- 瑞瑞爱吃桃
-
磷酸或正磷酸,是一种常见的无机酸,是中强酸,化学式为H3PO4,分子量为97.994。不易挥发,不易分解,几乎没有氧化性。具有酸的通性,是三元弱酸,其酸性比盐酸、硫酸、硝酸弱,但比醋酸、硼酸等强。由五氧化二磷溶于热水中即可得到。正磷酸工业上用硫酸处理磷灰石即得。磷酸在空气中容易潮解。加热会失水得到焦磷酸,再进一步失水得到偏磷酸。磷酸主要用于制药、食品、肥料等工业,包括作为防锈剂,食品添加剂,牙科和矫形外科,EDIC腐蚀剂,电解质,助焊剂,分散剂,工业腐蚀剂,肥料的原料和组件家居清洁产品。也可用作化学试剂,磷酸盐是所有生命形式的营养。
- 可可科科
-
先脱水生成焦磷酸继续脱水变成偏磷酸最后完全脱水变成五氧化二磷
一 磷化液变黑的原因如下:
1 磷化液变黑的反应机制
在中温、低温、常温磷化处理中,磷化液变黑的直接原因是槽液中Fe2 + 过多。Fe2 + 主要来源于磷化过程中生成的Fe2 + 以及额外带入到磷化液中的Fe2 +。后者一般容易被忽视,通常磷化前有酸洗工序时容易带入Fe2 + ,如果酸洗后的漂洗水中Fe2 + 过多或水洗不干净则更为严重。在以亚硝酸盐为主要促进剂的磷化液中,NO与Fe2 + 在上述温度下形成稳定的深棕色络离子[Fe( NO) ]2 + ,浓度高时溶液呈黑色。反应原理如下:
Fe2 + + NO2+ 2H+ = Fe3 + + NO + H2O, ( 1)
Fe2 + + NO = [Fe( NO) ]2 +。( 2)
可见,反应后生成的NO 并没有从溶液中溢出,而是与Fe2 + 结合生成亚硝基配合物。式( 1) 和式(2) 在实验室称作“棕色环”反应。式( 1 ) 是Fe2 + 与NO2 反应,而不是Fe2 + 与NO3反应,原因是Fe2 + 与NO3必须在浓硫酸等强酸性条件下才能发生类似式( 1) 的反应,而Fe2 + 与NO2在磷酸等弱酸性条件下就可以发生式( 1) 的反应,这恰好符合磷化液的工作条件。生成的[Fe( NO) ]2 + 在工作状态的磷化液中能稳定存在,在磷化液温度升高时不稳定,发生分解并溢出NO。反应如下:[Fe( NO) ]2 + = Fe2 + + NO↑。
2 磷化液配比不合理
锌系磷化液中主要有3 种离子: Zn2 + ,H2PO4和NO3其中前2 种离子用于成膜,NO3 用于氧化磷化液中的Fe2 +。如果磷化液中的NO3 浓度过低,不能促使NO2及时将Fe2 + 氧化成Fe3 + 除去,而是导致Fe2 + 累积,进而形成[Fe( NO) ]2 + ,使磷化液变黑。虽然在弱酸性条件下,NO3不能氧化Fe2 + ,但是NO3与NO2配合使用,可以促进NO2把Fe2 + 氧化成Fe3 +。
3 磷化液工作负荷偏大
自动生产磷化线一般在设计时就已经考虑了单位时间内处理的工件面积与磷化槽液体积之间的关系,所以很少出现磷化液变黑的现象。但是在原有的生产线或半自动、手工操作的生产线上,由于对磷化质量要求不是很高或工艺不完善,时常会发生磷化液变黑的情况。在这种情况下,单位时间内处理的工件面积过大,磷化液又过少,导致磷化液的游离酸度和总酸度大幅下降,又有大量的Fe2 + 进入磷化液中,NO3 和NO2 来不及将Fe2 + 氧化成
Fe3 + ,而使大量的Fe2 + 残留于磷化液中,进而生成[Fe( NO) ]2 + ,使磷化液变黑。
4 磷化液工作温度偏低
根据磷化反应机制,升高温度可以加快磷化反应速度,有利于磷化反应的进行。很多中小企业往往都采用常温磷化,甚至冬季也不加温,磷化液多数情况下都呈黑色。温度过低时不利于磷酸电离,磷化液中游离的PO4过低,很难形成磷化膜,而此时磷化液中的游离磷酸又过高,快速腐蚀金属使大量的Fe2 + 进入磷化液中,磷化液很快变黑。磷化液温度过低还削弱了NO3 和NO2的氧化性,又进一步加快了磷化液变黑的速度。从式( 3) 可以看出,温度过低不利于[Fe( NO) ]2 + 分解。
5 磷化液游离酸度偏高
磷化液的游离酸度和总酸度是和其工作温度密切相关的参数,一种组成的磷化液只能在一定的温度范围内使用,否则无法顺利完成磷化。当温度一定时,磷化液的游离酸度和总酸度相对稳定.如果游离酸度偏高,会有2 种危害: ( 1) 快速腐蚀金属,使大量的Fe2 + 进入磷化液中; ( 2) 加快促进剂消耗速度,浪费促进剂。促进剂溢出,不能及时将大量的Fe2 + 氧化成Fe3 + ,而是生成[Fe( NO) ]2 + ,导致磷化液变黑。实际生产中,在一些企业里时常看到向磷化液中加入促进剂时冒“黄烟”,就是这个道理。
其反应原理如下:
NO2+ H+ = HNO2
2HNO2 = H2O + NO↑ + NO2↑。
6 促进剂浓度偏低
根据反应式( 1) ,促进剂在温度高于30 ℃时,能很快将Fe2 + 氧化成Fe3 +。如果促进剂浓度偏低,无法将大量的Fe2 + 氧化成Fe3 + ,则会生成[Fe( NO) ]2 + ,导致磷化液变黑。
7 Fe2 + 浓度偏高
通常磷化前的酸洗工序容易带入Fe2 + ,如果酸洗后的漂洗水中Fe2 + 过多或水洗不干净会更严重。这种情况下有2 种危害: ( 1) 将大量的Fe2 + 带入磷化液中使磷化液变黑; ( 2) 把氢离子和酸根离子带到磷化液中使磷化液的游离酸度升高,进一步加快Fe2 + 的生成。如果是硫酸根,还会恶化磷化膜的性能,甚至不能生成磷化膜; 如果是氯离子,会降低磷
化膜的耐蚀性。磷化前的中和工序,如果Fe2 + 过多同样会带入磷化液中。有些企业中和后不经水洗就直接进入表调,使表调很快失去作用。这种情况下会有2 种危害: ( 1) 将大量的Fe2 + 带入磷化液中使磷化液变黑;( 2) 降低磷化液的游离酸度和总酸度,形成额外沉
渣而导致磷化液消耗过快,同时还会恶化磷化膜的性能,如结晶颗粒粗大、挂灰、形成颗粒,甚至不能生成磷化膜等。如果工件上的焊点或夹缝多,情况会更严重。
二、磷化槽液变黑的处理方法
1 加入H2O2
H2O2具有强氧化性,在弱酸性条件下将Fe2 +氧化成Fe3 + 并生成水,且不给磷化液中带入杂质,是添加的首选。反应原理如下:
2Fe2 + + H2O2 + 2H+ = 2Fe3 + + 2H2O。
2 加入NaClO3
NaClO3具有强氧化性,在弱酸性条件下将Fe2 +氧化成Fe3 + ,同时生成Cl - ,并作为杂质带入磷化液中。当Cl - 累积过多时,会降低磷化膜的耐腐蚀性能。反应原理如下:
6Fe2 + + ClO3 + 6H+ = 6Fe3 + + Cl- + 3H2O。
3 加入KMnO4
KMnO4的氧化性强于上述2 种氧化剂,但是在弱酸性条件下,将Fe2 + 氧化成Fe3 + 的同时自己生成Mn( IV) 和Mn( II) 化合物的混合物。当KMnO4入量过多时,将对磷化产生不利影响。方程式如下:
8Fe2 + + 2MnO4+ 12H+ = 8Fe3 + +
MnO2↓ + Mn2 + + 6H2O。( 13)
4 加入促进剂
式( 1 ) 可知,加入大量的促进剂也能降低Fe2 + 的含量,但是此种方法由于生成易挥发的亚硝酸而导致磷化液过度消耗,并且产生大量沉渣,浪费母液。低温时,单独加入促进剂效果也不佳,最好是在提高温度的同时加入促进剂。
5 提高磷化温度
提高磷化温度是降低Fe2 + 浓度的最有效方法,也是预防Fe2 + 过度累积最有效的方法。由式( 3) 可知,温度升高,[Fe( NO) ]2 + 分解成Fe2 + 和NO。由式( 1) 可知,释放出来的Fe2 + 因促进剂作用被氧化成Fe3 +。
6 加强磷化液搅拌
加强磷化液搅拌,可以将工件周围新生成的Fe2 + 迅速分散开,防止Fe2 + 过度聚集。同时,加强搅拌也增加了磷化液与空气中氧的接触机会。在氧的作用下,Fe2 + 能很快被氧化成Fe3+。反应如下:
4Fe2 + + O2 + 4H+ = 4Fe3 + + 2H2O。
7 向磷化液中通入空气
向磷化液中通入空气有2 个作用: ( 1) 一定压力的空气可以搅动磷化液,使其上下翻滚,将工件周围新生成的Fe2 + 迅速分散开,防止Fe2 + 过度聚集。( 2) 向磷化液中加入氧气,在氧的作用下,Fe2 + 能很快被氧化成Fe3 +。反应的副产物是水,不会给磷化液带入任何杂质。