- 黑桃花
-
在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。
碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。
碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。
碱基: 腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶
核苷: 腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧腺苷 - 胸苷 - 脱氧鸟苷 - 脱氧胞苷
核糖核苷酸: AMP - UMP - GMP - CMP - ADP - UDP - GDP - CDP - ATP - UTP - GTP - CTP - cAMP - cGMP
脱氧核苷酸: dAMP - dTMP - dUMP - dGMP - dCMP - dADP - dTDP - dUDP - dGDP - dCDP - dATP - dTTP - dUTP - dGTP - dCTP
核酸: DNA - RNA - LNA - PNA - mRNA - ncRNA - miRNA - rRNA - shRNA - siRNA - tRNA - mtDNA - Oligonucleotide
核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。
RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。
与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。
在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。
在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。
1982年以来,研究表明,不少RNA,如I、II型内含子,RNase P,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。
20世纪90年代以来,又发现了RNAi(RNA interference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。
- CPS小天才
-
DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
脱氧核糖核酸(DNA)是生物细胞内携带有合成RNA和蛋白质所必需的遗传信息的一种核酸,是生物体发育和正常运作必不可少的生物大分子。
碱基对是一对相互匹配的碱基(即A—T, G—C,A—U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。
它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。
碱基对是形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来。
然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。
- 北有云溪
-
在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。
碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。
碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。
碱基: 腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶
核苷: 腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧腺苷 - 胸苷 - 脱氧鸟苷 - 脱氧胞苷
核糖核苷酸: AMP - UMP - GMP - CMP - ADP - UDP - GDP - CDP - ATP - UTP - GTP - CTP - cAMP - cGMP
脱氧核苷酸: dAMP - dTMP - dUMP - dGMP - dCMP - dADP - dTDP - dUDP - dGDP - dCDP - dATP - dTTP - dUTP - dGTP - dCTP
核酸: DNA - RNA - LNA - PNA - mRNA - ncRNA - miRNA - rRNA - shRNA - siRNA - tRNA - mtDNA - Oligonucleotide
核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。
RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。
与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基
- Troublesleeper
-
新合成的这四种碱基能形成稳定的DNA结构,热动力学稳定性是可预测的,同时,这两对新的碱基对能成功形成DNA双螺旋结构,并可成功转录RNA。
通过这四个新的碱基,DNA就能存储更多的信息和数据。人类通过自己的力量,也可以合成携带遗传信息的碱基,打破了天然碱基原有的神秘面纱,人类在认识大自然和自身的道路上又进了一步。同时,8个碱基丰富了遗传信息携带的物质基础。经由8个碱基来排列组合,与以前相比,那是大大的扩容了,由此可能产生具有新的功能的蛋白质分子。
除此之外,还能应用在疾病的早期检测。例如包含P和Z的DNA序列能更好的与肿瘤细胞结合,可开发出肿瘤早期诊断的试剂。另外,这四个额外的碱基或许可以进行外星生命探测。新碱基的发现,在理解生命起源和外星生命探测方面提供了新的思路。
虽然人类在生命科学领域取得了巨大的进步,但是这四个新碱基还有一些问题需要解决,从DNA到RNA目前可以实现,而关键的一步是DNA的自我复制,这需要DNA聚合酶,而天然体系里面是没有对应的DNA聚合酶的,这是一个瓶颈。对于未知的DNA碱基可能编码的蛋白质而言,对于大自然是全新的,其功能如何,会不会产生具有活性的生物毒性分子,尚不可知,因此,研究对应新型碱基从DNA到蛋白质的过程是暂停的,需要进行安全性评估和审核,才能进一步研究,生物安全是必须审慎考虑的环节。