腺嘌呤,是生物体内辅酶与核酸的组成和活性成分,其参与机体的代谢功能,具有刺激骨髓白细胞增生的作用。(7)鲨肝醇在动物骨髓造血组织中含量较多,可能是体内造血因子之一,有促进白细胞增生及抗放射线的作用。(8)脱氧核苷酸钠是为复方制剂,组分为脱氧糖胞嘧啶核苷酸、脱氧核糖腺嘌呤核苷酸、脱氧核糖胸腺嘧啶核苷酸及脱氧核糖鸟嘌呤核苷酸钠盐。有促进细胞活力的功能,以及改变机体代谢的作用。本故正确答案为D。
腺嘌呤核苷三磷酸的再生与转化
ATP在细胞中易于再生,所以是源源不断的能源。这种通过ATP的水解和合成而使放能反应所释放的能量用于吸能反应的过程称为ATP循环。因为ATP是细胞中普遍应用的能量的载体,所以常称之为细胞中的能量通货。细胞内ATP与ADP相互转化的能量供应机制,是生物界的共性。从生物能量学的角度来看,ATP是生化系统的核心,即各种生化循环(如卡尔文循环、糖酵解和三羧酸循环等)均与ATP相耦联,或者说将ATP—ADP与各种代谢(合成与分解)相耦联。ATP是光能转化为化学能的唯一产物,而遗传系统是生化系统的一部分,因此,ATP被认为在遗传密码子的起源中起到了关键作用。
腺嘌呤核糖核苷酸 腺苷酸 三磷酸腺苷 腺苷 求区别
腺苷酸是腺嘌呤核糖核苷酸的中文简称,也称AMP,一磷酸腺苷,是一回事。三磷酸腺苷提供人体几乎所有的能量,也就是我们常提到的ATP。腺苷酸脱去所有的磷酸就是腺苷。
腺嘌呤核苷三磷酸生成atp的分子数为2.5
是的。新版教材都改为2.5/1.5。1、原核生物:NADH经过呼吸链(位于细胞膜上)产生2.5个ATP2、真核生物:细胞质中的NADH进入线粒体有两种不同的穿梭机制:α磷酸甘油穿梭和苹果酸-天冬氨酸穿梭;前者就是NADH将还原当量传递给FAD形成FADH2,生成的是1.5个ATP;后者依然是2.5个ATP。扩展资料:ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通磷酸键。ATP在ATP水解酶的作用下离A(腺苷)最远的“~”(高能磷酸键)断裂,ATP水解成ADP+Pi(游离磷酸基团)+能量。ATP分子水解时,实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。参考资料来源:百度百科-腺嘌呤核苷三磷酸
图1方块中的为什么是腺嘌呤核糖核苷酸,而不是……脱氧……
图片中所呈现的是 “腺嘌呤核苷三磷酸”(简称三磷酸腺苷 ,又称ATP adenosine triphosphate)ATP是由由一分子腺嘌呤,一分子核糖和三分子磷酸基团(Pi)组成,是细胞生物的直接能源来源,所以常称之为细胞中的能量通货。其中腺嘌呤、核糖以及一分子的磷酸基团以 腺嘌呤核糖核苷酸(AMP)的形式呈现(如图中方框中内容);其余的两分子磷酸则是以高能磷酸键(如图示b、c)相继连接在AMP的磷酸上。由此,组成ATP的五碳糖类型即为核糖,而非脱氧核糖。ATP一共存在两个高能磷酸键,在断裂时,由离核苷酸最远的首先断裂(如图c)而形成一分子的二磷酸腺苷(又称ADP,Adenosine diphosphate)、一分子的磷酸(Pi)以及高达30.54kJ/mol的能量,但是大部分会以热能散失(如图2)。值得一提的是,ATP在身体内的含量并不高,在需要时合成以及水解,源源不断地为生物体提供能源。
腺嘌呤核苷三磷酸怎么读
Adenosine Triphosphate [densi:n,-sin ‘traifsfeit]
腺嘌呤核苷三磷酸是什么?
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。作用:ATP是生物体的“能量通货”,ATP中的两个高能磷酸键可以断裂放能,供酶、原发性主动转运载体等使用,为生命活动供能。很多反应都直接间接地要ATP帮忙。ATP是耗能反应的直接能量来源,ATP间接为信息传递提供原料,ATP形成的cAMP(环状腺苷单磷酸)是细胞中一种重要的信号物质,也叫第二信使。扩展资料:对于动物、人、真菌和大多数细菌来说,AYP均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。ATP发生水解时,形成ADP并释放一个磷酸根,同时释放能量。这些能量在细胞中就会被利用,肌肉收缩产生的运动,神经细胞的活动,生物体内的其他一切活动利用的都是ATP水解时产生的能量。参考资料来源:百度百科-腺嘌呤核苷三磷酸
腺嘌呤核苷三磷酸的作用是什么
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。作用:ATP是生物体的“能量通货”,ATP中的两个高能磷酸键可以断裂放能,供酶、原发性主动转运载体等使用,为生命活动供能。很多反应都直接间接地要ATP帮忙。ATP是耗能反应的直接能量来源,ATP间接为信息传递提供原料,ATP形成的cAMP(环状腺苷单磷酸)是细胞中一种重要的信号物质,也叫第二信使。扩展资料:对于动物、人、真菌和大多数细菌来说,AYP均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。ATP发生水解时,形成ADP并释放一个磷酸根,同时释放能量。这些能量在细胞中就会被利用,肌肉收缩产生的运动,神经细胞的活动,生物体内的其他一切活动利用的都是ATP水解时产生的能量。参考资料来源:百度百科-腺嘌呤核苷三磷酸
什么是腺嘌呤核苷三磷酸,有什么作用?
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。作用:ATP是生物体的“能量通货”,ATP中的两个高能磷酸键可以断裂放能,供酶、原发性主动转运载体等使用,为生命活动供能。很多反应都直接间接地要ATP帮忙。ATP是耗能反应的直接能量来源,ATP间接为信息传递提供原料,ATP形成的cAMP(环状腺苷单磷酸)是细胞中一种重要的信号物质,也叫第二信使。扩展资料:对于动物、人、真菌和大多数细菌来说,AYP均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。ATP发生水解时,形成ADP并释放一个磷酸根,同时释放能量。这些能量在细胞中就会被利用,肌肉收缩产生的运动,神经细胞的活动,生物体内的其他一切活动利用的都是ATP水解时产生的能量。参考资料来源:百度百科-腺嘌呤核苷三磷酸
腺嘌呤核苷三磷酸是什么?
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。作用:ATP是生物体的“能量通货”,ATP中的两个高能磷酸键可以断裂放能,供酶、原发性主动转运载体等使用,为生命活动供能。很多反应都直接间接地要ATP帮忙。ATP是耗能反应的直接能量来源,ATP间接为信息传递提供原料,ATP形成的cAMP(环状腺苷单磷酸)是细胞中一种重要的信号物质,也叫第二信使。扩展资料:对于动物、人、真菌和大多数细菌来说,AYP均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。ATP发生水解时,形成ADP并释放一个磷酸根,同时释放能量。这些能量在细胞中就会被利用,肌肉收缩产生的运动,神经细胞的活动,生物体内的其他一切活动利用的都是ATP水解时产生的能量。参考资料来源:百度百科-腺嘌呤核苷三磷酸
腺嘌呤核苷三磷酸详细资料大全
腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。 腺苷三磷酸(ATP adenosine triphosphate)是由腺嘌呤、核糖和3个磷酸基团连线而成,水解时释放出能量较多,是生物体内最直接的能量来源。 基本介绍 中文名称 :腺嘌呤核苷三磷酸 英文名称 :Adenosine triphosphate 中文别名 :5"-三磷酸腺苷、腺苷三磷酸 英文缩写 :ATP CAS号 :56-65-59000-83-3 EINECS号 :200-283-2 分子量 :507.18 分子式 :C10H16N5O13P3 物质信息,分子简式,能源物质,生理功能,代谢,无氧代谢,有氧代谢,人体中的ATP,再生与转化,配位原理, 物质信息 别名:三磷酸腺苷 英文名:5"-Adenylate triphosphate;Adenosine 5"-triphosphate; [(2R,3S,4R,5R)-5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl (hydroxy-phosphonooxyphosphoryl) hydrogen phosphate;ATP 分子简式 ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键(能量大于29.32kJ/mol的磷酸键称为高能磷酸键)。它有2个高能磷酸键,1个普通磷酸键。合成ATP的能量,对于动物、人、真菌和大多数细菌来说,均来自于细胞进行呼吸作用释放的能量;对于绿色植物来说,除了呼吸作用之外,在进行光合作用时,ADP合成ATP还利用了光能。ATP在ATP水解酶的作用下离A(腺苷)最远的“~”(高能磷酸键)断裂,ATP水解成ADP+Pi(游离磷酸基团)+能量。ATP分子水解时,实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。 ATP是一种高能磷酸化合物,在细胞中,它能与ADP的相互转化实现贮能和放能,从而保证了细胞各项生命活动的能量供应。生成ATP的途径主要有两条:一条是植物体内含有叶绿体的细胞,在光合作用的光反应阶段生成ATP;另一条是所有活细胞都能通过细胞呼吸生成ATP。 能源物质 肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷酸肌酸(CP)、肌糖原和脂肪等。 生理功能 体育运动加速体内能源物质的消耗,促进体内物质的分解与合成,使组织细胞得到比原有水平更多的营养补充,有机体获得更加旺盛的活动能力,从而使 身体不断发展、完善,这就是体育锻炼促进身体健康发展的基本道理。体育运动消耗体内的能源物质,经过一段时间休息后,体内能源物质可以恢复甚至超过原有水平,这种变化称为超量恢复。出现超量恢复的程度和时间的早晚取决于运动量的大小。在一定范围内运动量越大,体内能源物质消耗越多,超量恢复的幅度也越大,但所需的时间也长,在身体出现超量恢复阶段,进行第二次适宜的运动与休息,可以逐步提高人体的能量供应水平,从而不断提高人体运动能力。长时间的运动是在有氧代谢的条件下进行的,要靠脂肪的代谢提供能量,因此,有氧运动是消耗脂肪达到减肥目的的有效方法。无氧代谢能力是速度素质的重要基础。体育课发展无氧代谢能力的方法,一般采用间歇性练习和持续性练习。间歇练习主要发展ATP—CP系统的供能能力。一般每次练习在30秒以内,进行1~3分的积极性休息,再进行适宜练习,可以提高速度素质。持续练习主要发展乳酸系统的供能力。一般每次练习在30秒以上,每次休息时间较短,可以提高速度耐力。有氧代谢能力是人体长时间进行有氧运动的能力。发展有氧代谢能力关键在于有充足的氧供应,即人体单位时间内吸收、利用氧的最大数值——最大耗氧量。最大耗氧量与单位时间内血液循环携带、运输氧有密切的关系。因此,心肺功能的好坏,直接影响到最大耗氧量。采用较低或中等运动强度、持续时间较长的练习,由于机体可以得到充足的氧供应,进行有氧氧化供能,所以,可以提高有氧代谢能力,从而提高心肺功能。运动中机体供能的方式可分两类:一类是无氧供能,即在无氧或氧供应相对不足的情况下,主要靠ATP、CP分解供能和糖元无氧酵解供能(即糖元无氧的情况下分解成为乳酸同时供给机体能量)。这类运动只能持续很短的时间(约 l一3分钟)。800米以下的全力跑、短距离冲刺都属于无氧供能的运动。另一类为有氧供能,即运动时能量主要来自糖元(脂肪、蛋白质)的有氧氧化。由于运动中供氧充分,糖元可以完全分解,释放大量能量,因而能持续较长的时间。这类运动如5000米以上的跑步,1500米以上的游泳、慢跑、散步、迪斯科、交谊舞、脚踏车、太极拳等都属于这类运动。由此,我们可以得到一个简单的启示:即大强度的运动不可能持续很长时间,总的能量消耗较少,因而不是理想的减肥运动方式;而强度较低的运动由于供氧充分,持续时间长,总的能量消耗多,更有利于减肥。减肥的最终目的是消耗体内过多的脂肪,而不是减少水分或其它成分。 三磷酸腺苷 代谢 无氧代谢 剧烈运动时,体内处于暂时缺氧状态, 在缺氧状态 *** 内能源物质的代谢过程,称为无氧代谢。它包括以下两个供能系统。 ①非乳酸能(ATP—CP)系统—一般可维持10秒肌肉活动 无氧代谢 ②乳酸能系统—一般可维持1~3分的肌肉活动 非乳酸能(ATP—CP)系统和乳酸能系统是从事短时间、 剧烈运动肌肉供能的主要方式。ATP释放能量供肌肉收缩的时间仅为1~3秒, 要靠CP分解提供能量,但肌肉中PC的含量也只能够供ATP合成后 分解的能量维持6~8秒肌肉收缩的时间。因此, 进行10秒以内的快速活动主要靠ATP—CP系统供给肌肉收缩时的能量。 乳酸能系统是持续进行剧烈运动时,肌肉内的肌糖元在缺氧状态下进行酵解, 经过一系列化学反应,最终在体内产生乳酸,同时释放能量供肌肉收缩。 这一代谢过程,可供1~3分左右肌肉收缩的时间。 有氧代谢 是在氧充足的条件下,肝糖元或脂肪彻底氧化分解,最终生成大量二氧化碳(CO 2 )和水(H 2 O), 同时释放能量并生成ATP,称为有氧氧化系统。 人体中的ATP 人体内约有50.7gATP,只能维持剧烈运动0.3秒,ATP与ADP可迅速转化,保持一种平衡。ADP转化成ATP过程,需要能量。 ADP转化为ATP是所需要的能量的主要来源 当ADP与磷酸基结合并获得8千卡能量,可形成ATP。 对于动物、人、真菌和大多数细菌来说,均来自细胞进行呼吸作用时有机物分解所释放的能量。对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。 ATP发生水解时,形成ADP并释放一个磷酸根,同时释放能量。这些能量在细胞中就会被利用,肌肉收缩产生的运动,神经细胞的活动,生物体内的其他一切活动利用的都是ATP水解时产生的能量。 再生与转化 ATP在细胞中易于再生,所以是源源不断的能源。这种通过ATP的水解和合成而使放能反应所释放的能量用于吸能反应的过程称为ATP循环。因为ATP是细胞中普遍套用的能量的载体,所以常称之为细胞中的能量通货。 ATP连线了光合、代谢和遗传 细胞内ATP与ADP相互转化的能量供应机制,是生物界的共性。从生物能量学的角度来看,ATP是生化系统的核心,即各种生化循环(如卡尔文循环、糖酵解和三羧酸循环等)均与ATP相耦联,或者说将ATP—ADP与各种代谢(合成与分解)相耦联。ATP是光能转化为化学能的唯一产物,而遗传系统是生化系统的一部分,因此,ATP被认为在遗传密码子的起源中起到了关键作用。 配位原理 (1)由于在咪唑环和苯环上存在N元素,还有苯环上的氨基上的N元素,他们都存在着孤对电子,在溶液中加入金属离子,就有可能发生配位反应。 (2)在酸性溶液中氢离子与金属离子间存在竞争(金属离子有可能被质子化)即氢离子浓度过大。 (3)苯环,咪唑环以及氨基上的N元素的配位能力不一样,配位能力越强的越容易与金属离子发生配位反应。
7甲基鸟嘌呤核苷三磷酸缩写
7甲基鸟嘌呤核苷三磷酸缩写是m7Gppp。7甲基鸟嘌呤核苷三磷酸是mRNA的5的末端“帽”式结构。此结构在蛋白质的生物合成过程中可促进核蛋白体与mRNA的结合,加速翻译起始速度,并增强mRNA的稳定性,防止mRNA从头水解。
嘌呤和嘧啶两类核苷酸合成都需要的酶是
辅脱氢酶2或辅酶2是核苷酸合成酶!给个采纳吧!
为什么Z型DNA序列必须含鸟嘌呤?
你可以百度一下翻板假说。它说的是B型构象向Z型转变的时候鸟嘌呤绕着糖苷键由反式变为顺式,而胞嘧啶连同核糖一起转了个身。正因为如此,才使主链成为之字形。所以,Z-DNA都有鸟嘌呤。
DNA分子中鸟嘌呤和胞嘧啶是通过什么连接起来的?拜托了各位 谢谢
DNA分子中鸟嘌呤和胞嘧啶间互补配对,之间通过3个氢键连接起来。 查看原帖>>
在双链DNA分子中,腺嘌呤占22%,则胞嘧啶占多少? 要求:要有过程!!谢谢
假设有100个碱基。腺嘌呤A=22个A=TG=C所以G+C=100-22*2=56胞嘧啶C=56/2=28胞嘧啶占28/100*100%=28%
DNA分子中腺嘌呤含量为10%,胞嘧啶的含量为多少(过程)
腺嘌呤和胸腺嘧啶含量相同,都为10% 胞嘧啶和鸟嘌呤含量相同,都为40%
鸟嘌呤、腺嘌呤等四个嘌呤的字母记不清楚,有什么办法吗?
简单记忆方法:G,鸟嘌呤,G像一只鸟;T,胸腺嘧啶,T像一个人的躯干和肩膀;C,胞嘧啶,细胞Cell第一个字母就是C;A,腺嘌呤,A长的像乳腺;U,尿嘧啶,像一只尿壶。鸟嘌呤生理生化:鸟嘌呤核苷酸的盐酸盐单水合物100℃失水,200℃失氯化氢成鸟嘌呤。为核酸中嘌呤型碱基之一。存在于DNA和RNA中,可从鸟粪或鱼鳞水解制得,也可以用2,6,8-三氯嘌呤与NaOH水溶液、NH3、HI反应而合成制得。在生物体内,一般是先合成次黄嘌呤核苷酸,经氧化生成黄嘌呤苷酸,再经氨基化生成鸟嘌呤核苷酸,而由鸟嘌呤及其核苷合成鸟嘌呤核苷酸只是核苷酸代谢的一种补救合成途径。
一个双链DNA中,腺嘌呤占20%,则该DNA分子中,胞嘧啶所占比例为多少
根据碱基原则,腺嘌呤占20%,则胸腺嘧啶也占20%,鸟嘌呤和胞嘧啶占60%,鸟嘌呤和胞嘧啶各占30% 规律:双链DNA中,不互补配对的两个碱基的和占总碱基数的一半,即A+C=T+G=A+G=T+C=(A+T+G+C)/2
Cytosine(鸟嘌呤)和Guanine(胞嘧啶),不管在DNA还是RNA中永远配对是什么意思?
DNA中AT CG 各自配对,也就是结合,RNA中AU CG各自结合。ATCGU都是碱基,所以你应该明白了。
腺嘌呤、鸟嘌呤、胞嘧啶属于磷酸还是属于碱基?
核苷酸是由一分子磷酸、一份子五碳糖和一分子含氮碱基组成的。磷酸与含氮碱基是并列的组成成分,腺嘌呤、鸟嘌呤、胞嘧啶属于含氮碱基。
dna中腺嘌呤一定等于胞嘧啶
答案D 嘌呤包括腺嘌呤A和鸟嘌呤G,又在DNA分子中A=T(胸腺嘧啶),G=C(胞嘧啶).故选D.
某dna分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为
某dna分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为35%。维生素B4(英文:VVitamin B4;Adenine phosphate)又称:腺嘌呤,腺嘌呤磷酸盐,6-氨基嘌呤磷酸盐,简写成A,是一种白色结晶性粉末,味微酸。分子式:C5H5N5分子量:135.127,220℃开始升华,360-365℃分解。维生素B4溶于酸和碱,微溶于醇,不溶于醚及氯仿。水溶液呈中性。具有强烈的咸味。是由4,6-二氯-5-硝基嘧啶用氨水氨化得4,6-二氨基-5-硝基嘧啶,再与甲酸、甲酰氨和硫代硫酸钠一起环合而得。主要用于参加DNA和RNA的合成,用于放射治疗、苯中毒和抗肿瘤等引起的白细胞减少症,用于急性粒细胞减少症,医药及生化研究。维生素B4存在于茶叶和甜菜汁等食物中。胞嘧啶:胞嘧啶,学名为4-氨基-2-羰基嘧啶,CAS号是71-30-7,分子式为C4H5N3O。核酸(DNA和RNA)中的主要碱基组成成分之一。胞嘧啶可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。用作药物中间体。学名为4-氨基-2-羰基嘧啶,CAS号是71-30-7,分子式为C4H5N3O。核酸(DNA和RNA)中的主要碱基组成成分之一。胞嘧啶可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。用作药物中间体。简写为C。核酸中嘧啶型碱基之一。存在于DNA和RNA中。在植物DNA中,除胞嘧啶外,还有少量的5-甲基胞嘧啶。在DNA的双股螺旋中,一股链上的胞嘧啶与另一股链上的鸟嘌呤配对,分子间形成三个氢键。这种碱基互补对之间的氢键是DNA双螺旋结构稳定性的重要作用力之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞的药物。可由二巯基尿嘧啶、浓氨水和氯乙酸为原料合成制得。
细胞内,鸟嘌呤不等于胞嘧啶吗
不一定。因为在双链DNA中鸟嘌呤等于胞嘧啶。但细胞中的核酸除了DNA外,还有RNA,在单链RNA中就没不一定是鸟嘌呤等于胞嘧啶了。所以细胞中的鸟嘌呤不一定等于胞嘧啶。
为什么鸟嘌呤和胞嘧啶互补
原因如下: 1、腺嘌呤和胸腺嘧啶之间以两个氢键结合,而鸟嘌呤与胞嘧啶是以三个氢键结合; 2、鸟嘌呤和胞嘧啶互补更有利于DNA分子的稳定性。5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族,它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族,它们的环系是一个六元杂环。因此,腺嘌呤和胸腺嘧啶结合、鸟嘌呤和胞嘧啶结合能使这两种碱基对的结构更相近,分子量相差更小,使得DNA分子更加稳定。
鸟嘌呤和胞嘧啶的数目越多越稳定。为何错
鸟嘌呤(G)与胞嘧啶(C)是以三键相连,应该是鸟嘌呤和胞嘧啶比例越高的DNA分子越稳定
某DNA分子中腺嘌呤含量为20%,则胞嘧啶含量为多少???怎么计算??
DNA分子中,A=T,C=G(相互配对)因此,A=T=20%所以,C=G=(1-20%-20%)/2=30%
嘌呤,嘧啶名词解释分子生物学
嘌呤的解释[purine] 由嘧啶环与咪唑环并合而成的晶体碱C 5 H 4 N 4 ,从尿酸制得,是从尿酸 衍生 的一些化合物的母体(如尿囊素和阿脲) 详细解释 [英purine] 有机 化合物,无色 结晶 ,易溶于水,在人体内氧化而变成尿酸。 词语分解 嘌的解释 嘌 ā 〔嘌呤〕有机化合物,无色结晶,在人体内气化而成尿酸。 疾速:“匪风飘兮,匪车嘌兮”。 部首 :口; 呤的解释 呤 í 〔呤呤〕小声细语。 〔嘌呤〕见“ 嘌”。 部首:口。
嘧啶和嘌呤合成
嘌呤和嘧啶的合成不是单独的而是随着嘌呤或者嘧啶核苷酸的合成一起合成的,所以我就把你的问题理解为嘌呤(嘧啶)核苷酸的合成调控. 嘌呤合成调控有三个主要的反馈机制.1.谷氨酰胺-PRPP酰胺转移酶受到IMP、AMP、GMP反馈抑制,同时PRPP合成酶也受这些物质抑制.2.IMP脱氢酶受GMP抑制.3.AMP抑制腺苷琥珀酸合成酶. 嘧啶也是反馈抑制,CTP反馈抑制ATCase.
嘧啶和嘌呤在结构上有什么区别?
嘧啶(,1,3-二氮杂苯)是一种杂环化合物.嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪.和吡啶一样,嘧啶保留了芳香性. 嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil). Image:Cytosinechemicalstructure.png|胞嘧啶 Image:Thyminechemicalstructure.png|胸腺嘧啶 Image:Uracilchemicalstructure.png|尿嘧啶 其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可.在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合. 杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因.嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸. 嘌呤在人体内主要以嘌呤核苷酸的形式存在.人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸.嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面: 1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位. 2、重要的能源物质三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用. 3、重要的信使分子环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用. 4、作为某些活性基因的载体S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用. 5、参与组成某些辅酶腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用. 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例.在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径.从合成嘌呤的量来看,从头合成途径是主要途径.必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接.嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢.在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏. 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷.次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤.鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤.黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水.研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同.
嘧啶和嘌呤有什么不同
一、化学式不同嘧啶:嘧啶的化学式为Cu2084Hu2084Nu2082。嘌呤:嘌呤的化学式为Cu2085Hu2084Nu2084。二、结构不同嘧啶:嘧啶的化学结构是单环化合物。嘌呤:嘌呤的化学结构是双环化合物。三、分子量不同嘧啶:嘧啶的分子量为80.088。嘌呤:嘌呤的分子量120.11。四、熔点不同嘧啶:嘧啶的熔点为20-22℃。嘌呤:嘌呤的熔点为214℃。参考资料来源:百度百科-嘧啶百度百科-嘌呤
嘌呤和嘧啶为什么也叫生物碱
嘧啶(C4H4N2,1,3-二氮杂苯)是一种杂环化合物.嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪.和吡啶一样,嘧啶保留了芳香性.形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可.在碱基互补配对时,胸腺嘧啶或尿嘧啶(RNA中)与腺嘌呤(DNA中)以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合.一种碱性喊氮杂环有机化合物.其衍生物胞嘧啶,尿嘧啶,胸腺嘧啶等是核酸的重要组成成分.生物碱(alkaloid)是存在于自然界(主要为植物,但有的也存在于动物)中的一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱.大多数有复杂的环状结构,氮素多包含在环内,有显著的生物活性
生物上的嘌呤和嘧啶各是什么东西?
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。 嘧啶与核酸 形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 Image:Cytosine chemical structure.png|胞嘧啶 Image:Thymine chemical structure.png|胸腺嘧啶 Image:Uracil chemical structure.png|尿嘧啶 其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物 嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面: 1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。 3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。 5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。
嘧啶和嘌呤在结构上有什么区别?求解
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。Image:Cytosine chemical structure.png|胞嘧啶Image:Thymine chemical structure.png|胸腺嘧啶Image:Uracil chemical structure.png|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。]
ATCGU分别是什么嘧啶什么嘌呤
A腺嘌呤T胸腺嘧啶C胞嘧啶G鸟嘌呤U尿嘧啶DNA与RNA中的碱基是不一样的.DNA为ATCG,名称为X嘧啶/嘌呤+脱氧核苷酸RNA为AUCG,名X嘧啶/嘌呤+核糖核苷酸.很不幸,这些在高中生物书和度娘百科上有.
嘧啶和嘌呤在结构上有什么区别?
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。Image:Cytosine chemical structure.png|胞嘧啶Image:Thymine chemical structure.png|胸腺嘧啶Image:Uracil chemical structure.png|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。
嘌呤和嘧啶的个数有什么关系?
嘧啶有:C咆嘧啶、T胸腺嘧啶、U尿嘧啶 嘌呤有:G鸟嘌呤、A腺嘌呤 C=G,A=T或A=U. 嘧啶的百分比和嘌呤的百分比的和等于1
生物学中的嘧啶和嘌呤的代码
DNA中 腺嘌呤A—胸腺嘧啶T 鸟嘌呤G—胞嘧啶CRNA中(不存在T) 腺嘌呤A—尿嘧啶U 鸟嘌呤G—胞嘧啶C
嘌呤和嘧啶咋念?
嘌呤piàolíng[purine]由嘧啶环与咪唑环并合而成的晶体碱C5H4N4,从尿酸制得,是从尿酸衍生的一些化合物的母体(如尿囊素和阿脲)嘧啶mìdìng[pyrimidine]结晶的弱杂环碱,有刺鼻的臭味,通常间接由巴比土酸制得—汉典Zdic.net—
什么是嘌呤和嘧啶代谢
嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。Image:Cytosine chemical structure.png|胞嘧啶Image:Thymine chemical structure.png|胸腺嘧啶Image:Uracil chemical structure.png|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。
人体内有几种嘌呤与嘧啶
鸟嘌呤腺嘌呤胞嘧啶胸腺嘧啶尿嘧啶
关于嘌呤嘧啶 怎么看哪一个是一号原子啊,新系统中,嘌呤是逆时针,嘧啶是顺时针?这是怎么回事呢?求...
不是顺时针逆时针的问题,IUPAC(命名权威)准则是尽量使杂原子标号往低排,大环优先于小环。嘌呤从六元环距小环较远的那个N原子开始标,沿向下一个N原子较近的顺序依次标。嘧啶同样由N开始沿靠近第二个N的方向标号
嘧啶和嘌呤在结构上的相同点
含氮杂环化合物。嘧啶和嘌呤都是含氮杂环化合物,都含有碳、氢、氮原子,并呈环状结构。这两种化合物都在生物体内扮演重要角色,如DNA和RNA中的核苷酸结构就包含这两种化合物。
嘌呤是什么东西啊?
嘌呤(piào lìng) 简介:嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。嘌呤是有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。海鲜,动物的肉的嘌呤含量都比较高,所以,有痛风的病人除用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。
高嘌呤食物都有哪些
第一类食物是含嘌呤最高的,之后依次降低。第一类 含嘌呤高的食物 (每100g食物含嘌呤100~1000mg)肝、肾、胰、心、脑、肉馅、肉汁、肉汤、鲭鱼、风尾鱼、沙丁鱼、鱼卵、小虾、淡菜、鹅、斑鸡、石鸡、大豆制品、酵母、香菇第二类 含嘌呤中等的食物 (每100g食物含嘌呤75~100mg)1.鱼类:鲤鱼、鳕鱼、大比目鱼、鲈鱼、梭鱼、贝壳类、鳗鱼及鳝鱼;2.肉食:熏火腿、猪肉、牛肉、牛舌、小牛肉、兔肉、鹿肉;3.禽类:鸭、鸽子、鹌鹑、野鸡、火鸡;第三类 含嘌呤较少的食品(每100g食物含嘌呤<75mg)1. 鱼蟹类:青鱼、鲱鱼、鲑鱼、鲥鱼、金枪鱼、白鱼、龙虾、蟹、牡蛎2. 肉食:火腿、羊肉、牛肉汤、鸡、熏肉3. 麦麸: 麦片、面包、粗粮4. 蔬菜:芦笋、菠菜、蘑菇第四类 含嘌呤很少的食物1.粮食:大米、小麦、小米、荠麦、玉米面、精白粉、富强粉、通心粉、面条、面包、馒头、苏打饼 高嘌呤食物高嘌呤食物(5张)干、黄油小点心。2.蔬菜:白菜、卷心菜、胡萝卜、芹菜、黄瓜、茄子、甘蓝、芜青甘蓝、甘蓝菜、莴笋、刀豆、南瓜、倭瓜、西葫芦、蕃茄、山芋、土豆、泡菜、咸菜3.水果:各种水果。 蛋、乳类:鲜奶、炼乳、奶酪、酸奶、麦乳精 饮料:汽水、茶、咖啡、可可、巧克力
有几种嘌呤 有几种嘌呤
两种,腺嘌呤(A)和鸟嘌呤(G)。
嘌呤读音是什么
嘌呤_词语解释【拼音】:piào lìng【解释】:1.[英purine]有机化合物,无色结晶,易溶于水,在人体内氧化而变成尿酸。【例句】:犬黄嘌呤结石症是一种非常罕见的疾病,一般是由于犬体内先天性黄嘌呤氧化酶缺少所致,因后天因素引起的病例未见报道。
含嘌呤高的食物有哪些 什么食物是高嘌呤的
1、动物内脏。动物内脏是“嘌呤大王”,嘌呤含量极高,尤其是猪肝,达2752毫克/千克,高尿酸和痛风患者不能食用。 2、鱼虾蟹贝。痛风性关节炎无论急性发作期还是慢性期,都要长期控制嘌呤含量高的食物,如秋刀鱼、沙丁鱼、凤尾鱼、鲭鱼、草虾等。 3、菌菇类。菌类嘌呤含量亦不可小觑,仍需控制摄入量。如:白玉菇、杏鲍菇、金针菇等。 4、坚果、种子类食物。植物的种子、坚果类食物嘌呤含量高,如:开心果、巴旦木、夏威夷果、花生等。 5、蚝油调味料。蚝油、鲍鱼汁、海鲜酱、香菇酱、浓缩鸡汁等食品调味料的嘌呤含量也很高。快速的血尿酸升高则会导致痛风的发作。 6、豆类食品。痛风的人不能吃豆类食品,如:豆干、豆浆、豆腐等。
什么是嘌呤食物?
嘌呤是一种有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸。人体尿酸过高就会引起痛风,俗称富贵病。一般在男性身上发病,而且会遗传。海鲜,动物的肉的嘌呤含量都比较高,吃火锅时汤的表面那层白色的沫沫就含有很多嘌呤,所以有痛风的病人发病时用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。一般饮食分为高嘌呤、中嘌呤和低嘌呤三类。低嘌呤食物可放心食用。每100克食物嘌呤含量小于50毫克的有:五谷类:米、麦、高梁、玉米、马铃薯、甘薯、面条、通心粉;蛋类:鸡蛋、鸭蛋、皮蛋;奶类:牛奶、乳酪、冰琪琳;饮料:汽水、巧克力、可可、咖啡、麦乳精、果汁、茶、蜂蜜、果冻;以及各种水果、蔬菜和油脂等。中等嘌呤食物宜限量食用。每100克食物中含50~150毫克嘌呤的为中嘌呤:肉类:鸡肉、猪肉、牛肉、羊肉、鱼、虾、螃蟹;豆类:黑豆、绿豆、红豆、花豆、碗豆、菜豆、豆干、豆腐以及笋干、金针、银耳、花生、腰果、芝麻等。高嘌呤食物应禁忌。每100克食物中含150~1000毫克嘌呤的食物为高嘌呤:肉类和内脏 牛肝233mg、牛肾200mg、胰脏825mg肉汤 各种肉、禽制的浓汤和清汤160-400mg
嘌呤含量比较高的食物有哪些?
含嘌呤较高的食物包括动物的脑、心、肾、肝及鹅肉、鸡、肉末、肉汤、肉汤、小鱼干、乌鱼皮、乌贼鱼、鲨鱼、鳕鱼、海鳗、海参、带鱼、沙丁鱼、蛤蜊、牡蛎、干贝、蚝、贻贝、鲢鱼、鲤鱼、鱼子、豆苗、黄豆芽、芦笋、菜花、紫菜、香菇、鸡汤、酵母及酒类等。这类食物对无论处于急性期抑或缓解期的痛风病人均属禁用食品。扩展资料多数患者发作前无明显征兆,或仅有疲乏、全身不适和关节刺痛等。典型发作常于深夜因关节痛而惊醒,疼痛进行性加剧,在12小时左右达高峰,呈撕裂样、刀割样或咬噬样,难以忍受。受累关节及周围组织红、肿、热、痛和功能受限。多于数天或2周内自行缓解。治疗痛风需要生活调节。需要低蛋白饮食,可以吃各种蔬菜。需要忌酒。多喝水,多运动。痛风患者适合吃的食物如:白菜,卷心菜,胡萝卜,芹菜,黄瓜,茄子,西兰花,甘蓝,芜青甘蓝,甘蓝菜,莴笋,刀豆,南瓜,西葫芦,蕃茄,山芋,土豆等。痛风-百度百科
是什么嘌呤食物
嘌呤食物 有机化合物,分子式C5H4N4,无色结晶,在人体内嘌呤氧化而变成尿酸。人体尿酸过高就会引起痛风,俗称富贵病.一般在男性身上发病,而且会遗传.海鲜,动物的肉的嘌呤含量都比较高,吃火锅时汤的表面那层白色的沫沫就含有很多嘌呤,所以有痛风的病人发病时用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。 日常生活中食物嘌呤含量 日常生活中食物嘌呤含量有多少?有相关的含量指标吗? 若不小心等了通风, 注意以下: 1)饮食治疗:痛风目前尚缺乏有效的根治措施,为此,除药物治疗外,适当的限制饮食,对控制病情发生、发展具有重要意义。下面将食物分成三类,按不同病情作出饮食安排。 第一类食物为含嘌呤较高的食物,估计每100g含嘌呤100—1000mg,这类食物对无论处于急性期抑或缓解期的痛风病人均属禁用食品。这些食物包括动物的脑、心、肾、肝及鹅肉、松鸡、肉末、浓肉汁、肉汤、鲭鱼、沙子鱼、鱼子、海参、干贝、蚝、贻贝、酵母及酒类。 第二类食物为含有中等量嘌呤食物,每100g中约含嘌呤9—100mg。由于该类食物含中等嘌呤,因此凡属缓解期的病人,可从其中选用一份动物性食品和一份蔬菜,但食用量不宜过多。这类食物的动物性食品有:鱼、肉、禽、贝类;植物性食品有:干豆类、扁豆、龙须菜、菠菜、蘑菇。 第三类食物为含少量嘌呤食物,病人可随意选食,不必严格控制。这些食品有:大麦、小麦、燕麦、面包、面条、大米、玉米面、淀粉、蛋糕、饼干、黄油小点心、水果、鸡蛋、豆浆、豆腐、黄油、奶油、干酪、冰淇淋、杏仁、核桃、榛子、糖、果酱、蜂蜜、植物油、咖啡、菜、可可、苏打水、汽水、动物脱脂或琼脂制的点心及调味品。 2)多饮水,多吃蔬菜,少喝汤。痛风患者要多喝白开水,少喝肉汤、鱼汤、鸡汤、火锅汤等。因为多饮水也是一种治疗手段,它可以稀释尿酸,加速排泄,使尿酸水平下降。饮水要饮白开水,因白开水的渗透压最有利于溶解体内各种有害物质。多吃菜,有利于减少嘌呤摄入量,增加维生素C和纤维素。汤中含有大量嘌呤成分,饮后不但不能稀释尿酸,反而因肉食中核蛋白含量高,导致尿酸增高。痛风患者可以吃煮过的肉而不喝汤,因汤中可能已经溶入了50%的嘌呤。 多吃碱性食物,少吃酸性食物。痛风患者本身有嘌呤代谢紊乱,尿酸异常,如果过多吃酸性食品,会加重病情,不利患者康复。而多吃碱性食物,能帮助补充钾、钠、氯等,维持酸碱平衡。 以下给介绍几则成功治愈“痛风”的食疗秘方: a)取乌龟壳15克,黑木耳10克,煎成一碗汤一次服下,一日二次,连服5--7天,忌动物内脏、鲤鱼、酸物。 b)用鲜竹叶、白茅根各10克。鲜竹叶和白茅根洗净后,放入保温杯中,以沸水冲泡30分钟,代茶饮,利尿,防痛风合并症肾结石。 c)取鲜玉米须100克。鲜玉米须加水适量,煎煮1小时滤出药汁,小火浓缩至100毫升,停火待冷,加白糖搅拌吸尽药汁,冷却后晒干压粉装瓶。每日3次,每日10克,用开水冲服。防止肾结石,具有利尿作用。 d)用独活60克,大豆500克,当归10克,白酒1000毫升。将独活去芦头后,与当归同捣碎,置于净器中,以白酒浸泡一宿后,将大豆炒至青烟出锅,投入酒中密封,候冷,去渣备用。每日3次,每次温饮10毫升。 e)取独活45克,白藓皮15克,羌活30克,人参20克,酒适量。将独活、羌活分别去芦头,上4味药,捣为粗末备用。每用10克药末,同水7分,酒3分,煎至7分,去渣温服。不拘时候。
嘌呤是什么来的,哪些东西里面含有它?
嘌呤是一种有机化合物,即生物碱,广泛存在于核酸中,较多食品中含量较高。嘌呤在体内参与蛋白质及DNA合成,也是核酸的代谢中间产物。经体内经代谢生成终产物-尿酸。血中的尿酸水平取决于尿酸的产生量和排泄量之间的平衡,如果尿酸过多,而排泄减少,可能引起高尿酸血症,尿酸易沉积于肢端(手指,下肢末端)、耳郭、大足趾的跖端,指关节尤易累及,因而发生痛风。 含嘌呤较高的食物,每100克含嘌呤100—1000毫克。这些食物包括动物的脑、心、肾、肝及鹅肉、鸡、肉末、肉汤、肉汤、小鱼干、乌鱼皮、乌贼鱼、鲨鱼、鳕鱼、海鳗、海参、带鱼、沙丁鱼、蛤蜊、牡蛎、干贝、蚝、贻贝、鲢鱼、鲤鱼、鱼子、豆苗、黄豆芽、芦笋、菜花、紫菜、香菇、鸡汤、酵母及酒类。这类食物对无论处于急性期抑或缓解期的痛风病人均属禁用食品。 含有中等量嘌呤的食物,每100克中含嘌呤50—100毫克。这类食物有:鱼、肉、禽、贝类、虾、螃蟹、干豆类、扁豆、豆腐以及笋干、金针菜、银耳、龙须菜、菠菜、蘑菇、芦笋、花生、腰果、芝麻等。凡属缓解期的病人,可从其中选用一份动物性食品和一份蔬菜,但食用量不宜过多。 含少量嘌呤的食物,每100克中含嘌呤小于50毫克的。这些食品有:五谷类的大米、大麦、小麦、燕麦、面包、面条、高粱、玉米、马铃薯、甘薯、通心粉,淀粉,蛋类的鸡蛋、鸭蛋、皮蛋,奶类的牛奶、乳酪、冰琪琳,饮料类的汽水、巧克力、可可、咖啡、麦乳精、果汁、茶、蜂蜜、果冻,以及杏仁、核桃、榛子、糖、果酱、蜂蜜、植物油、咖啡、菜、可可、苏打水、汽水,以及各种水果、蔬菜和油脂等。这类食物痛风病人可随意选食,不必严格控制。采纳哦
食物食物中的嘌呤人吃后只能转化为尿酸吗>?.
嘌呤是细胞中核物质的组成元素,不仅我们人体细胞含有嘌呤,几乎所有的动植物细胞都含有嘌呤。在正常情况下,从饮食摄入的嘌呤和人体自身代谢生成的嘌呤会以尿酸的形式通过肾脏从尿中排除,“入”与“出”处于动态平衡中。一旦这种平衡被破坏,就会表现为痛风了。 因此,痛风的营养治疗就要把好饮食关,使嘌呤的摄入量尽量降低。对于急性期的患者甚至应使食物嘌呤的摄入量接近于零,才能配合用药迅速缓解症状。一般缓解期或慢性期的患者可以将嘌呤的摄入量控制在100~150毫克/天,通常就会有效预防症状的发生。 嘌呤含量高的食品包括有内脏、脑、杂豆和各种肉汤、肉汁,这些是痛风患者绝对不可以选食的东西;粗粮、菠菜、花菜、蕈类、扁豆、禽畜肉类含嘌呤也在每百克75~150毫克之间,应谨慎选择;而牛奶、鸡蛋、粳米、白面、水果、蔬菜、藕粉、咖啡、可可和油类则是相对安全的食物,痛风患者可以从中适量选择。
嘌呤是怎么?在食物中能看得到吗?
嘌呤(purine,又称普林)经过一系列代谢变化,最终形成的产物(2,6,8-三氧嘌呤)又叫尿酸。嘌呤的来源分为内源性嘌呤80%来自核酸的氧化分解,外源性嘌呤主要来自食物摄取,占总嘌呤的20%,尿酸在人体内没有什么生理功能,在正常情况下,体内产生的尿酸,2/3由肾脏排出,余下的1/3从肠道排出。
嘌呤高的食物一览表
高嘌呤的食物主要有:肝、肾、胰、心、脑、肉馅、肉汁、肉汤、鲭鱼、风尾鱼、沙丁鱼、鱼卵、小虾、淡菜、鹅、斑鸡、石鸡、大豆制品、酵母、香菇、紫菜。痛风和高尿酸血症的患者应当完全避免这些食物。含嘌呤中等的食物 (每100g食物含嘌呤75~100mg):1、鱼类:鲤鱼、鳕鱼、大比目鱼、鲈鱼、梭鱼、贝壳类、鳗鱼及鳝鱼;2、肉食:熏火腿、猪肉、牛肉、牛舌、小牛肉、兔高嘌呤肉、鹿肉;3、禽类:鸭、鸽子、鹌鹑、野鸡、火鸡;扩展资料:低嘌呤食物一览表:1、主食类:精致米面及其制品(面包、糕点、饼干等)、各种淀粉、高粱、马铃薯、山芋、通心粉等2、奶蛋类:奶类及其制品(鲜奶、奶酪、酸奶、奶粉等)、蛋类及其制品(鸡蛋、鸭蛋、鹌鹑蛋等)3、蔬菜类:青菜类(鸡毛菜、白菜、卷心菜、莴笋、笕菜、芹菜、韭菜、韭黄、番茄 茄子)瓜类(黄瓜、冬瓜、南瓜、倭瓜、苦瓜、西葫芦等)萝卜(白萝卜、胡萝卜等)土豆、芋艿、甘薯、荸荠、甘蓝、橄榄菜、柿子椒、辣椒、洋葱、大蒜、蒜头、葱、姜、木耳等4、水果类:各种鲜果及干果,果汁,果酱等5、 饮料:淡茶、碳酸饮料(苏打水、汽水、可乐等),矿泉水、咖啡、麦乳精、巧克力、果冻等6、 其它:各种油脂和糖类(本身虽不含嘌呤,但是应当适当选用),蜂蜜、猪血、鸡血、鸭血、海蜇、动物胶或琼脂制的点心及其调味品。参考资料来源:人民网-低嘌呤食物一览表参考资料来源:百度百科-高嘌呤食物
嘌呤摄入多少是正常嘌呤饮食
(1)食物中嘌呤含量(100g食物中的嘌呤含量值)一级:含极高嘌呤(150—1000mg)的有胰、肝、肾、肉铺、肉汁、沙丁鱼、鲱鱼、酵母二级:含大量嘌呤(75—150mg)的有凤尾鱼、咸猪肉、鹅肉、野鸡肉、鸽肉、小牛肉、扇贝肉、羊肉、鱼三级:含中等嘌呤(最高75mg)的有芦笋、鲈鱼、鸡肉、鸭肉、鳗鱼、火腿、菜豆、小扁豆、蘑菇、青豆、牡蛎、豌豆、兔肉、虾、菠菜、花生四级:含嘌呤甚微或无嘌呤的有以下几类:咖啡、果汁、巧克力;各种乳品或乳酪;蛋类;各种谷类制品;各种坚果;蔬菜类:除三级以外的蔬菜(2)慢性痛风人群的饮食选择:一级食物需禁食二级食物需慎选,三级食物在可以适量选择四级食物可以任意选择正常人每天摄入嘌呤的含量为600—1000mg,慢性痛风人群需要控制在正常人嘌呤摄入的下限。所以应禁忌一级食物。如选择二级食物则其他类食物应全部选择四级食物且其二级食物用量不要超过100克,以保证嘌呤摄入量的平衡。如选择三级食物则可以根据个人情况在三级食物和四级食物中适量的选择且三级食物用量不宜超过200克,以保证嘌呤摄入量平衡。
高嘌呤食物有哪些?吃多了对身体有何影响?
很多,大概的几类就是海鲜,动物内脏,肉禽类和火锅啤酒含量最高。高嘌呤食物摄入过多会导致人体内血尿酸增高,血尿酸高者,经常在食用含高嘌呤的食物后出现关节红肿、疼痛,就是我们常说的痛风,痛风多见于体形肥胖的中老年男性和绝经期后妇女。
嘌呤的种类有哪些?
包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。第一类 含嘌呤高的食物 (每100g食物含嘌呤150mg以上) 1、所有动物肝脏、猪肠、浓肉汁 2、鱼贝类:白仓鱼、鲢鱼、带鱼、海鳗、沙丁鱼、牡蛎,所有贝壳类、干贝、小鱼干等 3、蔬菜:豆苗、黄豆芽、芦笋、紫菜、香菇、野生蘑菇等 第二类 含嘌呤中等的食物 (每100g食物含嘌呤25-150mg) 1、肉类:鸡肉、猪肚、牛肉、羊肉、鸭肠、猪肾、猪脑、肉丸 2、鱼虾类:草鱼、鲤鱼、虾、鲍鱼、鲨鱼、鲤鱼、鳕鱼、鲩鱼、鱼翅、螃蟹 3、蔬菜类:菠菜、椰菜、枸杞、四季豆、豌豆、蘑菇、竹笋、海带、银耳、花生、腰果、栗子、莲子 第三类 含嘌呤较少的食物 (每100g食物含嘌呤<25mg) 1、奶类、奶制品、蛋类 2、谷类:米、面、米粉、面条、麦片、玉米 3、蔬菜类:白菜、芥菜、芥兰、韭菜、苦瓜、冬瓜、丝瓜、黄瓜、葫芦瓜、茄子、胡萝卜、萝卜、洋葱、西红柿、木耳、芋头、马铃薯 4、动物油、植物油5、海参、海蛰皮、猪血 6、几乎所有的水果含嘌呤都较少
嘌呤是个什么东西(嘌呤到底是什么东西)
1.嘌呤(Purine),是身体内存在的一种物质,主要以嘌呤核苷酸的形式存在,在作为能量供应、代谢调节及组成辅酶等方面起着十分重要的作用。 2.嘌呤是有机化合物,分子式C5H4N无色结晶,在人体内嘌呤氧化而变成尿酸,人体尿酸过高就会引起痛风。 3.海鲜,动物的肉的嘌呤含量都比较高,所以,有痛风的病人除用药物治疗外(医治痛风的药物一般对肾都有损害),更重要的是平时注意忌口。