- LuckySXyd
-
奇数是指不能被2整除的整数,偶数是指能被2整除的整数。3为整数,且不能被2整除,所以3是奇数。
关于奇数和偶数,有下面的性质:
1、两个连续整数中必有一个奇数和一个偶数;
2、奇数跟奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数。奇偶性相同的两数之和为偶数;奇偶性不同的两数之和为奇数;
3、两个奇、偶数的差是偶数;一个偶数与一个奇数的差是奇数。基数(cardinal number),在数学上,是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。
中文名
基数
外文名
cardinal number
cardinality
所属学科
集合论
定义
称两个集M与N为有相同基数
定义应用概念基数算术历史基数序列TA说参考资料
定义
称两个集M与N为有相同基数,即|M|=|N|,若存在双射φ:M→N。且|M|≤|N|,若存在单射φ:M→N。[3]
应用
在非形式使用中,基数就是通常被称为计数的东西。它们同一于开始于 0 的自然数(就是 0, 1, 2, ...)。计数严格的是可形式定义为有限基数的东西。无限基数只出在高级数学和逻辑中。
更加形式的说,非零数可以用于两个目的: 描述一个集合的大小,或描述一个元素在序列中位置。对于有限集合和序列,可以轻易的看出着两个概念是相符的,因为对于所有描述在序列中的一个位置的数,我们可以构造一个有精确的正好大小的集合,比如 3 描述 "c" 在序列 <"a","b","c","d",...> 中的位置,并且我们可以构造有三个元素的集合 {a,b,c}。但是在处理无限集合的时候,在这两个概念之间的区别是本质的 — 这两个概念对于无限集合实际上是不同的。考虑位置示象(aspect)导致序数,而大小示象被这里描述的基数所普遍化。
在基数形式定义背后的直觉是构造一个集合的相对大小的概念而不提及它有那些成员。对于有限集合这是容易的;你可以简单的计数一个集合的成员的数目。为了比较更大集合的大小,必须借助更加微妙的概念。
一个集合 Y 是至少等于(这里指构造的集合的相对大小)或大于等于一个集合 X,如果有从 X 的元素到 Y 的元素的一个双射(一一映射)。一一映像对集合 X 的每个元素确定了一个唯一的集合 Y 的元素。这通过例子是最容易理解的;假设我们有集合 X = {1,2,3} 和 Y = {a,b,c,d},则使用这个大小概念我们可以观察到有一个映射:
1 → a
2 → b
3 → c
这是一对一的,因此结论出 Y 有大于等于 X 的映射。注意元素 d 没有元素映像到它,但这是允许的,因为我们只要求一一映射,而不必须是一对一并且完全的映射。这个概念的好处是它可以扩展到无限集合。
我们可以扩展这个概念到一个等式风格的关系。两个集合 X 和 Y 被称为有相同的势,如果存在 X 和 Y 之间的双射。通过 Schroeder-Bernstein定理,这等价于有从 X 到 Y 和从 Y 到 X 的两个一一映射。我们接着写为 | X | = | Y |。X 的基数自身经常被定义为有着 | a | = | X | 的最小序数a。这叫做冯·诺伊曼基数指派;为使这个定义有意义,必须证明所有集合都有同某个序数一样的势;这个陈述就是良序原理,它等价于选择公理。然而有可能讨论集合的相对的势而不用明确的指派名字给对象。
在无限旅馆悖论也叫做希尔伯特大旅馆悖论中使用的经典例子。假设你是有无限个房间的旅馆的主人。旅馆客满,而又来了一个新客人。有可能通过让在房间 1 的客人转移到房间 2,房间 2 的客人转移到房间 3 以此类推,腾空房间 1 的方式安置这个新客人。我们可以明确的写出这个映射的一个片段:
1 u2194 2
2 u2194 3
3 u2194 4
...
n u2194 n+1
...
在这种方式下我们可以看出集合 {1,2,3,...} 和集合 {2,3,4,...} 有相同的映射,因为已经展示了这两个集合之间的双射。这激发了定义无限集合是有着相同的势的真子集的任何集合;在这个情况下 {2,3,4,...} 是 {1,2,3,...} 的真子集。
当我们考虑这些大对象的时候,我们还想看看计数次序的概念是否符合上述为无限集合定义的基数。碰巧不符合;通过考虑上面的例子,我们可以看到“比无限大一”某个对象存在,它必须有同我们起初的无限集合有一样的势。有可能使用基于计数并依次考虑每个数的想法的叫做序数的不同的数的形式概念,而我们发现势和序(ordinality)的概念对于无限数是有分歧的。
可以证明实数的势大于刚才描述的自然数的势。这可以使用对角论证法来可视化;势的经典问题(比如连续统假设)关心发现某一对无限基数之间是否有某个基数。数学家已经描述了更大更大基数的性质。
因为基数是数学中如此常用的概念,使用了各种各样的名字。势相同有时叫做等势、均势或等多(equipotence, equipollence, equinumerosity)。因此称有相同映射的两个集合为等势的、均势的或等多的(equipotent, equipollent, equinumerous)。
概念
根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类。任意一个集合A所属的类就称为集合A的基数,记作|A|(或cardA)。这样,当A 与B同属一个类时,A与B 就有相同的基数,即|A|=|B|。而当 A与B不同属一个类时,它们的基数也不同。
超限基数
如果把单元素集的基数记作1,两个元素的集合的基数记作2,等等,则任一个有限集的基数就与通常意义下的自然数一致 。空集的基数也记作0。于是有限集的基数也就是传统概念下的“个数”。但是,对于无穷集,传统概念没有个数,而按基数概念,无穷集也有基数,例如,任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集。不但如此,还可以证明实数集R与可数集的基数不同。所以集合的基数是个数概念的推广。
基数可以比较大小。假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。如果 a≤ β,但a≠β( 即A与B不对等 ),就称A的基数小于B的基数,记作a<β,或β>a。在承认选择公理的情况下,可以证明基数的三歧性定理——任何两个集合的基数都可以比较大小,即不存在集合A和B,使得A不能与B的任何子集对等,B也不能与A的任何子集对等。
基数可以进行运算 。设|A|=a ,|B|=β,定义 a+β=|{(a,0):a ∈ A} ∪ {(b,1):b ∈ B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。
基数算术
我们可在基数上定义若干算术运算,这是对自然数运算的推广。给定集合 X 与 Y,定义 X+Y={(x,0):x ∈ X} ∪ {(y,1):y ∈ Y},则基数和是|X| + |Y| = |X + Y|。 若 X 与 Y 不相交,则 |X| + |Y| = |X ∪ Y|。基数积是|X||Y| = |X × Y|,其中 X × Y 是 X 和 Y 的笛卡儿积。基数指数是|X|^|Y| = |X^Y|,其中 X^Y 是所有由 Y 到 X 的函数的集合。
普通性质
在有限集时,这些运算与自然数无异。一般地,它们亦有普通算术运算的特质:
加法和乘法是可交换的,即 |X|+|Y|=|Y|+|X| 及 |X||Y|=|Y||X|。
加法和乘法符合结合律,(|X|+|Y|)+|Z|=|X|+(|Y|+|Z|) 及 (|X||Y|)|Z|=|X|(|Y||Z|)
分配律,即 (|X|+|Y|)|Z|=|X||Z|+|Y||Z| [2]
无穷集合的加法及乘法(假设选择公理)非常简单。若 X 与 Y 皆非空而其中之一为无限集,则|X| + |Y| = |X||Y| = max{|X|, |Y|}.
记 2 ^ | X | 是 X 的幂集之基数。由对角论证法可知 2 ^ | X | > | X |,是以并不存在最大的基数。事实上,基数的类是真类。
其它性质
还有些关于指数的有趣性质:
|X|^0 = 1 (很奇怪地 0^0 = 1)。
0^|Y| = 0 若 Y 非空。
1^|Y| = 1。
|X| ≤ |Y| 则 |X||Z| ≤ |Y||Z|。
若 |X| 和 |Y| 均为有限集且大于 1,而 Z 是无穷集,则 |X||Z| = |Y||Z|。
若 X 是无穷集而 Y 是非空的有限集,则 |X||Y| = |X|。
- 床单格子
-
是,基数是对应量词的“数”,“三本书”“四支笔”这里都“三”“四”都是基数。