- 安徽路人假
-
欧拉生平简介
莱昂哈德·欧拉的画像(6张)欧拉1707年4月15日出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时新发明的微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉的一生很虔诚。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,(a+b)n/n = x;所以上帝存在,这是回答!” 欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。 小行星欧拉2002是为了纪念欧拉而命名的。
贡献
“欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样),这句话对欧拉那无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为“分析的化身”。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。 欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了
事迹
欧拉诞辰300周年纪念活动(8张)欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年问世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。 那时代数学和三角学已在一个较低的水平土系统化并扩展了。特别是后者已经基本完善。在费马(Fermat)的丢番图分析和一般整数性质的领域里则不可能有任何这样的"暂时的完善"(甚至到现在也还没有)。但就在这方面,欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。 作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。 目前时尚轻视"小小算法学家"。然而,当一个真正伟大的算法学家像印度的罗摩奴阔一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。
成就
欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。 他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。 他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。 在数论里他引入了欧拉函数。 自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。 在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。 在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。 他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声: :其中是黎曼函数。 欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。 在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公"”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式): :在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数: :他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。 在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。 一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。 在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。 在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系:: 其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。 这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。 单联通流形,例如球面或平面,的欧拉特征值是2。 对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。 在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。 数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行 最有影响的100人--欧拉
评价
欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。 欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。 早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流体运动,建立了流体力学方程。同样他通过认真分析刚体的可能运动并应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。 欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题——二十一世纪仍要面临的一个问题——尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。 欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家琼·巴普蒂斯特·傅里叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里时方程。这套方程在物理学的许多不同的领域都有着广泛应用,其中包括声学和电磁学" 在数学方面他对微积分的两个领域——微分方程和无穷级数——特别感兴趣‘他在这两方面做出了非常重要的贡献,但是由于专业性太强不在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式eiQ=cosθ十isinθ表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。 欧拉不仅在做可应用于科学的数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。 最后要提到的一点也很重要,欧拉对目前使用的数学符号制做出了重要的贡献。例如,常用的希腊字母π代表圆周率就是他提出来的。他还引出许多其它简便的符号,现在的数学中经常使用这些符号。 欧拉于1707年出生在瑞士巴塞尔。1720他十三岁时就考入了巴塞尔大学,起初他学习神学,不久改学数学。他十七岁在巴塞尔大学获得硕士学位,二十岁受凯瑟林一世的邀请加入圣彼得斯堡科学院。他二十三岁成为该院物理学教授,二十六岁就接任著名数学家但尼尔·伯努利的职务,成为数学所所长。两年后,他有一只眼睛失明,但仍以极大的热情继续工作,写出了许多杰出的论文。 1741年普鲁士弗雷德里克大帝把欧拉从俄国引诱出来,让他加入了柏林科学院。他在柏林呆了二十五年后于1766年返回俄国。不久他的另一只眼睛也失去了光明。即使这样的灾祸降临,他也没有停止研究工作。欧拉具有惊人的心算才能,他不断地发表第一流的数学论文,直到生命的最后一息。1783年他在圣彼得斯堡去逝,终年七十六岁。欧拉结过两次婚,有十三个孩子,但是其中有八个在襁褓中就死去了。 即使没有欧拉其人,他的一切发现最终也会有人做出。但是我认为做为衡量这种情况的尺度应该提出这样的问题:要是根本就没有人能做出他的发现,科学和现代世界会有什么不同呢?就伦哈特·欧拉的情况而言,答案看来很明确:假如没有欧拉的公式、方程和方法,现代科学技术的进展就会滞后不前,实际上看来是不可想象的。浏览一下数学和物理教科书的索引就会找到如下查照:欧拉角(刚体运动)、欧拉常数(无穷级数)、欧拉方程(流体动力学)、欧拉公式(复合变量)、欧拉数(无穷级数)、欧拉多角曲线(微分方程)、欧拉齐性函数定理摘微分方程)、欧拉变换(无穷级数)、伯努利—欧拉定律(弹性力学)、欧拉—傅里叶公式(三角函数)、欧拉—拉格朗日方程(变分学,力学)以及欧拉一马克劳林公式(数字法),这里举的仅仅是最重要的例子。 从所有这一切来看,读者可能要问为什么在本书中没有把欧拉的名次排得更高些,其主要原因在于虽然欧拉在论证如何应用牛顿定律方面获得了杰出的成就,但是他自己从未发现任何独创的科学定律,这就是为什么要把威廉·康拉德,伦琴和格雷戈尔·孟德尔这样的人物排在他前面的原因。他们每个人主要是发现了新的科学现象或定律。尽管如此,欧拉对科学、工程学和数学的贡献还是巨大的。
以欧拉之名
欧拉公式
欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等
欧拉函数
欧拉函数,在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler"s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。
欧拉定理
在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
欧拉角
用来确定定点转动刚体位置的3个一组独立角参量,由章动角θ、旋进角(即进动角)ψ和自转角j组成,为欧拉首先提出而得名。
欧拉方程
1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程: (ax^2D^2+bxD+c)y=f(x), 其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D^2y的系数是二次函数ax^2,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。
- 阿里阿涅德
-
简介
莱昂哈德·欧拉的画像(6张)欧拉1707年4月15日出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时新发明的微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉的一生很虔诚。然而,那个广泛流传的传说却不是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,(a+b)n/n = x;所以上帝存在,这是回答!” 欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。 小行星欧拉2002是为了纪念欧拉而命名的。
贡献
“欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样”(阿拉戈语),这句话对欧拉那无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为“分析的化身”。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。 欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了
事迹
欧拉诞辰300周年纪念活动(8张)欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年问世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。 那时代数学和三角学已在一个较低的水平土系统化并扩展了。特别是后者已经基本完善。在费马(Fermat)的丢番图分析和一般整数性质的领域里则不可能有任何这样的"暂时的完善"(甚至到现在也还没有)。但就在这方面,欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。 作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。 目前时尚轻视"小小算法学家"。然而,当一个真正伟大的算法学家像印度的罗摩奴阔一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。
成就
欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。 他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。 他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。 在数论里他引入了欧拉函数。 自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。 在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。 在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。 他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声: :其中是黎曼函数。 欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。 在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公"”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式): :在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数: :他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。 在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。 一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。 在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。 在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系:: 其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。 这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。 单联通流形,例如球面或平面,的欧拉特征值是2。 对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。 在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。 数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行 最有影响的100人--欧拉
评价
欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。 欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。 早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流体运动,建立了流体力学方程。同样他通过认真分析刚体的可能运动并应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。 欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题——二十一世纪仍要面临的一个问题——尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。 欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家琼·巴普蒂斯特·傅里叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里时方程。这套方程在物理学的许多不同的领域都有着广泛的应用,其中包括声学和电磁学。 在数学方面他对微积分的两个领域——微分方程和无穷级数——特别感兴趣。他在这两方面做出了非常重要的贡献,但是由于专业性太强不便在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式eiQ=cosθ十isinθ表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。 欧拉不仅在做可应用于科学的数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。 最后要提到的一点也很重要,欧拉对目前使用的数学符号制做出了重要的贡献。例如,常用的希腊字母π代表圆周率就是他提出来的。他还引出许多其它简便的符号,现在的数学中经常使用这些符号。 欧拉于1707年出生在瑞士巴塞尔。1720他十三岁时就考入了巴塞尔大学,起初他学习神学,不久改学数学。他十七岁在巴塞尔大学获得硕士学位,二十岁受凯瑟林一世的邀请加入圣彼得斯堡科学院。他二十三岁成为该院物理学教授,二十六岁就接任著名数学家但尼尔·伯努利的职务,成为数学所所长。两年后,他有一只眼睛失明,但仍以极大的热情继续工作,写出了许多杰出的论文。 1741年普鲁士弗雷德里克大帝把欧拉从俄国引诱出来,让他加入了柏林科学院。他在柏林呆了二十五年后于1766年返回俄国。不久他的另一只眼睛也失去了光明。即使这样的灾祸降临,他也没有停止研究工作。欧拉具有惊人的心算才能,他不断地发表第一流的数学论文,直到生命的最后一息。1783年他在圣彼得斯堡去逝,终年七十六岁。欧拉结过两次婚,有十三个孩子,但是其中有八个在襁褓中就死去了。 即使没有欧拉其人,他的一切发现最终也会有人做出。但是我认为做为衡量这种情况的尺度应该提出这样的问题:要是根本就没有人能做出他的发现,科学和现代世界会有什么不同呢?就伦哈特·欧拉的情况而言,答案看来很明确:假如没有欧拉的公式、方程和方法,现代科学技术的进展就会滞后不前,实际上看来是不可想象的。浏览一下数学和物理教科书的索引就会找到如下查照:欧拉角(刚体运动)、欧拉常数(无穷级数)、欧拉方程(流体动力学)、欧拉公式(复合变量)、欧拉数(无穷级数)、欧拉多角曲线(微分方程)、欧拉齐性函数定理摘微分方程)、欧拉变换(无穷级数)、伯努利—欧拉定律(弹性力学)、欧拉—傅里叶公式(三角函数)、欧拉—拉格朗日方程(变分学,力学)以及欧拉一马克劳林公式(数字法),这里举的仅仅是最重要的例子。 从所有这一切来看,读者可能要问为什么在本书中没有把欧拉的名次排得更高些,其主要原因在于虽然欧拉在论证如何应用牛顿定律方面获得了杰出的成就,但是他自己从未发现任何独创的科学定律,这就是为什么要把威廉·康拉德,伦琴和格雷戈尔·孟德尔这样的人物排在他前面的原因。他们每个人主要是发现了新的科学现象或定律。尽管如此,欧拉对科学、工程学和数学的贡献还是巨大的。
以欧拉之名
欧拉公式
欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等
欧拉函数
欧拉函数,在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler"s totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。
欧拉定理
在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
欧拉角
用来确定定点转动刚体位置的3个一组独立角参量,由章动角θ、旋进角(即进动角)ψ和自转角j组成,为欧拉首先提出而得名。
欧拉方程
1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程: (ax^2D^2+bxD+c)y=f(x), 其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D^2y的系数是二次函数ax^2,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。
- 瑞瑞爱吃桃
-
欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
- 血莲丿红尘
-
1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。
1727年,在丹尼尔伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一伯努利,成为物理学教授。
在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。
1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。
1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典着作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。
欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。
欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值 ,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209 ……
在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了 n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。
在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示 z对 x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。
欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。
在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的哥尼斯堡七桥问题,创立了拓扑学。
欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。
- 北境漫步
-
欧拉 (Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。
1727年,在丹尼尔伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一伯努利,成为物理学教授。
在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。
1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。
1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典着作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。
欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。
欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值 ,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209 ……
在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了 n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。
在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示 z对 x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。
欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。
在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的哥尼斯堡七桥问题,创立了拓扑学。
欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。
- 苏萦
-
Euler 是 18 世纪的一个科学家和数学家,被称为是一个天才。把流体力学( Fluid Mechanics )确立为一门理论科学, Euler 起了重要( Primary )的作用。Euler 13 岁时进入 Basel 大学学习。当时该校仅有 100 米名学生, 19 位教授,其中有一位名字叫柏努利的教授,柏努利教 Euler 的数学课程。 Euler 用了三年的时间,获得了自然科学和哲学的硕士学位.Euler 与柏努利既是师生关系,又是好朋友,他们一起研究、讨论问题,把他们的研究写进书里,发表了许多文章,他因此也被誉为 18 世纪伟大的计算家,实际上,它不仅对力学,对数学分析、数学理论,对天文学、光学都有重大的贡献。
1725年约翰·伯努利的儿子 丹尼尔·伯努利 赴 俄国 ,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个 天文学 的难题(计算 彗星 轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到 柏林 担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、 德国 ,都把欧拉作为自己的数学家,为有他而感到骄傲。
- 一自萧关起战尘
-
中文名: 莱昂哈德·欧拉
外文名: Leonhard Euler
别名: 分析的化身
国籍: 瑞士
出生地: 瑞士
出生日期: 1707年4月5日
逝世日期: 1783年9月18日
职业: 数学家,物理学家
毕业院校: 巴塞尔大学
信仰: 基督教
主要成就: 提出函数的概念
创立分析力学
解决了柯尼斯堡七桥问题
给出欧拉公式
目录
简介
贡献
事迹
影响他的两个因素
年轻的欧拉
轶事
成就
评价
以欧拉之名欧拉公式
欧拉函数
欧拉定理
欧拉角
欧拉方程
简介
贡献
事迹
影响他的两个因素
年轻的欧拉
轶事
成就
评价
以欧拉之名
欧拉公式 欧拉函数 欧拉定理 欧拉角 欧拉方程展开
- CPS小天才
-
自己上网查啊,答案也都是复制的,200分,不值啊。。。。。