- Chen
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- 瑞瑞爱吃桃
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- 苏州马小云
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- 真颛
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- 苏萦
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- tt白
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- CPS小天才
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- 血莲丿红尘
-
全靠天然食物获得足够的蛋白质是很困难的,加上锻炼日的大消耗量运动,一天需要摄入一两百克的蛋白质。等于一天需要摄入800克的鸡胸肉,或者是几十个的鸡蛋,相信刚开始增肌的初学者一天也吃不下这么多的东西,所以蛋白粉绝对是很好的选择,对于繁忙的健身朋友绝对是必须的!如果你想吃蛋白粉的话,我推荐一下维托贝斯特的蛋白粉还有欧普特蒙,肌肉科技的蛋白粉等。个人比较喜欢第一个,口感不错。
- 余辉
-
蛋白质有个指标较pacaas-蛋白质校正氨基酸比率。越接近1则越容易被人体吸收,也被称为优质蛋白。食物中的蛋白有动物蛋白和植物蛋白。植物除了豆类其他不易被人体吸收,动物蛋白脂肪含量偏高不纯。所以人体一天靠食物来补充蛋白含量不够。可以补充蛋白质而蛋白质为植物蛋白为忧,要选择pdcaas为1的蛋白质粉
- 天线宝宝说害怕
-
蛋白粉补充起来比较快,食物肯定会慢一些,量小一些
- 不白九百
-
蛋白粉和食物中的蛋白质比较肯定是蛋白质好啊
- 以心消业
-
蛋白粉其实是针对这个蛋白质专门的一种食物,食物中会有很多营养成分,要看你个人吸收效果,当然其实吃鸡蛋就能很多的补充蛋白质了。
- 康康map
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- ardim
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。
- gitcloud
-
食物的种类千差万别,各种食物蛋白质的含量、氨基酸模式都不一样,人体对它的消化、吸收和利用程度也存在差异,其营养价值不完全相同。一般来说动物蛋白质的营养价值优于植物蛋白质。
在实际工作中,人们依据不同的应用目的设计了多种评价指标,但就某一种评价方法而言,因其只能以某一种现象作为观察评定指标,所以都有一定局限性。综合说来,营养学上主要从食物蛋白质的“量”和“质”两个方面来考察。即一方面要从“量”的角度考察食物中蛋白质含量的多少,另一方面则要从“质”的角度考察其必需氨基酸的含量及模式以及机体对该食物蛋白质的消化、利用程度。所使用的评价方法多种多样,总的可概括为生物学法和化学分析法。
2.4.1食物中蛋白质的含量
食物蛋白质含量是评价蛋白质营养价值的一个重要方面。蛋白质的含量是蛋白质发挥其营养价值的物质基础,食物蛋白质含量的多少尽管不能决定一种食物蛋白质营养价值的高低,但是没有一定的数量,再好的蛋白质其营养价值也有限。
食物蛋白质含量的测定通常用微量凯氏定氮法测定其含氮量,然后再换算成蛋白质含量。食物蛋白质的含氮量取决于其氨基酸的组成以及非蛋白含氮物质的多少,可在15%~18%变动。食物蛋白质平均含氮量为16%,故常以含氮量乘以系数6.25测得其粗蛋白含量。若要准确计算则可以用不同的系数求得。
2.4.2蛋白质的消化率
蛋白质的消化率(digestibility)是指食物蛋白质被消化酶分解、吸收的程度。消化率愈高,被机体利用的可能性就愈大。食物蛋白质的消化率用该蛋白质中被消化、吸收的氮量与其蛋白质含氮总量的比值表示。一般采用动物或人体实验测定,根据是否考虑内源粪代谢氮因素,可有表观消化率(apparent digestibility)和真消化率(true digestibility)之分。
2.4.2.1表观消化率
表观消化率即不考虑内源粪代谢氮的蛋白质消化率。通常以动物或人体为实验对象,在实验期内,测定实验对象摄入的食物氮和从粪便中排出的粪氮,然后按下式计算:表观消化率(%)=食物氮-粪氮食物氮×1002.4.2.2真消化率真消化率(%)=食物氮-(粪氮-粪代谢氮)食物氮×100表观消化率模糊了两个要点: ① 粪氮主要由细菌蛋白质组成,其氨基酸组成对了解不同氨基酸的消化率帮助不大;② 粪氮至少有3个来源: 未消化的膳食蛋白质、由小肠黏膜脱落的蛋白质和由血液扩散到肠腔中的尿素氮。
粪代谢氮是受试者在完全不吃含蛋白质食物时粪便中的含氮量。实验首先设置无氮膳食期,并收集无氮膳食期中的粪便,测定其氮含量即粪代谢氮;然后再设置被测食物蛋白质的实验期,再分别测定摄入氮和粪氮。以粪氮减去无氮膳食期的粪代谢氮,才是摄入蛋白质中真正未消化吸收的部分,据此测定的才是该食物蛋白质的真消化率。显然,表观消化率要比真消化率(即消化率)低。
由于粪代谢氮测定十分繁琐,且难以准确测定,故在实际工作中常不考虑粪代谢氮。最近,WHO提出,当膳食中仅含少量纤维时不必测定粪代谢氮;当膳食中含有多量膳食纤维时,对成人可按每天12mg/kg的数值进行计算。
蛋白质的消化率受人体和食物等多种因素的影响,前者如全身状态、消化功能、精神情绪、饮食习惯和对该食物感官状态是否适应等;后者有蛋白质在食物中存在形式、结构、食物纤维素含量、烹调加工方式、共同进食的其他食物的影响等。
通常,动物性蛋白质的消化率比植物性的高。如鸡蛋和牛奶蛋白质的消化率分别为97%和95%,而玉米和大米蛋白质的消化率分别为85%和88%。这是因为植物蛋白质被纤维素包围不易被消化酶作用。经过加工烹调后,包裹植物蛋白质的纤维素可被去除、破坏或软化;可以提高其蛋白质的消化率。例如食用整粒大豆时,其蛋白质消化率仅约60%,若将其加工成豆腐,则可提高到90%。
2.4.3蛋白质的利用率
蛋白质的利用率是指食物蛋白质(氨基酸)被消化、吸收后在体内被利用的程度。测定食物蛋白质利用率的指标和方法很多,各指标分别从不同角度反映蛋白质被利用的程度,现扼要介绍如下。
2.4.3.1蛋白质的生物学价值(biological value,BV)
蛋白质的生物学价值简称生物价,是机体的氮储留量与氮吸收量之比。某种蛋白质的生物价的值越高,表明其被机体利用的程度越高,最大值为100。计算公式如下: 蛋白质的生物价=氮储留量氮吸收量=食物氮-(粪氮-粪代谢氮)-(尿氮-尿内源氮)食物氮-(粪氮-粪代谢氮)×100式中,尿内源氮是机体在无氮膳食条件下尿中所含有的氮。它们来自体内组织蛋白质的分解。尿氮和尿内源氮的检测原理和方法与粪氮和粪代谢氮一样。
蛋白质的生物价可受很多因素影响,同一食物蛋白质可因实验条件不同而有不同的结果,故对不同蛋白质的生物价进行比较时应将实验条件统一。此外,在测定时多用初断乳的大鼠,饲料蛋白质的含量为100g/kg(10%)。将饲料蛋白质的含量固定在10%,目的是便于对不同蛋白质进行比较。因为饲料蛋白质含量低时,蛋白质的利用率较高。常见食物蛋白质的生物价见表2ue0117。表2ue0117常见食物蛋白质的生物价
蛋白质生物价蛋白质生物价蛋白质生物价鸡蛋蛋白质94大米77小米57鸡蛋白83小麦67玉米60鸡蛋黄96生大豆57白菜76脱脂牛奶85熟大豆64红薯72鱼83扁豆72马铃薯67牛肉76蚕豆58花生59猪肉74白面粉52
生物价对指导蛋白质互补以及制定肝、肾病人的膳食很有意义。对肝、肾病人来讲,生物价高,表明食物蛋白质中氨基酸主要用来合成人体蛋白,极少有过多的氨基酸经肝、肾代谢而释放能量或由尿排出多余的氮,从而大大减少肝肾的负担,有利其恢复。
2.4.3.2蛋白质净利用率(net protein utilization,NPU)
蛋白质净利用率是机体的氮储留量与氮食入量之比,表示蛋白质实际被利用的程度。因为考虑了蛋白质在消化、利用两个方面的因素,因此更为全面。NPU=氮储留量氮食入量=生物价×消化率除上述用氮平衡法进行动物试验外,还可以分别用受试蛋白质(占热能的10%)和无蛋白质的饲料喂养动物7~10天,记录其摄食的总氮量。试验结束时测定动物体内总氮量,以试验前动物尸体总氮量作为对照进行计算。NPU=受试动物尸体增加氮量+无蛋白饲料组动物尸体减少氮量摄取食物氮量×1002.4.3.3蛋白质净比值(net protein ratio,NPR)
这是将大鼠分成两组,分别饲以受试食物蛋白质和等热量的无蛋白质膳食7~10天,记录其增加体重和降低体重的克数,求出蛋白质净比值。NPR=平均增加体重(g)+平均降低体重(g)摄入的食物蛋白质(g)2.4.3.4蛋白质功效比值(protein efficiency ratio,PER)
蛋白质功效比值是用幼小动物体重的增加与所摄食的蛋白质之比来表示将蛋白质用于生长的效率。出于所测蛋白质主要被用来提供生长之需要,所以该指标被广泛用作婴儿食品中蛋白质的评价。PER=实验期内动物体重增加量(g)实验期内蛋白质摄入量(g)此法通常用生后21~28天刚断乳的大鼠(体重50~60g),以含受试蛋白质10%的合成饲料喂养28天,计算动物每摄食1g蛋白质所增加体重的克数。此法简便实用,已被美国公职分析化学家协会(AOAC)推荐为评价食物蛋白质营养价值的必测指标,其他国家也广泛应用。
由于同一种食物蛋白质,在不同的实验室所测得的PER值重复性不佳,故通常设酪蛋白对照组,并将酪蛋白对照组的PER值换算为2.5,然后进行校正。被测蛋白质PER=实验组蛋白质PER/对照组蛋白质PER×2.5几种常见食物蛋白质的PER为: 全鸡蛋3.92,牛奶3.09,鱼4.55,牛肉2.30,大豆2.32,精制面粉0.60,大米2.16。
2.4.3.5氨基酸评分(amino acid score,AAS)和蛋白质消化率修正的氨基酸评分(protein digestibility corrected amino acid score,PDCAAS)
蛋白质营养价值的高低也可根据其必需氨基酸的含量以及它们之间的相互关系来评价。食物蛋白质氨基酸模式与人体蛋白质构成模式越接近,其营养价值就越高。氨基酸评分则能评价其接近程度,是一种广为采用的食物蛋白质营养价值评价方法。氨基酸评分也可称为蛋白质评分和化学评分。
氨基酸评分不仅适用于单一食物蛋白质的评价,还可用于混合食物蛋白质的评价。该法的基本步骤是将被测食物蛋白质的必需氨基酸组成与推荐的理想蛋白质或参考蛋白质氨基酸模式进行比较。
为了便于评定,最初将鸡蛋或人奶蛋白质中所含氨基酸作为参考标准,因为它们是已知营养价值最好的蛋白质,并称为参考蛋白质;1957年FAO提出人的暂订氨基酸需要量模式,并以此代替鸡蛋蛋白质标准;1973年FAO/WHO有关专家委员会再次对人体氨基酸需要量进行评价而制定新的计分模式,并且认为尽管尚无实验证据表明其是否优于乳与蛋等优质蛋白质的模式,但是一般认为比全蛋或乳蛋白质的模式更为合适,并被广泛采用;1981年FAO/WHO/UNU联合专家会议,根据新近资料分别对婴儿、学龄前儿童(2~5岁)、学龄儿童(10~12岁)和成人提出了新的必需氨基酸需要量模式,与此同时再次修订了氨基酸计分模式如下: AAS(%)=1g受试蛋白质中限制性氨基酸的毫克数需要量模式中该氨基酸的毫克数×100第一限制性氨基酸评分值即为该食物蛋白质的最终氨基酸评分。
显然,由于婴儿、儿童和成人的必需氨基酸需要量不同,对于同一蛋白质的氨基酸评分亦不相同。婴儿和儿童对必需氨基酸的需要量远比成人高。故对婴儿和儿童来说,受试蛋白质中任何一种必需氨基酸的最低分(第一限制氨基酸),对成人而言,其蛋白质质量并不一定很低。
氨基酸评分的方法比较简单,但对食物蛋白质的消化率没有考虑。因此,1990年由FAO/WHO蛋白质评价联合专家委员会提出了一种新的方法--蛋白质消化率修正的氨基酸评分。这种方法可替代蛋白质功效比值PER对除孕妇和1岁以下婴儿以外的所有人群的食物蛋白质进行评价,并认为是简单、科学、合理的常规评价食物蛋白质质量的方法。表2ue0118是几种食物蛋白质经消化率修正的氨基酸评分,其计算公式为: PDCAAS=AAS×蛋白质真消化率表2ue0118几种食物蛋白质的PDCAAS
食物蛋白PDCAAS食物蛋白PDCAAS酪蛋白1.00青斑豆0.63鸡蛋1.00燕麦粉0.57大豆分离蛋白0.99花生粉0.52牛肉0.92小扁豆0.52豌豆0.69全麦0.40菜豆0.68面筋0.25
从氨基酸评分可以说明鸡蛋、牛乳的蛋白质构成最接近人体蛋白质需要量模式,故其蛋白质的营养价值较高。而植物性的食物往往缺少赖氨酸、蛋氨酸、苏氨酸和色氨酸,其营养价值相对较低。值得注意的是,采用PDCAAS对大豆分离蛋白的评价可与酪蛋白和鸡卵蛋白媲美。从经济和营养价值方面考虑,使用大豆分离蛋白或大豆浓缩蛋白来替代或补充动物蛋白质,或者将其与其他植物蛋白质混合使用可有效提高蛋白质的质量。表2ue0119几种食物蛋白质BV、NPU和化学分的比较
食物蛋白BVNPU化学分PER全鸡蛋98941003.9牛奶7771953.1大豆粉7065742.3小麦6765691.5玉米6055621.2大米7770772.2明胶0000
2.4.3.6微生物测定法
利用微生物可测定酸水解后蛋白质中氨基酸的含量,也可以测定可利用氨基酸和蛋白质的质量。早先有人用产酶链球菌测定可利用的精氨酸、组氨酸、亮氨酸、异亮氨酸、缬氨酸、蛋氨酸和色氨酸,但遗憾的是此种微生物的生长不需要赖氨酸,所以不能用它测定赖氨酸或可利用赖氨酸的总量。
近来,人们常用梨形四膜虫来进行蛋白质的营养评价。梨形四膜虫是一种可吞食食物颗粒、具有鞭毛的原生动物,其生长不完全依赖可溶性营养素。此外,它和处在生长阶段的大鼠一样也需要10种必需氨基酸(包括赖氨酸),因而优于产酶链球菌。评价方法主要是将受试蛋白质预先进行部分消化,随后在一定的条件下测定梨形四膜虫在此水解液中的生长情况,从而评定蛋白质的营养价值。据报告,对某些食物来说,四膜虫的生长与大鼠实验测得的PER值高度相关。
四膜虫法较动物实验法快速、简便,费用也低。其主要的缺点是这种原生动物对食品添加剂和调味品很敏感。
如前所述,蛋白质营养评价的方法多种多样,既有生物学的方法也有化学分析的方法。这两类方法各有利弊: ① 生物学的方法往往通过考察受试蛋白质对试验动物(特别是幼小动物,甚至是微生物)生长的贡献来评价受试蛋白质营养价值的高低。由于该方法综合考察了受试蛋白质被实验动物消化、吸收、利用的情况,因此更加全面和客观。该方法的缺点是实验动物的必需氨基酸需要量模式和人体的必需氨基酸需要量模式存在着一定的差异,将实验结果应用于人体时存在着一定的偏差。② 化学分析的方法通过分析受试蛋白质的氨基酸组成,并与人体的氨基酸需要量模式进行比较来评价蛋白质营养价值的高低。该方法所获得的结果比较直观,更易于生产和生活实践的指导。其缺点是无法考察食品加工以及混合膳食条件下食物中其他成分对受试蛋白质消化、吸收和利用的影响,这可能是化学评价和生物学评价不一致的重要原因。
总之,蛋白质营养价值评价对于食品品质的鉴定、新的食品资源的研究和开发、指导人群膳食等许多方面有重要意义。在对食物蛋白质进行营养评价时,特别是对蛋白质作系统研究或者探索一个新蛋白质资源时,应将各种方法结合起来使用,并注意以下几点:
(1) 首先测定蛋白质的含量和氨基酸模式,计算蛋白质消化率修正的氨基酸分。
(2) 若测定结果表明此蛋白质可能是一种有价值的新资源时,可进一步测定其蛋白质(氨基酸)的利用率,用生物学试验评价蛋白质的质量。
(3) 注意食品加工过程中蛋白质的变化。这通常是通过测定赖氨酸和蛋氨酸的利用率来判断,因为它们在食品加工时最易破坏。而这也可能是生物学评价低于化学评价的原因。
(4) 最好对样品中的氮、氨基酸和包括微生物毒素在内的各种毒素进行适当的分析检验,以除去非蛋白质物质的作用。
(5) 最后,应十分慎重地对受试蛋白质进行满足人体需要量方面的检验。
2.4.4蛋白质的互补作用(protein complementary action)
不同食物蛋白质中氨基酸的含量和比例关系不同,其营养价值不一,若将两种或两种以上的食物适当混合食用,使它们之间相对不足的氨基酸互相补偿,从而接近人体所需的氨基酸模式,提高蛋白质的营养价值,称为蛋白质的互补作用。例如豆腐和面筋蛋白质在单独进食时,其生物价(BV)分别为65和67,而当两者以42∶58的比例混合进食时,其BV可提高至77。这是因为面筋蛋白质中缺乏赖氨酸,蛋氨酸却较多,而大豆蛋白质赖氨酸含量较多,可是蛋氨酸不足。两种蛋白质混合食用则互相补充,从而提高其营养价值。这种提高食物营养价值的方法实际上早已被人们在生活中采用,并且在后来的实验中得到验证。几种食物混合后蛋白质的生物价见表2ue01110。表2ue01110几种食物混合后蛋白质的生物价
食物名称单独食用时BV混合食用所占比例(%)小麦6737-31大米77324046大豆6416208豌豆4815--玉米60-40-牛肉干76--15混合食用时BV747389
为充分发挥食物蛋白质的互补作用,在调配膳食时,应遵循3个原则:
(1)食物的生物学种属愈远愈好,如动物性和植物性食物之间的混合比单纯植物性食物之间的混合要好。
(2)搭配的种类愈多愈好。
(3) 食用时间愈近愈好。因为单个氨基酸在血液的停留时间约4h,然后到达组织器官,再合成组织器官的蛋白质。而合成组织器官蛋白质的氨基酸必须同时到达才能发挥互补作用。