DNA图谱 / 问答 / 问答详情

DNA双螺旋结构模型的主要内容是什么?生物体内遗传信息的传递主要是通过什么方式实现的?

2023-07-01 17:35:09
共1条回复
tt白

1、DNA双螺旋结构包括三点

(1)由两条反向平行的长链构成

(2)磷酸和脱氧核糖构成骨架,排列在外侧,碱基排列在内侧.

(3)两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)

2、生物体内遗传信息的传递通过DNA复制实现.遗传信息就是DNA分子中碱基的排列顺序,通过DNA复制(有丝分裂间期),将遗传信息从一个细胞传到另一个细胞,实现体内遗传信息的传递.

如果从一个个体传递到子代,则是通过DNA复制(减数第一次分裂间期)

相关推荐

DNA双螺旋结构模型的要点有哪些?

【答案】:1953年Watson和Crick提出了DNA双螺旋结构模型,该模型的要点是:(1)DNA分子是由两条反向的平行多核苷酸链构成的,一条链的5"-末端与另一条链的3"-末端相对。两条链的糖-磷酸主链都是右手螺旋,有一共同的螺旋轴,螺旋表面有大沟和小沟。(2)两条链上的碱基均在主链内侧,一条链上的A一定与另一条链上的T配对,G一定与C配对。(3)成对碱基大致处于同一平面,该平面与螺旋轴基本垂直。相邻碱基对平面间的距离为0.34nm,双螺旋每旋转一周有10对碱基,螺旋直径为2nm。大多数天然DNA属双链结构,某些病毒如Фx174和M13的DNA是单链DNA分子。
2023-07-01 13:49:361

如何制作dna双螺旋结构模型

制作DNA双螺旋结构模型可以通过以下步骤完成:步骤一:收集材料制作DNA双螺旋结构模型需要的材料有:双股DNA模型彩色糖果或球形磁珠直径约为1cm的木棒或竹签剪刀和胶水步骤二:制作DNA模型的主干首先,我们需要制作DNA模型的主干。将木棒或竹签分成两个长度相等的部分,然后用彩色糖果或球形磁珠把它们连接起来。在连接点处使用胶水固定,以确保主干的稳定性。步骤三:制作DNA模型的核苷酸接下来,制作核苷酸。核苷酸是DNA的构成单位,由磷酸、脱氧核糖和一种碱基组成。我们可以用糖果或球形磁珠代表脱氧核糖和碱基,用小木棒或竹签代表磷酸。将三个组成部分连接在一起,制成核苷酸模型。步骤四:将核苷酸连接成DNA双链将核苷酸按照DNA双链的规律连接起来。DNA双链由两个互补的链组成,每个链都由一系列核苷酸组成。具体来说,腺嘌呤(A)只能与胸腺嘧啶(T)配对,胞嘧啶(C)只能与鸟嘌呤(G)配对。因此,我们可以将A和T、C和G的核苷酸按照互补规律连接起来,形成DNA双链。步骤五:制作DNA双链的螺旋结构将两个DNA双链缠绕在一起,形成DNA双螺旋结构。将两个DNA双链分别绕在两根细木棒上,然后将它们靠近,使它们缠绕在一起。注意,DNA双链是以右手螺旋的形式缠绕在一起的,因此在缠绕时应保持正确的方向。步骤六:调整DNA模型最后,调整DNA模型。将DNA双螺旋模型放在一个水平的表面上,确保它的稳定性。如果需要,可以对DNA双链进行微调,以使其更符合真实的DNA结构。总结:制作DNA双螺旋结构模型需要准备一些材料,包括双股DNA模型、彩色糖果或球形磁珠、直径约为1cm的木棒或竹签、剪刀和胶水等。制作DNA模型的主干、核苷酸和DNA双链,然后将两个DNA双链缠绕在一起,形成DNA双螺旋结构。最后,调整DNA模型,使其更符合真实的DNA结构。制作DNA双螺旋结构模型需要一定的耐心和技巧,但是这个过程也可以帮助我们更好地理解DNA的结构和功能。
2023-07-01 13:49:431

dna双螺旋结构模型的要点

由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;两条互补链围绕一“主轴”向右盘旋形成双螺旋结构。DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息。(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5"到3",另一条链的走向是3"到5"; (2)碱基平面向内延伸,与双螺旋链成垂直状; (3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构; (4)A与T配对,其间距离1.11nm;G与C配对,其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等; (5)在结构上有深沟和浅沟; (6)DNA双螺旋结构稳定的维系 横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。
2023-07-01 13:50:021

dna双螺旋结构模型怎么做

DNA双螺旋结构模型通常是通过搭建分子模型来完成的。以下是一些基本步骤:材料:- 4种颜色的塑料珠(代表4种不同的碱基)- 扁平的手掌大小底座(用作支架)- 钢丝或木棒(用于连接珠子)步骤:1. 将不同颜色的塑料珠分别组合成配对的碱基,即腺嘌呤 (A) 和胸腺嘧啶(T),以及鸟嘌呤(C) 和鸟嘧啶(G)。2. 将钢丝或木棒插入底座中心,作为支架。3. 按照规则将珠子串在钢丝上,每个碱基由两个珠子表示,一个代表碱基的氮碱基,另一个代表糖分子和磷酸基团。4. 使用适当的间距,将珠子与钢丝相连,以形成DNA双螺旋的“阶梯状”结构。5. 通过不断加入珠子,直到完成整个DNA双螺旋结构。需要注意的是,在制作DNA双螺旋结构模型时,请保持每个碱基之间的距离和比例一致,并保证模型稳定性,避免出现塑料珠掉落或模型塌陷等情况。此外,在制作过程中,也可以参考相关教材或在线资源,以获得更加详细的说明和指导。
2023-07-01 13:50:081

什么是DNA分子双螺旋结构模型?

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。 本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。 一套DNA分子双螺旋结构积塑模型,其特征是: a.这套DNA分子双螺旋积塑模型由红、黄、兰绿四种优质塑料色球(分别代表A、T、G、C四种核苷)和一种优质棕色塑料色棒(代表磷酸P)共五种另件所组成。 b.红球和黄球直径φ18,各带有一个直径φ10的白色圆柱形突出物,在红球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部前后各突起一个直径φ3的半圆形凸起物,在黄球的白色圆柱上伸出一直径φ6的圆棒,圆棒前后各开有一个直径φ3的半圆形凹槽,红球和黄球的结合,即A与T的结合,可通过φ6圆棒插入φ6圆孔来实现。 c.蓝球和绿球直径也是φ18,也各带有一个直径φ10的白色圆柱形突出物,在兰球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部沿圆周对称地突起三个直径φ3的半圆形凸起物,在绿球的白色圆柱上伸出一φ6圆棒,在圆棒周围对称地开有三个直径φ3的半圆形凹槽,兰球和绿球的结合,即G和C的结合,可通过φ6圆棒插入φ6圆孔来实现。 d.每个色球除带有一个白色圆柱形突出物外,还各开有二个直径φ6的圆孔,它们的位置一上一下、一左一右,分别对称地绕水平和垂直轴线旋转36角。利用直径φ6的棕棒插入二个色球相对着的二个φ6圆孔,可将任意二个色球连接起来,从而可组成DNA单股螺旋链,所开φ6圆孔的角度,可保证每一螺旋上有10个色球, e.每一对配对色球上的一个φ3半圆形凸起物和一个φ3半圆形凹槽代表一个氢(H)键,由于A、T和G、C色球上φ3半圆形凸起物和半圆形凹槽数目不同(一为2,一为3),角度不同,因此A球只能与T球结合,G球只能与C球结合,A与C、G与T球之间不能结合(不能插入),从而可实现A-T、G-C之间的严格配对关系,利用这种配对关系,可组成互补配对的DNA双螺旋链,并导致DNA分子具有自我复制的功能。(其中A、T、C、G 均为碱基;A:腺嘌呤;T:胸腺嘧啶;C:胞嘧啶;G:鸟嘌呤。当T转录时,变为U:尿嘧啶)。
2023-07-01 13:50:282

dna分子双螺旋结构模型属于什么模型?

DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。
2023-07-01 13:50:491

dna双螺旋结构模型有哪些基本特点,这些结构解释生命现象

dna双螺旋结构有哪些特点:  a.两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟。  b.磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按a-t配对,之间形成2个氢键,g-c配对,之间形成3个氢键(碱基配对原则,chargaff定律)。  c.螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm。  该模型揭示了dna作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是dna复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。
2023-07-01 13:51:022

DNA的双螺旋结构的模型图是如何得到的?

DNA的双螺旋结构模型是通过多种实验手段和分析方法得到的,其中最为重要的是X射线衍射技术。1950年代初期,英国科学家罗斯林察看基因物质的结构,通过X射线衍射实验获得了大量有关DNA分子结构的数据。但是,由于X射线衍射数据的复杂性和抽象性,解析数据需要复杂的计算和分析过程。在这个背景下,詹姆斯·沃森和弗朗西斯·克里克两位科学家在1953年通过对已有实验数据的分析,提出了DNA双螺旋结构的模型。他们的模型建立在这样的观察基础之上:X射线衍射图形呈现周期性、重复性、非均匀强度的交叉斑点,这种斑点的特点说明了一种复杂的螺旋形结构。通过对这些斑点的位置和强度进行详细的计算和分析,沃森和克里克最终提出了双螺旋结构的模型。他们的模型认为,DNA是由两条互补的链通过氢键相互结合而成的,形成一个类似于螺旋梯的结构。每条链由若干个核苷酸单元组成,核苷酸单元由磷酸、糖分子和碱基三部分组成。在这个结构中,碱基配对以A-T和G-C两种方式存在,通过氢键相互配对。这种特殊的碱基配对规律保证了DNA分子的可复制性和遗传性。总之,通过多种实验和分析手段的综合运用,我们得到了现在广泛接受的DNA双螺旋结构的模型。
2023-07-01 13:51:092

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力
2023-07-01 13:51:362

简述dna双螺旋结构模型特点。

DNA双螺旋结构模型特点简述如下:有两条DNA单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构.外部是磷酸和脱氧核糖交替构成的内部碱基遵循碱基互补配对原则(A-T,C-G)碱基之间是由氢键连接脱氧核苷酸之间由磷酸二脂键链接.
2023-07-01 13:51:451

DNA双螺旋结构模型的基本要点是什么?

DNA双螺旋结构特征:主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。 所谓双螺旋就是针对二条主链的形状而言的。 碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键。 DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求, 而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。 每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。 也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。 大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
2023-07-01 13:51:521

dna分子双螺旋结构模型属于什么模型?

DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。
2023-07-01 13:52:121

简述DNA的双螺旋结构。

DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。
2023-07-01 13:52:251

下列关于DNA双螺旋结构模型的叙述,不正确的是()

下列关于DNA双螺旋结构模型的叙述,不正确的是() A.双股脱氧核苷酸呈反向平行B.DNA形成的均是左手双螺旋结构C.双股链间存在碱基配对关系D.螺旋每周包含10对碱基E.螺旋的螺距为3.4nm正确答案:DNA形成的均是左手双螺旋结构
2023-07-01 13:52:321

制作dna双螺旋结构模型的 方法步骤

主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。DNA双螺旋结构的多样性包括A-DNAB-DNA Z-DNAn三种DNA构型的比较
2023-07-01 13:52:381

为什么DNA双螺旋结构的螺旋方向是向右边,用物理知识怎么解释

双螺旋结构模型 1953年Watson和Crick正式提出了关于DNA二级结 构的右手双螺旋结构模型,主要内容有: (1)DNA分子由两条反向平行的多聚核苷酸链围绕同 一中心轴盘曲而成,两条链均为右手螺旋,链呈反平行走向,一条走向是5′→3′,另一条是3′→5′。 (2)DNA链的骨架由交替出现的亲水的脱氧核糖基和磷酸基构成,位于双螺旋的外侧,碱基配对位于双螺旋的内侧。 (3)两条多聚核苷酸链以碱基之间形成氢键配对而相连,即A与T配对,形成两个氢键,G与C配对,形成三个氢键。碱基相互配对又叫碱基互补。RNA中若也有配对区,A是与U以两个氢键配对互补。 (4)碱基对平面与螺旋轴几乎垂直,相邻碱基对沿轴转36°,上升0.34nm。每个螺旋结构含10对碱基,螺旋的距为3.4nm,直径是2.0nm。DNA两股链之间的螺旋形成凹槽:一条浅的,叫小沟;一条深的,叫大沟。大沟是蛋白质识别DNA的碱基序列发生相互作用的基础,使蛋白质和DNA可结合而发生作用。DNA双螺旋结构要与pr的相区别:DNA是两条核苷酸链通过碱基之间氢键相连而成,而蛋白质的α-螺旋是一条肽链自身盘曲而成,其氢键是其内部第一位肽键的N-H与第四个肽键的羰基氧形成的。 (5)DNA双螺旋结构的稳定主要由互补碱基对之间的氢键和碱基堆积力来维持。碱基堆积力是碱基对之间在垂直方向上的相互作用,可以使DNA分子层层堆积,分子内部形成疏水核心,这对DNA结构的稳定是很有利的,碱基堆积力对维持DNA的二级结构起主要作用。
2023-07-01 13:52:522

提出DNA分子双螺旋结构模型的是 A.孟德尔 B.艾弗里 C.格里菲思 D.沃森和克里克

D
2023-07-01 13:53:001

第一次实验DNA双螺旋结构为什么会失败?

在建立DNA结构模型的过程中,沃森和克里克借鉴了美国化学家鲍林发现蛋白质结构的过程。他们注意到鲍林的主要方法是依靠X射线衍射的图谱来探讨蛋白质分子中原子间关系的。受此启发,沃森和克里克像孩子们摆积木一样,开始用自制的硬纸板构建DNA结构模型。他们利用了科学家们已经发现的一些证据,如DNA分子是由含有4种碱基的脱氧核苷酸长链构成的;维尔金斯和富兰克林通过X射线衍射法推算出的DNA分子呈螺旋结构的结论等。在此基础上否定了DNA是单链和四链结构的可能,首先构建了一个DNA链结构模型,他们将模型中的磷酸——核糖骨架安置在螺旋内部。但是,以维尔金斯为首的一批科学家在对此结构进行验证时发现,沃森和克里克对实验数据的理解有误,因而否定了他们建立的第一个DNA分子模型。
2023-07-01 13:53:221

DNA的双螺旋结构是谁发现的?

沃森和克里克于1953年发现DNA的双螺旋结构,为分子生物学奠定了基础,他们也因此和威尔金斯共享了1962年诺贝尔奖的荣光。然而,很少有人记起这一里程碑式的工作中另外一位功不可没的科学家——富兰克林。罗莎琳德u2022富兰克林,出色的物理化学家、结晶学家和X射线衍射技术专家。1920年7月25日生于伦敦一个富裕的犹太家庭,15岁就立志要当科学家,1941年毕业于剑桥大学物理化学专业,后从事煤炭分子结构研究并于1945年获博士学位。“二战”后,她前往法国学习X射线衍射技术,1951年回国,在伦敦大学国王学院同威尔金斯一起研究DNA结构。当时人们已知DNA可能是遗传物质,但对其结构及作用机制还不甚了解。1951年,富兰克林成功拍摄出一张高清晰度的X射线衍射图,具有明显螺旋结构特征。她做出了DNA单位分子的完整空间描述,并且发现DNA具有双链螺旋结构,磷酸基团位于分子外侧,碱基位于内侧。此时,剑桥大学的沃森和克里克也在进行此项研究。1953年初,威尔金斯在富兰克林不知情的情况下给来访的沃森看了那张照片及测量数据。他们据此获得启发,立即悟到DNA的结构并于两周后搭建出双螺旋模型。但直至报告发表他们也没告知或提及富兰克林。1953年3月,当富兰克林将研究结果整理成文打算发表时,才发现DNA结构被破解的消息已出现在新闻简报中。当沃森等人获诺贝尔奖时,富兰克林已于1958年因病早逝,自然不在受奖之列。上世纪末,富兰克林这位“DNA黑暗女神”逐渐得到科学界认可:伦敦大学国王学院把新建的一座大楼命名为“富兰克林u2022威尔金斯”大楼,英国皇家学会也设立“富兰克林奖章”,以奖励在科研领域做出重大贡献的科学家。
2023-07-01 13:53:291

哪些实验证明DNA是双螺旋结构

哪些实验证明DNA是双螺旋结构  在上世纪中叶(1950s)James Watson 和 Francis Crick提出了著名的DNA双螺旋以及双链间碱基配对的模型,根据这个模型,他们进一步提出了DNA复制的半保留模型(semiconservative model),虽然这个模型比当时并存的全保留模型(conservative 模型)看起来简单易行的多,但始终缺乏有说服力的数据。 最后在1957年,当时在Caltech作研究生的Matthew Meselson和作博士后的Franklin Stahl设计并实现了这组著名的,证明了DNA复制半保留机理的实验。  试验中,他们先将大肠杆菌细胞培养在用15NH4Cl作为唯一氮源的培养液里养很长时间(14代),使得细胞内所有的氮原子都以15N的形式存在(包括DNA分子里的氮原子)。这时再加入大大过量的14NH4Cl和各种14N的核苷酸分子,细菌从此开始摄入14N,因此所有既存的“老”DNA分子部分都应该是15N标记的, 而新生的DNA则应该是未标记的。接下来他们让细胞们继续高高兴兴地生长,而自己则在在不同时间提取出DNA分子,利用CsCl密度梯度离心分离,而当细胞分裂了一次的时候只有一个DNA带,这就否定了所谓的全保留机理,因为根据全保留机理,DNA复制应该通过完全复制一个“老”DNA双链分子而生成一个全新的DNA双链分子,那么当一次复制结束,应该一半DNA分子是全新(双链都完全只含14N), 另一半是“全老”(双链都完全只含15N)。这样一来应该在出现在离心管的不同位置,显示出两条黑带。  通过与全14N和全15N的DNA标样在离心管中沉积的位置对比,一次复制(分裂)时的这根DNA带的密度应当介于两者之间,也就是相当于一根链是14N,另一根链是15N。而经历过大约两次复制后的DNA样品(generation=1.9)在离心管中显示出强度相同的两条黑带,一条的密度和generation=1时候的一样,另一条则等同于完全是14N的DNA。这样的结果跟半保留机理推测的结果完美吻合  就这样,关于DNA复制机理的争论终于被Meselson和Stahl完美解决,而基因学和基因组学也得以在此后的五十年取得一系列重大突破。
2023-07-01 13:53:392

DNA双螺旋结构模型要点及其与DNA生物学功能的关系

(1)在DNA分子中,两股DNA链围绕一假想的共同轴心形成一右手螺旋结构,双螺旋的螺距为3.4nm,直径为2.0nm   (2)链的骨架(backbone)由交替出现的、亲水的脱氧核糖基和磷酸基构成,位于双螺旋的外侧。   (3)碱基位于双螺旋的内侧,两股链中的嘌呤和嘧啶碱基以其疏水的、近于平面的环形结构彼此密切相近,平面与双螺旋的长轴相垂直。一股链中的嘌呤碱基与另一股链中位于同一平面的嘧啶碱基之间以氢链相连,称为碱基互补配对或碱基配对(base pairing),碱基对层间的距离为0.34nm。碱基互补配对总是出现于腺嘌呤与胸腺嘧啶之间(A=T),形成两个氢键;或者出现于鸟嘌呤与胞嘧啶之间(G=C),形成三个氢键。   (4)DNA双螺旋中的两股链走向是反平行的,一股链是5′→3′走向,另一股链是3′→5′走向。两股链之间在空间上形成一条大沟(major groove)和一条小沟(minor groove),这是蛋白质识别DNA的碱基序列,与其发生相互作用的基础。   DNA双螺旋的稳定由互补碱基对之间的氢键和碱基对层间的堆积力(base?stacking force)维系。DNA双螺旋中两股链中碱基互补的特点,逻辑地预示了DNA复制过程是先将DNA分子中的两股链分离开,然后以每一股链为模板(亲本),通过碱基互补原则合成相应的互补链(复本),形成两个完全相同的DNA分子。因为复制得到的每对链中只有一条是亲链,即保留了一半亲链,将这种复制方式称为DNA的半保留复制(semi?conservative replication)。后来证明,半保留复制是生物体遗传信息传递的最基本方式。   DNA双螺旋是核酸二级结构的重要形式。双螺旋结构理论支配了近代核酸结构功能的研究和发展,是生命科学发展史上的杰出贡献。本文来自: 医学生网(www.yixuesheng.com) 详细出处参考:http://www.yixuesheng.com/jichu/swhxfz/201001/25974.html维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力
2023-07-01 13:53:582

DNA双螺旋结构模型有哪些基本要点

我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
2023-07-01 13:54:172

DNA的二级结构模型是双螺旋结构?

DNA双螺旋结构模型(DNA double helix)是James Watson 和Francis Crick 于1953年提出的描述DNA二级结构的模型,也称为Watson –Crick 结构模型。模型要点是:(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5"到3",另一条链的走向是3"到5";(2)碱基平面向内延伸,与双螺旋链成垂直状;(3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构;(4)A与T配对,其间距离1.11nm;G与C配对,其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等;(5)在结构上有深沟和浅沟;(6)DNA双螺旋结构稳定的维系 横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。希望我的回答可以帮助到您,望采纳。。。谢谢
2023-07-01 13:54:261

DNA双螺旋结构模型的主要内容是什么? 生物体内遗传信息的传递主要是通过什么方式实现的?

1、DNA双螺旋结构包括三点(1)由两条反向平行的长链构成(2)磷酸和脱氧核糖构成骨架,排列在外侧,碱基排列在内侧。(3)两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)2、生物体内遗传信息的传递通过DNA复制实现。遗传信息就是DNA分子中碱基的排列顺序,通过DNA复制(有丝分裂间期),将遗传信息从一个细胞传到另一个细胞,实现体内遗传信息的传递。如果从一个个体传递到子代,则是通过DNA复制(减数第一次分裂间期)
2023-07-01 13:54:332

DNA双螺旋模型特点?

①两条DNA互补链反向平行。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36◦的夹角。③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力。
2023-07-01 13:54:554

dna双螺旋结构模型有哪些基本特点,这些结构解释生命现象

答案要点:a.两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟.b.磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律).c.螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm.该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础.该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石.
2023-07-01 13:55:131

dna双螺旋模型有什么作用

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。
2023-07-01 13:55:221

DNA的二级结构模型是双螺旋结构?

1)dna分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(a-t);鸟嘌呤必定与胞嘧啶配对(g-c),这种碱基间的氢链连接配对原则称为碱基互补规则维持dna双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力
2023-07-01 13:55:312

简述dna双螺旋结构模型特点。

DNA双螺旋结构模型特点简述如下:有两条DNA单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构.外部是磷酸和脱氧核糖交替构成的内部碱基遵循碱基互补配对原则(A-T,C-G)碱基之间是由氢键连接脱氧核苷酸之间由磷酸二脂键链接.
2023-07-01 13:55:401

DNA分子双螺旋结构模型哪位能简单介绍一下?神经生物学知识哪里可以了解

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。  一套DNA分子双螺旋结构积塑模型,其特征是:a.这套DNA分子双螺旋积塑模型由红、黄、兰绿四种优质塑料色球(分别代表A、T、G、C四种核苷)和一种优质棕色塑料色棒(代表磷酸P)共五种另件所组成。 b.红球和黄球直径φ18,各带有一个直径φ10的白色圆柱形突出物,在红球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部前后各突起一个直径φ3的半圆形凸起物,在黄球的白色圆柱上伸出一直径φ6的圆棒,圆棒前后各开有一个直径φ3的半圆形凹槽,红球和黄球的结合,即A与T的结合,可通过φ6圆棒插入φ6圆孔来实现。 c.蓝球和绿球直径也是φ18,也各带有一个直径φ10的白色圆柱形突出物,在兰球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部沿圆周对称地突起三个直径φ3的半圆形凸起物,在绿球的白色圆柱上伸出一φ6圆棒,在圆棒周围对称地开有三个直径φ3的半圆形凹槽,兰球和绿球的结合,即G和C的结合,可通过φ6圆棒插入φ6圆孔来实现。 d.每个色球除带有一个白色圆柱形突出物外,还各开有二个直径φ6的圆孔,它们的位置一上一下、一左一右,分别对称地绕水平和垂直轴线旋转36角。利用直径φ6的棕棒插入二个色球相对着的二个φ6圆孔,可将任意二个色球连接起来,从而可组成DNA单股螺旋链,所开φ6圆孔的角度,可保证每一螺旋上有10个色球, e.每一对配对色球上的一个φ3半圆形凸起物和一个φ3半圆形凹槽代表一个氢(H)键,由于A、T和G、C色球上φ3半圆形凸起物和半圆形凹槽数目不同(一为2,一为3),角度不同,因此A球只能与T球结合,G球只能与C球结合,A与C、G与T球之间不能结合(不能插入),从而可实现A-T、G-C之间的严格配对关系,利用这种配对关系,可组成互补配对的DNA双螺旋链,并导致DNA分子具有自我复制的功能。(其中A、T、C、G 均为碱基;A:腺嘌呤;T:胸腺嘧啶;C:胞嘧啶;G:鸟嘌呤。当T转录时,变为U:尿嘧啶)。 沃森和克里克是科技发展史上的一对幸运儿。他们仅用了18个月就解决了DNA分子结构这样一个当时的世界难题。是年沃森仅25岁,克里克也才37岁。   沃森从小聪颖好学,15岁即入芝加哥大学学习动物学。毕业时看到了量子力学大师薛定谔的《生命是什么?》一书,被深深吸引,决心探寻生命的奥秘。19岁进入印第安纳大学师从卢里亚教授,以研究X射线对噬菌体的作用而顺利获得遗传学博士学位。1951年春,一个偶然的机会,沃森代替导师参加一个在意大利那不勒斯召开的生物大分子结构学术会议,受伦敦皇家学院晶体学家威尔金斯(M·Wilkims,1916—)做的关于DNA X射线衍射的研究报告所启发,认准了X射线衍射法是一把可以打开生命奥秘的钥匙。于是,通过一番努力,终于来到剑桥大学卡文迪什实验室,从事蛋白质和多肽晶体结构的研究。在这里,他碰到了克里克。 克里克比沃森年长10多岁,1937年就毕业于伦敦大学物理系,因第二次世界大战而中断了博士学业。战后,他也受到薛定谔《生命是什么?》一书的影响,决心改行,到了卡文迪什实验室,在佩鲁兹教授的指导下,从事多肽和蛋白质的X射线衍射分析的研究,继续攻读博士学位。沃森是一位在遗传学上很有造诣的青年学者,寡言少语,有一股闯劲。而克里克则对X射线结晶学十分了解,性格外向,阅历丰富。他们又都对DNA结构与生物学功能的关系有浓厚的兴趣。这种志向上的一致,学术上的互补和性格上的默契,可谓天作之合。于是现代生物学发展史上最高成效的合作就这样开始了。你可以到生物帮那里详细的了解。那里提供各种生物制剂试剂、实验抗体、仪器耗材、医疗设备等产品交易信息,提供生物技术知识方法文档、生物医药等领域的资讯please click to connect www.bio1000.com/zt/dna/3849.html .I hope that i can help you  但他们的研究并非一帆风顺。由于没有自己的实验室,他们就利用别人的分析数据,开始做DNA分子模型的研究。首先,他们采用当时多数科学家关于DNA结构是螺旋型的猜测搭建分子模型,但是DNA分子是单链、双链还是三链?颇费心力。经过一番周折,好不容易建立了一个三螺旋模型,但在征求同行专家意见时受到了批评和质疑,与实验结果也不相符,使他们一下子陷入了困境。屋漏偏遭连阴雨。这时,沃森的奖学金被中断,克里克因不认真做博士论文,被指摘为不务正业而受到校方批评,导师也严令他放弃DNA结构的研究,加劲做博士课题。但他们并未因这一连串的打击而退缩,相反他们从别的研究小组的报道中受到启发和鼓舞,看到了胜利的曙光,也感受到竞争的激烈和时间的紧迫。于是他们迎难而上,加快研究步伐,终于在1953年2月28日提出了DNA的双螺旋分子结构,并立即整理成文,寄信《Nature》杂志发表,争得了创新的先机。9年之后,他们获得了诺贝尔奖。 沃森和克里克这两个年青人之所以在DNA分子结构研究的激烈竞争中脱颖而出,除了他们自身的努力和卓有成效的合作之外,还在于他们把握了科学研究的成功之道。  科学研究的首要问题是选题。课题选得准确与否,它决定了科研进展的快慢,成果水平的高低乃至于最终的成败。这就如同打井选址一样,如果选点不对,那么你花再大的力气,用再先进的设备,也是打不出水来的。20世纪50年代以前,生物学界普遍认为蛋白质是决定遗传基因的主要物质,因此许多科学家包括一些世界知名的权威,都投身于蛋白质分子结构的研究。但沃森和克里克不迷信权威,敢于向传统观念挑战。他们从前人的研究中敏锐地看到DNA在遗传中的重要作用。他们认为:“蛋白质并不是真正解开生命之谜的罗塞达石碑。相反,DNA却能提供一把钥匙。使用这把钥匙,我们就能找出基因是如何决定生物性状的。”他们坚信DNA结构的研究“称得上是自达尔文进化论发表以来在生物学领域内最轰动的事件。”因此,他们才会在众说纷纭之中不改初衷,在混沌不清的表象面前不迷失方向,在困难曲折中毫不退缩,使他们的研究一下子跃到了世界生物学研究的最前沿,为他们取得重大突破奠定了基础。  科学研究要确保成功,还必须有好的可靠的方法。这就如同过河一样,不解决好桥或船等过河的工具,是无论如何也不可能从“未知”的此岸到达“已知”的彼岸的。沃森他们在研究工作中,非常注意科学方法。首先,他们善于博采众长,注意收集各种有关信息,从中汲取营养。当时,他们同几个研究小组建立了密切的学术交流关系,经常请同行专家来讨论问题,征求意见。他们很好地分析了当时信息学派、结构学派和生化学派对DNA结构研究的成果,综合各家之长,为我所用。例如,威尔金斯和弗兰克林小组在X射线衍射结晶学的研究方面处于世界前列,特别是弗兰克林,她已经得到了DNA最清晰的X射线结晶衍射图,可以说是完成了DNA结构的大部分工作。这张图给沃森他们以极大的启发,但是弗兰克林和威尔金斯对用构建分子模型的方法来阐释生物遗传功能不感兴趣,因此,仅管他们在专业造诣上比沃森和克里克高,但视野的局限使他们最终未能捅破这层窗户纸。所幸的是威尔金斯最后还是与沃森与克里克一起荣获了诺贝尔奖,而弗兰克林则与诺贝尔奖失之交臂,令人惋惜。还有美国著名的化学键权威、诺贝尔奖获得者鲍林,他的研究小组从化学键的角度用摆弄分子模型的方法解决了DNA分子结构中的不少难题,但由于缺乏X射线衍射的经验,也不了解这方面的最新成果,仅建立了三螺旋模型,还未来得及进一步修正,就被沃森他们捷足先登了。沃森和克里克由于与弗兰克林等人经常讨论问题,最先看到她的那张X射线衍射图,又充分运用了鲍林那形象、便捷的摆弄分子模型的方法,还从数学家和生物化学家那里请教了嘌呤和嘧啶基因之间吸引力的计算和配对的概念,终于建立了一个完美的DNA双螺旋分子结构模型。他们正如牛顿所说的那样,“站在巨人的肩膀上”,去摘取了桂冠。
2023-07-01 13:55:481

DNA双螺旋结构模型的基本要点是什么?

DNA双螺旋结构特征:主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。 所谓双螺旋就是针对二条主链的形状而言的。 碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键。 DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求, 而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。 每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。 也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。 大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
2023-07-01 13:55:571

dna分子双螺旋结构模型属于什么模型?

DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。
2023-07-01 13:56:061

DNA双螺旋结构模型的主要内容是什么? 生物体内遗传信息的传递主要是通过什么方式实现的?

1、DNA双螺旋结构包括三点(1)由两条反向平行的长链构成(2)磷酸和脱氧核糖构成骨架,排列在外侧,碱基排列在内侧。(3)两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)2、生物体内遗传信息的传递通过DNA复制实现。遗传信息就是DNA分子中碱基的排列顺序,通过DNA复制(有丝分裂间期),将遗传信息从一个细胞传到另一个细胞,实现体内遗传信息的传递。如果从一个个体传递到子代,则是通过DNA复制(减数第一次分裂间期)
2023-07-01 13:56:142

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力
2023-07-01 13:56:241

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力
2023-07-01 13:56:521

DNA分子双螺旋结构模型是怎样的?

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。
2023-07-01 13:57:011

下列关于DNA双螺旋结构模型的说法,错误的是:

【答案】:A第一步,本题考查生物医学知识并选错误项。第二步,DNA双螺旋结构模型结构参数为:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。A项错误,与题意相符,当选。因此,选择A选项。
2023-07-01 13:57:081

DNA双螺旋结构的生物学意义

DNA双螺旋结构:有两条DNA单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构。外部是磷酸和脱氧核糖交替构成的,内部碱基遵循碱基互补配对原则(A-T,C-G),碱基之间是由氢键连接,脱氧核苷酸之间由磷酸二脂键链接。 双螺旋模型的意义:双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。
2023-07-01 13:57:175

DNA双螺旋模型没有确立分子生物学范式吗

DNA双螺旋模型没有确立分子生物学范式  DNA双螺旋结构:有两条DNA单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构。外部是磷酸和脱氧核糖交替构成的,内部碱基遵循碱基互补配对原则(A-T,C-G),碱基之间是由氢键连接,脱氧核苷酸之间由磷酸二脂键链接。双螺旋模型的意义:双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。  DNA双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开, 人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持。
2023-07-01 13:57:491

什么时间是谁发现了遗传物质DNA的双螺旋结构?

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型。经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质 DNA双螺旋组成的碱基对扁平环连结着。他们谦逊地暗示说,遗传物质可能就是通过它来复制的。这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板。   1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构。当碱基排列呈现这种结构时分子能量处于最低状态。沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的。这种双螺旋展示的是DNA分子的二级结构。
2023-07-01 13:57:562

DNA双螺旋结构模型

答:DNA双螺旋结构模型提出,是一个划时代的伟大工程,它的提出标志着分子生物学从此诞生了。从此生物学从细胞水平进入分子水平。
2023-07-01 13:58:182

简述B-型DNA分子双螺旋结构的要点

1、DNA分子是由两条方向相反的平行多核苷酸链围绕同一中心轴构成的右手双螺旋;2、在两条链中磷酸与脱氧核糖位于螺旋外侧,碱基平面位于螺旋内侧,脱氧核糖平面与碱基平面垂直,螺旋表面形成大沟与小沟;3、双螺旋直径2nm,碱基平面与螺旋纵轴垂直,相邻碱基平面距离0.34nn,旋转夹角36°,每10个核苷酸旋转一周,螺距3.4nm;4、两条核苷酸链之间通过碱基形成氢键,遵循A-T、G-C碱基互补原则;5、双螺旋结构横向稳定靠两条链之间的氢键,纵向稳定则依靠碱基平面之间的疏水性碱基堆积力。扩展资料:1953年沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰地阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。参考资料来源:百度百科-DNA双螺旋结构
2023-07-01 13:58:271

DNA的双螺旋结构有何重要的生理意义

双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在4月25日发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。
2023-07-01 13:58:453

制作DNA双螺旋结构模型

准备两根小绳一些塑料片纸片也可以,用剪刀将片剪成所要的形状,其中球形塑料片——代表磷酸;双层五边形塑料片——代表脱氧核糖;4种不同颜色的长方形塑料片——代表4种不同碱基。制作脱氧核苷酸模型—→制作多核苷酸长链模型—→制作DNA分子平面结构模型—→制作DNA分子的立体结构(双螺旋结构)。按照每个脱氧核苷酸的结构组成,挑选模型零件,组装成若干个脱氧核苷酸。按照一定的碱基排列顺序,将若干个脱氧核苷酸依次穿起来,组成一条多核苷酸长链。在组装另一条多核苷酸长链时,方法相同注意两点:一是两条长链的单核苷酸数目必须相同;二是两条长链并排时,必须保证碱基之间能够相互配对,不能随意组装。这是实验成败的关键注意两点:一是两条长链的单核苷酸数目必须相同;二是两条长链并排时,必须保证碱基之间能够相互配对,不能随意组装。这是实验成败的关键。把DNA分子平面结构旋转一下,即可得到一个DNA分子的双螺旋结构模型。
2023-07-01 13:58:522

dna双螺旋结构模型是有谁提出的,简述其发现的主要实验依据

  在上世纪中叶(1950s)James Watson 和 Francis Crick提出了著名的DNA双螺旋以及双链间碱基配对的模型,根据这个模型,他们进一步提出了DNA复制的半保留模型(semiconservative model),虽然这个模型比当时并存的全保留模型(conservative 模型)看起来简单易行的多,但始终缺乏有说服力的数据。 最后在1957年,当时在Caltech作研究生的Matthew Meselson和作博士后的Franklin Stahl设计并实现了这组著名的,证明了DNA复制半保留机理的实验。  试验中,他们先将大肠杆菌细胞培养在用15NH4Cl作为唯一氮源的培养液里养很长时间(14代),使得细胞内所有的氮原子都以15N的形式存在(包括DNA分子里的氮原子)。这时再加入大大过量的14NH4Cl和各种14N的核苷酸分子,细菌从此开始摄入14N,因此所有既存的“老”DNA分子部分都应该是15N标记的, 而新生的DNA则应该是未标记的。接下来他们让细胞们继续高高兴兴地生长,而自己则在在不同时间提取出DNA分子,利用CsCl密度梯度离心分离,而当细胞分裂了一次的时候只有一个DNA带,这就否定了所谓的全保留机理,因为根据全保留机理,DNA复制应该通过完全复制一个“老”DNA双链分子而生成一个全新的DNA双链分子,那么当一次复制结束,应该一半DNA分子是全新(双链都完全只含14N), 另一半是“全老”(双链都完全只含15N)。这样一来应该在出现在离心管的不同位置,显示出两条黑带。  通过与全14N和全15N的DNA标样在离心管中沉积的位置对比,一次复制(分裂)时的这根DNA带的密度应当介于两者之间,也就是相当于一根链是14N,另一根链是15N。而经历过大约两次复制后的DNA样品(generation=1.9)在离心管中显示出强度相同的两条黑带,一条的密度和generation=1时候的一样,另一条则等同于完全是14N的DNA。这样的结果跟半保留机理推测的结果完美吻合  就这样,关于DNA复制机理的争论终于被Meselson和Stahl完美解决,而基因学和基因组学也得以在此后的五十年取得一系列重大突破。
2023-07-01 13:58:591

DNA为什么是双螺旋结构?有什么意义?

DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起DNA分子变性,即DNA双链碱基间的氢键断裂,双螺旋结构解开—也称为DNA的解螺旋。  DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。意义:  双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。
2023-07-01 13:59:204

DNA双螺旋结构模型由沃森和克里克合作建立。()

DNA双螺旋结构模型由沃森和克里克合作建立。() A.正确 B.错误 正确答案:A
2023-07-01 13:59:271

制作DNA双螺旋模型

1.取一个硬塑方框,在硬塑方框一侧的两端各拴上一条长0.5 m的细铁丝。 2.将一个剪好的球形塑料片(代表磷酸)和一个长方形塑料片(4种不同颜色的长方形塑料片分别代表4种不同的碱基),分别用订书钉连接在一个剪好的五边形塑料片(代表脱氧核糖)上。用同样的方法制作一个个含有不同碱基的脱氧核苷酸模型。 3.将若干个制成的脱氧核苷酸模型,按照一定的碱基顺序依次穿在一条长细铁丝上,这样就制作好了一条DNA链。按同样方法制作好DNA的另一条链(注意碱基的顺序及脱氧核苷酸的方向),用订书钉将两条链之间的互补碱基连接好。 4.将两条铁丝的未端分别拴到另一个硬塑方框一侧的两端,并在所制模型的背侧用两根较粗的铁丝加固。双手分别提起硬塑方框,拉直双链,旋转一下,即可得到一个DNA分子的双螺旋结构模型。
2023-07-01 13:59:353

改变世界的发明32丨DNA双螺旋结构分子模型

1946年,沃森受薛定谔的《生命是什么》影响,对遗传学产生了兴趣。后在导师卢里亚的指导下,沃森开始研究X射线对噬菌体增殖的影响。 1951年秋,沃森和克里克在卡文迪什实验室相识,决定共同研究DNA分子的结构,并确定了提出一个结构模型的目标。 但沃森和克里克的研究一直没有进展,直到1951年威尔金斯发表了关于DNA晶体衍射分析的阶段性学术报告,以及富兰克林于1952年拍摄的一张非常清晰的B型DNA衍射照片。这份报告和照片使两人决定使用X射线晶体衍射分析生物大分子研究,并猜想DNA可能是双螺旋结构。 此后, 沃森和克里克在与威尔金斯、富兰克林的相互协作下,经过不懈研究,终于在1953年建立DNA双螺旋结构的分子模型。 同年英国的《自然》杂志刊登了他们的研究成果。 沃森和克里克的成就后来被誉为20世纪以来生物学方面最伟大的发现。 DNA分子双螺旋结构模型的建立,标志着人类对遗传和变异现象的研究进入到分子水平,也由此开创了遗传学研究的新时代。 1962年,因发现核酸的分子结构及其在生命物质中传递信息的重要意义,沃森、克里克与威尔金斯获得了诺贝尔医学或生理学奖。
2023-07-01 14:00:241

动物的资料

野生动物是指生存于自然状态下,非人工驯养的各种哺乳动物、鸟类、爬行动物、两栖动物、鱼类、软体动物、昆虫及其他动物。 野生动物分类 1、濒危野生动物,如大熊猫、虎等; 2、有益野生动物,指那些有益于农、林、牧业及卫生、保健事业的野生动物,如肉食鸟类、蛙类、益虫等; 3、经济野生动物,指那些经济价值较高,可作为渔业、狩猎业的动物; 4、有害野生动物,如害鼠及各种带菌动物等。 全世界有794多种野生动物由于缺少应有的环境保护而濒临灭绝,76科300余种植物濒临灭绝。 以上资料只是人类目前所知,不知道还有多少不知名的物种正在消失。 动物灭绝记载 渡渡鸟(印度,1781), 蓝马羚(南非,1799), 马里恩象龟(舌塞尔,1800), 大海雀(大西洋,1844), 欧洲野马(欧洲,1876), 斑驴(亚洲,1883), 白臀叶猴(中国,1893), 旅鸽(北美,1914), 佛罗里达猴(北美,1917), 卡罗莱那鹦鹉(北美,1918), 中国犀牛(中国,1922), 高加索野牛(欧洲,1925), 巴厘虎(印尼,1937), 红鸭(印度,1942), 普氏野马(中国,1947), 袋狼(澳洲,1948), 冠麻鸭(亚洲,1964), 爪哇虎(印尼,1972)…… 也有材料谈到我国频临灭绝的动物如:糜鹿(全世界3*!000头),华南虎(50头),雪豹(1*!000~2*!000头),扬子鳄(1*!500只),白暨豚(100只),大熊猫(1*!000只),黑犀牛(3*!500头)指猴(9只),绒毛蛛猴(100只),滇金丝猴(1*!000只),野金丝猴(700只),白眉长臂猴(70只)。 1动物有益于人类 地球上人类起源与动物起源在茫茫历史长河中时间相隔不算太长。人类形成后依赖林果渔猎以生存和进化。后来发展了农业(第一次社会大分工)和畜牧业(第二次社会大分工),生产上去了,有剩余价值可以剥削,于是原始社会进步到奴隶社会。 人类和动物的关系非常密切也非常复杂。人和动物在地球食物链中互争口粮又互相依存,接触频繁。一般按人类需要分其为6类: 1.1食品动物(FoodAnimals)供应人类丰富营养来源的肉、乳、禽、蛋、鱼等。 1.2役用动物(LaborAnimals)马、驴、骡、骆驼等。骑、驮、拉,被誉为"不要能源”的动力,有战略意义。 1.3经济动物(EconomicAnimals)生产羊毛、裘皮、皮革等。如绵羊、长毛兔、海狸鼠、黄鼬、蓝狐等。 1.4实验动物(LaboratoryAnimals)以科学实验为目的、定向培育出的特种动物,有严格遗传学和生物学要求,目前以小鼠、大鼠、豚鼠、仓鼠为代表。 1.5医用动物(MedicalAnimals)生物制品原料如血清马、鸡胚等;检测工具如家兔;中药原料如鹿(茸)、熊(胆)、牛(黄)、马(宝)、虎(骨)等。 1.6观赏动物(宠物,Pet)猫、狗、鹦鹉、金丝雀、金鱼等。动物园、马戏团动物皆属之。 2动物对人类也有有害一面 动物约有200种传染病、80种寄生虫病,其中半数可以感染给人。1967年世界卫生组织(WHO)把这类在动物和人之间传播的疾病定名为Zoonoses,原意是"动物源性病”,其后WHO/FAO联合专家委员会又把它界定为"在人类与脊椎动物之间可以自由传播的疾病”。 频临动物的社会调查报告 全球动物保护组织公布794个物种濒临灭绝 由多个保护动物组织所组成的“零灭绝联盟”(AllianceforZeroEx鄄tinction)近日公布了一份“濒危物种”报告,指出位于全球595个地点的近800种动物即将绝种,当中包括中国的扬子鳄、非洲的马达加斯加狐猴和美国象牙喙啄木鸟,而素有“生态晴雨表”之称的两栖动物占了其中的1/3。有专家指出,如果再不施以援手,我们将要与这些动物彻底“说再见”。 12月12日,两只鹤在印度首都新德里的寒冬里翱翔。这个世界的美好有很多就是这些珍贵的野生动物赋予我们的,因此保护濒危动物是我们对自然界应尽的责任。 “零灭绝联盟”的使命 虽然生物灭绝是一个自然的过程,但是目前人为造成的生物灭绝率是自然灭绝的100倍。近代灭绝的物种大部分都生活在孤岛上,主要原因是由于新物种大量入侵,但是现在所发现的大部分濒危动物都生活在山区或地势低平的地带。 “零灭绝联盟”是由13个保护生物多样性的国际组织联合发起的,包括伦敦动物学会、保护国际、美国鸟类保护协会等。 目的是为了确认并且保护物种生存的地点,进而挽救濒危物种。这些地点都是世界自然保护联盟认定的濒危物种最后栖息地。由于并没有对地球上所有的物种进行仔细研究,因此这794个物种只包括鸟类、哺乳动物、两栖动物、松柏目植物和一些爬行动物。 该组织将全球分为七大块,每一块都有不少的濒危动物“热点”地区。所谓“热点”的选择遵循三个原则:首先,这些地点一定要包含至少一个“濒临灭绝”或是“严重濒临灭绝”的物种。第二,这些地点在“濒临灭绝”或是“严重濒临灭绝”的动物生存中占有不可替代的位置,比如有一定数量的物种生活于此地,或者在这里度过哺乳期或是冬眠期。 最后,这些地带都是相对于周边地区具有独立性的地方,必须与周边的地带有可定义的界限。界限之内的各个生物种群生活环境相近,而与周边地带的物种不甚相同。 在列出的这595个地点中,只有1/3受到法律保护,其他地方都被人类居住地所环绕,而且人口密度是全球平均水平的三倍。该研究的作者表示,保护这些地点是保护动物不灭绝的关键。 在这份濒危物种的名单上,墨西哥位列榜首,有63个濒危物种地点,其次是哥伦比亚、巴西和秘鲁。 在“零灭绝联盟”列出的名单中,拉美的濒危物种地点比其他地区高的原因,一个是该地区本身物种极具多样性,再有就是近年来动物生存的环境破坏严重。美国在该榜单中位列第八。 国际鸟类组织全球动物种类计划主任布查特指出:“我们必须保护这批频临绝种的动物,我们不能估计这些动物还能存活多久,但若不加紧行动,它们将于几十年间自动消失。”该报告的主要作者泰勒u2022里基茨也表示,虽然生物灭绝是一个自然的过程,但是目前人类造成的生物灭绝率是自然灭绝的100倍。在近代,虽然一些分布在北美、澳大利亚、马达加斯加或其他地区的所谓的“巨型动物”的消亡也有部分人类的原因,特别是捕猎和点火烧地,但是大部分灭绝的物种都生活在孤岛上,主要原因是由于新物种的大量入侵,如田鼠等。但是现在所发现的大部分濒危地点和动物都是在山区和地势低平的地带。 泰勒u2022里基茨表示:“我们要知道事情的紧迫性在于,如果我们不尽快采取行动,这些物种就会变成明天的渡渡鸟。不过目前的好消息就是我们仍然有时间来拯救这些动物。”(注:渡渡鸟毛色美丽,曾经是毛里求斯的国鸟,但是欧洲殖民者来到毛里求斯后,开始对大片森林进行砍伐和对肉味细嫩鲜美的渡渡鸟进行大肆猎杀,终于导致渡渡鸟于1690年前后灭绝。) “生态晴雨表”日渐衰微 也许有的人认为两栖动物模样丑陋,除了会抓一些昆虫以外没什么本事,但是事实并非如此,如果它们真的在地球上消失了,人类也不会好过。两栖动物是自然界最优秀的环境监测器,它们这种灾难性的剧减也就预示着地球面临着严重的环境退化。 报告指出的“濒危动物”名单上水陆两栖动物占51%,有408种。 这些形状各异,爬来爬去的动物,包括青蛙、蟾蝓、火蜥蜴和蚓螈,处境异常危险。两栖动物被普遍认为是“矿井中的高频噪音”,它们具有浸透性的皮肤非常敏感,也就成了环境恶化的特别预警器。以美国为基地的保护国际(CI)的主席拉塞尔表示,两栖动物是自然界最优秀的环境监测器,它们这种灾难性的剧减也就预示着地球面临着严重的环境退化。 20世纪70年代末期,两栖动物的数量开始锐减,到了1980年已有129个物种灭绝。2005年初,一份全球两栖动物调查报告“全球两栖动物评估”显示,目前所知的全球5743种两栖动物有32%都处于濒危境地。但是科学家还不清楚为什么会导致两栖动物如此剧烈的下降,目前主要的理论就是栖息地减少。 由于人类肆意砍伐森林、污染水源和破坏湿地,两栖动物渐渐失去了立足之地。例如在美国加利福尼亚州生活着一种大型陆生蝾螈,因为身上有淡绿色条纹而得名“虎纹火蛇”。但据美国联邦官员估计,由于城市化和农业开发,这种蝾螈迄今已失去了75%的栖息地。再有就是人类为饱口福或用作药物而大量捕食。另外据报道说,两栖动物还遭到一种名为壶菌的真菌的威胁。这种致命的真菌攻击两栖动物皮肤,使两栖动物体内水分代谢紊乱,导致大量死亡。 两栖动物作为地球生态系统的“晴雨表”。当它们大量死去之时,科学家会考虑,接下来灭亡的会是什么,动物还是植物?根据“零灭绝组织”的调查,接下来的是鸟类(217种)和哺乳动物(131种)。 “零灭绝联盟”的秘书迈克u2022帕尔表示:“虽然保护这些地点和物种本身非常重要,但是还意味着更多的东西。”帕尔说:“如果不切实保护的话,未来地球生态系统的遗传多样性就会遭到破坏,每年价值数十亿美元的生态旅游经济也无以为继,还有那些无法用金钱估量的洁净水源。我们有责任这么做。” 马达加斯加狐猴的厄运 阳光穿过弥漫在森林中轻纱一般的薄雾,太阳映衬着一片娇艳的蓝天,一群群狐猴快乐地在林间嬉闹着。在非洲马达加斯加生活的狐猴中,尤以大狐猴体形最大、嗓音最好。“流畅的音符、和谐的旋律,就像声音留下的优美划痕。”作家大卫u2022奎门这样描述大狐猴的叫声。然而,这样美好的声音我们也许很快就再也听不到了。 马达加斯加一直以其不同寻常的生物多样性而闻名于世。这里是灵长类动物狐猴的故乡;还有颜色漂亮的蜥蜴、壁虎或是变色龙;全身多刺的马岛猬;还有神秘的猫科动物缟狸,它们都是马达加斯加的原始主人。“马达加斯加确实是自然主义者们的一块天赐宝地。”自然主义者约瑟夫u2022非利伯特u2022柯默森在1771年写道,“造物主似乎有意将那里占为自己的私有领地,而且布置得应有尽有。”在人类踏足这个岛屿之前,也就是大约2000年前已经有大批的动植物在这个岛上繁衍生息了。马岛的狐猴总喜欢在岛上到处闲逛,而巨型的龟,体形庞大的象鸟(大概有3米高,重达500千克,它们下的蛋如果做成煎蛋,可以喂饱150个人,已经灭绝)也在岛上为所欲为,但是所有这些这一切在人类到来之后都改变了,很多物种都渐渐走向灭绝。 两千年前,自从今天的印度尼西亚人到达了马达加斯加,共有15种狐猴遭到伤害,最终消失。科学家在灭绝的狐猴头上发现了“大量屠宰的证据”。马萨诸塞大学人类学家文图拉u2022皮雷兹表示,他所在的科研小组发现了用利器切削和斩剁的痕迹,如剥皮、脱落关节和切片等。 皮雷兹说:“我们认真的检查了这些切削的痕迹后,更加验证了这里曾经屠宰这种动物,这是毫无疑问的。”直到今天,对狐猴的捕杀仍然没有结束。虽然从1964年开始,捕杀狐猴和将其作为宠物就被认定为违法,但捕杀狐猴仍然屡禁不绝。而且由于马达加斯加没有毒蛇、鹿或羚羊,也罕见较大的食肉动物,所以在漫长的进化过程中,狐猴的机敏性慢慢衰退,更加容易成为人类的目标。 目前,马达加斯加的狐猴总数估计大约在1000只至1万只,但是所有的科学研究结果都表明,狐猴的生存前景异常严峻。在马达加斯加首都塔那那利佛以东140公里处,是阿纳拉马扎卓保护区所在地。阿纳拉马扎卓是狐猴栖息的一座孤立的小岛,也是狐猴的最后一处避难所。 但是相对于其丰富的生物资源来说,马达加斯加岛仍然是贫穷的,很多孤注一掷的村民一拨儿又一拨儿地劈荆斩棘,毁林开路。狐猴们的这片避难地正在受到侵犯。由于当地政府允许当地人使用部分保护区,因此人们更加肆无忌惮地伐木、种地。于是,往往在大白天就能看见,栖息在树上的狐猴眼睁睁地看着那些惊扰它们的不速之客。 对于狐猴而言,最后的生态机会也许就只能指望那些远道而来的旅游者能捐资或留下来帮助它们了。但是,这一切显然也不是万能的。如果这些树林有朝一日都被砍伐一空,不难想像狐猴也将最终离我们而去,永远消失。 “上帝之鸟”在人间“复活” 气候变化和环境变化显示,到2100年,至少有1200种鸟将消失,而这仅仅是一种保守的估计。尽管自1500年以来,仅1。3%的鸟类灭绝。但同时期,全球单个鸟的数目估计有20%到25%的减少。 象牙喙啄木鸟因为长着一只象牙般的大嘴而得名,是全世界体形最大的啄木鸟之一,体长有50厘米,录像带中的啄木鸟两翼伸开时长90厘米。它们身披黑白相间的亮丽羽毛,翼有白色斑点,雄性啄木鸟的冠部呈现鲜亮的红色。因为太漂亮了,几乎每个人在看到它们的时候都禁不住说一句“上帝啊,多美丽的鸟”,所以爱鸟者也把象牙喙啄木鸟称作“上帝鸟”。 象牙喙啄木鸟曾广泛分布在美国西南部的密林深处,是美国的专有物种。然而到了19世纪80年代,人类工业文明的铁蹄踏向了大自然,湿地、森林差不多全被农庄、城镇以及次生林所取代。在栖息地被夺走后,象牙喙啄木鸟的数量直线滑落。人类与象牙喙啄木鸟最后一次可以证实的相遇发生在1944年的路易斯安那州。在那之后,就只剩下人们“惊鸿一瞥”的传闻,后来渐渐地连这种传闻都消失了。 2004年2月11日,观鸟者吉恩u2022斯帕林乘坐独木舟旅行,在阿肯色州东部的怀特河沿岸看到了一种他从未见过的鸟类。斯帕林记录下了这种大鸟的外貌特征,回去一查对,发现竟然是已经销声匿迹60年的象牙喙啄木鸟。消息公布后,引起了生物学界的普遍震惊。 一星期后,康奈尔实验室的蒂姆u2022加拉格尔和奥克伍德大学的鲍比u2022哈里森找到了斯帕林。在斯帕林的带领下,两位鸟类学家开始了寻找象牙喙啄木鸟的旅程。接下来,有30多名鸟类学家分成几个研究小组,展开行动,希望再次发现象牙喙啄木鸟。30多名鸟类学家在历时7000小时的搜索中,已经15次发现了象牙喙啄木鸟的踪迹,并拍摄了大量的图片和录像。 经过各国多位专家的审定,确定象牙喙啄木鸟还活在地球上。于是,美国大自然保护协会向政府申请了保护资金,用于保护象牙喙啄木鸟的栖息地,并用于该鸟类的繁育研究。纽约康奈尔鸟类学实验室及大自然保护协会的专家为了保护啄木鸟保护区的栖息地,将消息保密了一年多,不让外界知道。最近,保护区和观鸟区已经建成,繁育研究已经起步。为了让市民更好地保护这种罕见的鸟类,也为了吸引更多的民间保护资金,专家们才决定向外部公开消息。 得到消息之后,美国内政部部长盖尔u2022诺顿立即召开新闻发布会,宣布了一项名为“希望走廊”的保护计划。诺顿说:“我们在这里宣布启动一个多部门参加、价值千万美元、耗时数年的保护计划,为这种珍稀鸟类的继续生存提供希望。 在我的记忆中,这还是第一次重新发现已经被认为灭绝的动物。这是自然界给我们的第二次机会。“鸟类的减少可能对人类造成严重后果。例如,1997年,世界上3。5万至5万个狂犬病死亡中,印度占了3万名,因为印度秃鹫数量减少后,野狗和老鼠的数量发生爆炸性增长。事实上,还有不少鸟类的消失造成的可怕后果我们还没有看到,一些专家评论说,象牙喙啄木鸟的重现和加强保护将成为生态保护的一个标志性事件。 人类觅食造成生物灭绝? 所以,虽然从长远来说,气候变化会导致生物的灭绝,但是“零灭绝联盟”所列出的生物面临着更多的眼前威胁,包括人类对食物的渴望。我们还不清楚将来的技术是否能够减弱气候变化带来的威胁,但是除非我们马上行动,否则这些濒危生物将不会围绕在人类身边,而且为我们造福。 “零灭绝联盟”列出的上百种濒危动物,都遭遇着这样那样的生存厄运。扬子鳄、马达加斯加狐猴和象牙喙啄木鸟只是其中的代表而已。这些濒危动物能够很好的存活下去吗?也许这个问题谁也无法明确回答,但是出于保护的目的,有一些错误观念一定要澄清。 对于野生动物灭绝的最终原因,很多人用“全球变暖”武装头脑,却完全忽视真正的危险:下一个50年人类的食物总量将增加一倍,光这一点就要毁掉大批的野生动物栖息地。如果人们充分认识到这一点,那么就应该将资金再多分一点给高产农业科研项目。 美国哈德森研究所全球食品问题中心的丹尼斯u2022艾弗里表示:“现代的气候变暖基本上是很自然的。冰核心告诉我们由于太阳的原因,地球有一个1500年一次的气候循环,很多生物都在过去百万年中的变暖循环中一直存活着。植物一般都受不了极冷的气候,而却很少有被热得不行的。气候变暖只会使森林更加呈现多样性,而不是减少。”他补充道,“到现在还没有发现一个野生物种屈服于现代的气候变暖,即使在过去150年内地球上升了0。8摄氏度。如果灭绝的理论是正确的,我们已经将数千的物种引向灭绝了。”生物学家惟一可以列出来的反驳的就是哥斯达黎加的金色蟾蝓的灭绝,但是最近的调查结果显示这种生物灭绝是因为过度砍伐森林,而不是由于气候变暖。 最关键的问题是人类还要为耕地和饲养家畜不停的攫取土地。据专家预测,全世界的人口数目在2040年将达到稳定状态,那时候将比现在多20亿-30亿人口。届时,大概会有70亿人足够富裕到要求食用高质量的食物,现在这样的人只有10亿左右。所以,人口和富足将会使农田的需要扩大两倍多。接下来的200年,我们将会看清楚,低生产率的农业是否会将野生动物全部驱逐。 有的时候,一些绿色环保组织希望停止使用任何氮料化肥,而用纯天然的原料。但是如果要取消商业氮肥的话,世界将需要从额外的700万头牛那里得到天然的肥料,如果那样的话,世界上所有的森林恐怕都要用来喂养它们了。回归原始的耕作,只能导致全世界人类的饥荒。这样当然可以解决环境问题,但是同样会使很多野生动物灭绝。很多生物会成为人们的盘中餐,同时它们生存的土地会越来越少,全都奉献给了耕地。 丹尼斯u2022艾弗里也表示:“如果真的在乎野生动物,不应该一味否定现代的机械化农业,如工业化肥,而是要支持生物工艺学,特别是致力于高产农业的研究。”所以,虽然从长远来说,气候变化会导致生物的灭绝,但是“零灭绝联盟”所列出的生物面临着更多的眼前威胁,包括人类对食物的渴望。我们还不清楚将来的技术是否能够减弱气候变化带来的威胁,但是除非我们马上行动,否则这些濒危生物将不会围绕在人类身边,而且为人类造福。 中国濒危动物保护现状 中国是濒危动物分布大国。据不完全统计,仅列入《濒危野生动植物种国际贸易公约》附录的原产于中国的濒危动物有120多种(指原产地在中国的物种),列入《国家重点保护野生动物名录》的有257种,列入《中国濒危动物红皮书》的鸟类、两栖爬行类和鱼类有400种,列入各省、自治区、直辖市重点保护野生动物名录的还有成百上千种。随着经济的持续快速发展和生态环境的日益恶化,中国的濒危动物种类还会增加。 20世纪80年代以来,中国还进口了不少动物,如湾鳄、暹罗鳄、食蟹猴、黑猩猩、非洲象等。 这些外来的濒危动物,也受到国家的重点保护。由于人口众多,活动范围广,使许多珍贵的野生动物被迫退缩残存在边远的山区、森林、草原、沼泽、荒漠等地区,分布区极其狭窄。由于被分割成互不连接的独立群体,近亲繁殖,品种日益退化。 中国已建立了数百处濒危动物类型的自然保护区,使相当一部分濒危动物得到切实保护,野驴、野牛、亚洲象、白唇鹿、羚牛、马鹿、金丝猴、大鸨等的数量,已有明显增加。 近年来也遇到了虽然在数量上达到了要求,但是人工饲养的动物难于在自然环境中生存的矛盾,长此以往,必然导致生物的退化。 列入了“零灭绝组织”濒危动物的中国扬子鳄也遭遇了同样的尴尬。 野生动物生存面临着种种危机,实现“安居”还需要“迈过”整体环境恶化、保护措施不力、人们认识不够这三道“门槛”。 一场“非典”,使“野生动物”成为媒体上的热门词汇,不吃“野味”、保护野生动物的呼声比以前多了不少。滥食野生动物有害于人类,更是野生动物的浩劫,保护野生动物需要从拒食、拒烹开始,但从根本上说,要改变野生动物种类逐渐减少的趋势,需要整个自然环境的改善,这些并不是拒食、拒烹就能解决的。拒食“野味”只是保护野生动物的其中一步,非典提醒我们要加强野生动物保护,但不保护野生动物导致的灾害不只是非典。 野生动物保护点多面广,需要提高全社会对保护野生动物的认识水平。经营野生动物可得暴利,利益驱动使一些人铤而走险,但保护野生动物的措施却没有跟上。目前,河北省各市、县没有野生动物保护的专设机构,保护野生动物的手段不多,经费不足。安国祁州药市和蠡县留史皮毛市场规模在全国都数得着,其中加工利用野生动物的问题较多,但野生动物保护部门没有能力进行认真监督管理。田秋明说:“森林公安负责打击破坏野生动物资源的案件,但我们人力物力都很不充足。” 从茹毛饮血中成长起来的人类,离不开对野生动物的利用,但过度捕杀野生动物将危及人类自身,因为每种动物都有它存在于自然界的生态地位和生态功能。他们和我们一样共同享有地球家园,真正的和平共处是各安其处、互不干扰。从广义上说,保护野生动物就是保护人类家园,也是保护人类自己。 每种野生动物都有它们天然的栖息环境,保证着它们的生息繁衍,如果这种栖息环境遭到破坏,动物的自然存续就面临危机,即使没有人捕食,也难以生存。保护野生动物,归根结底还是要保护它们的栖息地。傅芸生说:“每年我们都会接到不少关于野生动物保护方面的电话,这说明人们保护野生动物的意识在提高,但且不说那些蓄意破坏野生动物资源的人,就是想保护的人认识也有待提高,比如人工投喂野生动物、人为建设野生动物园都会影响野生动物的生态功能,这都是以人为中心的保护观念,保护野生动物就应该让它们自由生活在天然栖息地中。”谢谢大家的支持!!!
2023-07-01 13:51:234