DNA甲基化

DNA图谱 / 问答 / 标签

【2020-7 NG】晚期前列腺癌的DNA甲基化landscape

小结 : 1) 通过100例去势抵抗性前列腺癌转移灶全基因组、全甲基化组、全转录组测序,发现了新的驱动基因改变。这些改变只有通过整合的全基因组方法才能检测到。 2) 建立CMP甲基化分子分型(CpG methylator phenotype),22%肿瘤TET2, DNMT3B, IDH1和BRAF高甲基化区域和体细胞突变与CMP分型相关。 3)良性前列腺癌、局部前列腺癌、转移性趋势抵抗性前列腺癌DNA甲基化图谱明显差异,提示甲基化作为肿瘤进展程度筛查指标的可能性。 4)前列腺癌驱动基因AR, MYC和ERG基因间区的甲基化修饰和RNA表达显著相关。 5)第一个转移性前列腺癌多组学大型综合研究,全面概述甲基化在转移性去势抵抗性前列腺癌中的重要调控作用。 虽然DNA甲基化是基因表达的关键调控因子,但转移型癌症的全基因组甲基化状况从未被检测。通过对100例抗去势前列腺转移瘤的WGBS与WGS和RNA-seq,我们发现了影响驱动基因的改变,而这些改变只能通过整合WGS的方法检测到。值得注意的是,我们观察到22%的肿瘤表现出一种新的表观基因组的亚型,这种亚型与TET2、DNMT3B、IDH1和BRAF中的高甲基化和体细胞突变有关。我们还鉴定了部分基因间区,其甲基化与致癌驱动基因如AR、MYC和ERG的表达量相关。最后,我们表明在癌症发展过程中差异甲基化优先出现在体细胞突变热点和潜在的调控区域。本研究是在转移性肿瘤中,整合了全基因组、全基因甲基和全转录组测序的进行分析,全面概述了甲基化在转移性抗去势前列腺癌中的重要调控作用。 胞嘧啶残基DNA甲基化是一种普遍存在的表观基因组调控机制。DNA甲基转移酶在鸟嘌呤(CpG二核苷酸)附近的胞嘧啶核苷酸的5碳上加一个甲基,生成5mC核苷酸。除了富含CpG的低甲基化区域(HMRs)外,大多数CpG二核苷酸都被甲基化,这些区域被称为islands, shores (±2u2009kb around islands) and shelves (± 2u2009kb around shores4). 这些区域经常位于基因调控位点,如启动子或增强子。异常的甲基化与肿瘤发生有关,并且肿瘤和良性组织之间的甲基化的差异已经在许多肿瘤类型中被报道。尽管肿瘤中CpG岛的高甲基化也有所报道,但肿瘤细胞在CpG岛的甲基化经常比正常细胞少。【本文研究关于肿瘤中低甲基化区域与癌症致癌基因影响】 每个样本的HMR总数从24,388到85,474。样本间的变异多发生在启动子和CpG岛、shores , shelves区间外,主要发生在基因body和调控区域,如转录因子结合位点,增强子区域,抑制子区域。HMR越多的肿瘤,基因组拷贝数改变频率明显更高。 DNA甲基化主要发生在基因启动子区域的CpG岛。然而,在97,747 个 recurrent HMR (rHMRs)中,有74%位于CpGislands, shores,shelves 之外。我们推断recurrent 基因间的HMRs可能与调控位点有关。事实上,88% recurrent的HMR位点与假定的调节区域重叠。对rHMRs进行无监督的聚类,确定了具有独特模式的甲基化肿瘤亚群。其中有一个cluster包括以前被诊断为治疗诱发的小细胞神经内分泌癌的肿瘤(t-SCNC),此癌症特征是AR信号减少,神经内分泌标记蛋白表达升高和明显的甲基化特征。我们还鉴定了一种新的mCRPC亚型(图1b),在rHMRs中甲基化水平显著高于其他所有簇和较少的HMR. 这些肿瘤在CpGislands, shores,shelves上均具有较少的HMR,被认为 CpG methylator phenotype (CMP)。通过聚类重采样表明聚类结果稳定性。CMP肿瘤很少有ETS家族相关的基因融合。CMP亚型与活检的解剖部位无显著相关性。一个包含所有复发低甲基化位点、良性前列腺和原发性前列腺肿瘤样本的t分布随机邻居包埋图显示,通过t-SNE可视化显示 CMP肿瘤、良性前列腺肿瘤和t-SCNC肿瘤形成单独的簇。 一些CMP肿瘤在TET2、IDH1和BRAF中存在互斥突变。与非CMP肿瘤相比,CMP肿瘤中TET2、IDH1、BRAF和DNMT3B突变富集<br />与先前在肿瘤中观察到的高甲基化表型一致,并不是所有的CMP肿瘤都有一个某个突变的基因,其可以影响甲基化过程。除DNMT3B和TET2外,DNMT和TET家族基因均未发现体细胞突变。在CMP或非CMP组中,肿瘤纯度与明显的甲基化模式无关。 很大区域的表观遗传激活和抑制是指在PCa中,由于表观遗传的一致性变化,如组蛋白修饰或DNA甲基化,导致含有多个基因的基因组区域同时被激活或抑制的现象。我们确定了14个候选的远程相互作用,其中两个(7p15.2和16q13)与之前确定的远程表观遗传沉默区域重叠。 部分甲基化区域(PMDs)是甲基化不完全缺失的基因组区域。PMD频率与HMR频率呈中度相关。然而,在良性前列腺、原发性前列腺癌和mCRPC样本中,含有PMDs的基因组比例(21% - 61%)没有显著差异。但与良性前列腺组织相比,原发性前列腺癌和mCRPC中PMDs的甲基化水平较低。在mCRPC中,基因组PMD比例与肿瘤纯度(P = 0.68)、总突变数(P = 0.30)或拷贝数改变百分比没有显著相关性。和乳腺癌中一样,发现PMD区域比基因组非PMD 区域,有更高的突变风险。 接下来,我们确定了DNA甲基化谷(DMVs),即与激活组蛋白标记H3K4me3或抑制组蛋白标记H3K27me3相关的,区间很宽的低甲基化区域。mCRPC样品中DMVs的数量从几百个到超过20,000个不等。H3K27me3相关的DMVs甲基化倾向于动态变化,多硫复合体在维持DMVs的抑制状态发挥重要作用。DMV频率较低的肿瘤中,DMVs与H3K4me3更加相关,但存在很多DMVs的肿瘤中,H3K4me3和H3K27me3信号的比例几乎相等。 研究表明,高表达基因的通常启动子处于低甲基化,基因body处于高甲基化。启动子区域甲基化与基因表达负相关,而基因body甲基化呈现正相关。我们鉴定了与10 kb以内与基因表达相关的rHMRs,并将这些表达相关的低甲基化区域HMRs命名为eHMRs。负相关的eHMRs(70%)主要位于转录起始位点(TSS);最强烈的正相关(总数的30%)在基因体的3端,这和之前研究类似。为了研究远端调控元件,我们拓宽了EHMR搜索范围(1Mb)。通过在原发性前列腺肿瘤中H3K27ac峰来确定候选增强子。 在FDR设定为0.05下,10412个基因至少与一个增强子关联,11928个基因至少与一个EHMR关联。研究表明距离TSS距离越近,甲基化与基因表达关系越紧密。 我们发现,与前列腺良性样本相比,mCRPC中雄激素关键应答基因,包括AR、KLK3(编码前列腺特异性抗原)、NKX3-1、FOLH1(编码前列腺特异性膜抗原)、SCHLAP1和PIK3CA,均表现出启动子低甲基化。与前列腺良性样本相比,我们在mCRPC肿瘤中未观察到肿瘤抑制子TP53或RB1的启动子高甲基化。同时,许多先前报道的高甲基化前列腺癌基因(例如,GSTP1),在mCRPC中也是差异甲基化区域。 许多基因具有PCa特异性表达的特征,但是基因组序列没有改变。为了检测甲基化影响pca特异性基因疾病特异性表达的模型,我们进行了无偏倚分析,比较了所有基因的eHMR相关强度及其表达变异性。与其他基因相比,PCa 特异性表达的基因与甲基化有更强的关联。 DNA甲基化可能和体细胞突变协同改变基因表达量。51,708个基因中的15,014个基因表达与局部DNA拷贝数改变、突变或结构变异显著相关(29%),与10,118个基因的局部甲基化显著相关(19.5%)。在10118个基因的表达与甲基化相关的基因中,4735个基因与甲基化和突变同时相关,5383个基因仅与甲基化相关。甲基化可以提升基因表达预测的模型。部分AR相关的基因,表现出不受DNA改变影响,而受到甲基化影响,比如KLK3 ,NKX3-1。这一发现支持了甲基化在mCRPC中雄激素通路激活中的作用。 我们和其他人之前已经确定了一个远端AR增强子区域,其中DNA拷贝数扩增与AR表达升高相关。我们在AR附近发现了多个eHMRs,包括AR启动子、先前鉴定的AR增强子和AR的上下游位点。尽管AR promoter 在其他组织中都处于低甲基化。但是鉴定出来的eHMR 只是在mCRPC 中低甲基化,在原发性PCa,和良性肿瘤中并未发现。7个eHMR中的5个与H3K27ac或HOXB13,FOXA1,AR或ERG的结合位点共定位。此外,AR和ERG ChIA PET数据表明,许多基因座之间存在长程染色质相互作用,这支持了这些基因座之间的物理相互作用的可能性。在基于eHMR数量预测AR表达的线性模型中,AR表达与低甲基化eHMR基因座数量呈正相关。 在81%的mCRPC样品中会出现AR gene body或上游增强子的拷贝数扩增。扩增的eHMR基因座数AR表达呈正相关。这些数据与一个模型相一致,在这个模型中,雄激素剥夺治疗的选择性压力有利于多个增强因子的大量扩增,从而驱动mCRPC中的AR表达。在非t- scnc, mCRPC样本中,低甲基化区域是局部存在的,eHMR区域低甲基化和拷贝数关系不密切。 大约一半的前列腺癌存在由ERG编码的致癌转录因子过表达定义。在PCa中,ERG表达量是可以忽略的,除非ERG启动子被融合基因激活。ERG主要的融合基因是ar调控的基因TMPRSS2,融合使TMPRSS2启动子接近ERG基因体,将ERG转化为ar驱动的基因。融合使TMPRSS2启动子接近ERG基因体,将ERG转化为ar驱动的基因。在TMPRSS2 ERG融合阳性肿瘤中,ERG表达水平差异很大,从AR表达水平和突变状态预测ERG表达的线性模型拟合不理想。我们推测,当融合存在时,TMPRSS2启动子或上游区域的甲基化可能影响ERG的表达。我们在TMPRSS2上游识别了与HOXB13、FOXA1、AR或ERG的TFBS共定位的rHMRs。这些位点的低甲基化频率在融合阳性和融合阴性样本中是相似的。然而,仅在融合阳性样本中,这些位点的甲基化与ERG表达呈负相关,这与TFBS甲基化调节下游融合基因表达的模型一致。只有在融合阳性肿瘤中,TMPRSS2上游所有rHMRs的甲基化显著提高了ERG表达量的预测。这些数据表明,TMPRSS2上游调控区域的甲基化导致了该亚型产生。 在38%的mCRPC样本中癌基因MYC扩增。MYC基因拷贝数扩增与MYC表达呈中度相关。据报道,基因PVT1下游的远端增强子通过物理DNA DNA相互作用调节MYC。VCaP ChIA PET数据显示PVT1与MYC之间存在DNA相互作用。我们在MYC启动子和PVT1中观察到与MYC表达相关的rHMRs。这些rHMR改进了预测MYC表达的模型的拟合度,该模型优于仅使用MYC拷贝数的模型。增强子甲基化已被证明调节增强剂的活性,这为这一观察提供了一个合理的解释。总之,这些发现支持了甲基化可能影响关键PCa驱动的活动的模型。 在比较良性前列腺癌和原发性前列腺癌,以及原发性前列腺癌和mCRPC时,我们使用了公开的WGBS数据和局部PCa样本11来识别差异甲基化区域(DMRs)。原发性前列腺癌的甲基化程度明显低于良性前列腺癌。此外,mCRPC样品的甲基化程度明显低于原发性PCa。在良性PCa和原发性PCa的DMRs中,55%与原发性PCa和mCRPC的DMRs重叠。 癌症中的整体低甲基化可能导致基因组不稳定。当比较mCRPC 差异甲基化位点,发现HMR区域有很高的体细胞突变率。DMR内部的突变率比外部高58.5%(每Mb有6.77和4.28个突变),这表明基因组的某些区域更频繁地受到突变和甲基化的影响。最后,我们测试了差异甲基化是否在整个基因组的调控区域优先发生。当我们检查推定的调控区域(以AR,ERG,FOXA1,HOXB13和H3K27ac ChIP-seq标记)差异甲基化时,与良性前列腺组织相比,HMR更容易在调控区域进行富集。 在这里,我们对100个肿瘤样本和10个配对的良性癌旁样本,并对这些样本进行了较深的WGS和RNA-seq,对含WGBS的mCRPC的甲基化进行了全球分析。这些数据确定了一个新的mCRPC的表观遗传亚型,AR的新的基因间调控区域,以及在AR、ERG、MYC和其他重要的PCa驱动因子调控中体细胞和表观改变之间的相互作用。我们还证明了整体甲基化改变可以用来区分 良性前列腺癌、原发性前列腺癌和mCRPC。我们发现体细胞突变和假定的调控区域经常位于差异低甲基化区域。 虽然PCa的基因组和转录组亚型已经被报道,但我们确定了一个新的mCRPC的表观遗传CMP亚型,其特征是在CpGislands, shores,shelves内外都存在高甲基化。我们认为这种现象类似于在其他肿瘤类型中描述的CpG岛甲基化表型(CIMP)。mCRPC CMP亚型富集了TET2、BRAF和IDH1的突变,这些突变在其他癌症类型中与CIMP亚型相关。在癌症基因组图谱中,IDH1突变与CpG岛高甲基化相关。目前的研究不能确定我们观察到的任何突变是否会驱动甲基化变化。先前对TET2和DNMT3B突变的实验研究表明,它们的影响可能因组织类型和基因组区域而不同,需要使用表型研究来阐明CMP表型的机制。mCRPC CMP亚型具有潜在的治疗意义,因为甲基化抑制剂如5-azacytidine和5-aza-2-脱氧胞苷是FDA批准的抗肿瘤药物。体外数据和临床数据表明,高甲基化肿瘤可能受益于这些治疗. 我们的结果强调了癌症相关的低甲基化在mCRPC中致癌驱动基因过表达中的重要性。AR是前列腺癌的主要驱动因子和治疗靶点。近年来的研究发现了AR基因body的扩增和AR上游的增强子. 我们发现,在这些假定的AR增强子区域中,基因间eHMRs与mCRPC中的AR表达量相关。许多假定的增强子区域与转录因子结合位点重叠。这些增强子距离AR基因较远,但该区域呈现复杂的DNA loop,可能使这些位点接近AR启动子。MYC PVT1相互作用是远程顺式增强子和甲基化相互作用的另一个例子.已知在肿瘤中,远端增强子可激活癌基因,这些数据强调了在mCRPC发病机制中,甲基化、转录因子、DNA改变和基因组三维结构之间的复杂相互作用。 因为转移性Pca(mCRPC)和原发性PCa的WGBS样本少,甲基化差异研究受到了限制,未来的工作将整合大量的原发性PCa样本中的WGS、WGBS和RNA-seq数据,这将有助于更稳健地分析晚期疾病期间DNA甲基化变化的方式,并更好地捕获原发性PCa的分子异质性。对其他mCRPC队列的数据整合,将使我们了解稀有的突变对甲基化的影响。

什么是dna甲基化修饰?其生物学意义是什么

dna甲基化修饰:DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA的过渡,由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)dna甲基化修饰的生物学意义:基因甲基化与单亲遗传病:单亲遗传病是指由非孟德尔遗传方式引起的人类遗传病。正常情况下,存在部分与疾病相关的等位基因,其父源与母源甲基化模式不同,几乎所有与单亲遗传疾病相关的等位基因并不是父代与母代都发生甲基化,而是存在一些序列或父代发生甲基化或母代发生甲基化,这些序列被称为“差异甲基化区域”。单亲遗传病能否出现,取决于非孟德尔遗传方式在“差异甲基化区域”上是否发生。这是因为,甲基化后的基因不表达或表达程度低,因而基因的正常表达必须依赖于特定亲本(非甲基化一方)等位基因的正常表达。基因甲基化与肿瘤基因组甲基化模式异常(包括DNA过低甲基化)与肿瘤发生一直是医学界关注热点之一。基因甲基化与老化随着年龄的老化,基因组总体DNA甲基化水平逐渐降低。这一甲基化水平的变化,是否仅与老化有关,还是也参与来华过程中的肿瘤高发,尚有待进一步的研究。

DNA甲基化对基因表达的调控机制

DNA甲基化发生于DNA的CpG island (CG序列密集区)。发生甲基化后,那段DNA就可以和甲基化DNA结合蛋白相结合。结合后DNA链发生高度的紧密排列,其他转录因子,RNA合成酶都无法再结合了,所以这段DNA的基因就无法得到表达了。一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5—甲基胞嘧啶(5—mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。扩展资料由于Dnmtl和Dnmt3基因家族没有针对CpG二核苷酸序列的特异性,人们因此提出了DNA甲基化转移酶发现靶位点的机制。首先,甲基化转移酶并不是同等地接近所有染色体区域。具有染色体重构和DNA螺旋酶活性的蛋白质能调节哺乳动物细胞内DNA甲基化,如SNF2家族2个成员ATRX和Lsh;其次,附件因子(蛋白质、RNA等)能召集DNA甲基化转移酶到特定基因组序列或染色体结构中,如pRB蛋白等能够与Dnmtl作用,在S期晚期将它召集到高度甲基化的异染色质区。参考资料来源:百度百科-DNA甲基化

dna甲基化和突变的相同点?

什么是DNA甲基化DNA甲基化(DNA methylation)是基因表观遗传学的重要机制之一,表观遗传学是指“研究基因的一级核苷酸序列不发生改变的情况下,基因表达发生可遗传的变化的一门学科”。现在用于泛指不由DNA序列的变化所引起的可遗传的基因表达的改变。DNA甲基化异常是目前研究最充分的表观遗传修饰方式。DNA甲基化是指在DNA甲基转移酶能在G(鸟嘌呤)前面的C(胞嘧啶)5′碳原子上共价催化地加上“甲基”。产生5-甲基胞嘧啶(5-mc)。大约50%的人类基因启动子区富含“C-G序列”也叫(CpG二核苷酸)。正常的健康细胞中“CpG富集区”经常处于“未甲基化状态”。而在人类基因组的其他大部分区域却相对缺乏CpG序列,人类基因组的大部分CpG二核苷酸“处于甲基化状态”。甲基化发生区域:CpG岛的概念某些区域CpG序列的密度比平均密度高10~20倍,GC含量大于50%,长度大于200bp的区域,称为CpG岛:一段超过200bp,GC含量大于50%,CpG比值(观测值/期望值,Obs/ExpCpG=CpG的数目/(C的数目/G的数目)*N,N代表所分析序列中核苷酸总数)大于0.6的DNA区域。基因调控元件(如启动子)所含CpG岛中的5mC会阻碍转录因子复合体与DNA的结合。目前认为基因调控元件(如启动子)的CpG岛中发生5mC修饰会在空间上阻碍转录因子复合物与DNA的结合。因而DNA甲基化一般与基因沉默相关联(DNA甲基化一般与基因沉默相关联;非甲基化一般与基因的活化相关联;而去甲基化往往与一个沉默基因的重新激活相关联)。

什么是DNA甲基化

DNA甲基化是指在DNA 甲基化转移酶的作用下,发生在CpG二核苷酸上胞嘧啶5碳原子的替代以及通过转录后组氨酸修饰的DNA 包装的染色质变化。DNA甲基化是最早发现的一种表观遗传修饰, 可能存在于所有高等生物中, 它并不改变基因的碱基序列, 而是通过改变基因的表达影响细胞的功能, 与基因沉默、X染色体失活、基因组印记、RNA i以及肿瘤等生物事件密切相关, 它们的共同作用机制是调节基因的表达。 查看原帖>>

“黄金鼠饼了解一下?” --------有意思的DNA甲基化现象

u2003u2003在生命科学的发展中,模式动物有着巨大的贡献,说起萌萌哒的模式动物,你的第一反应是什么?是传说中的实验小白鼠吗? u2003u20031: Agouti 基因是一些哺乳动物的毛色基因的控制基因,控制的毛色为“鼠灰色”。正常情况下,啮齿类动物的 Agouti 基因表达在皮肤的毛囊中,因此, Agouti 基因的表达直接影响了皮毛的颜色。此外, Agouti 基因表达产物和许多代谢相关的重要受体相互作用, Agouti 的基因表达情况与能量代谢,肥胖,二型糖尿病,肿瘤的发生等相关。 u2003u20032: Agouti 基因有很多显性、隐形等位基因。比如说,隐性等位基因a(nonagouti),是 Agouti 基因突变而来,不具有表达Agouti信号蛋白的能力,如果说是a/a型的小鼠,皮毛是纯黑色的。A y (lethal yellow)是一个致死的突变基因。杂合的小鼠皮毛是黄色的,而且体型非常的“肥大”!! A y (viable yellow)含有自带启动子的反转座子(可以理解为“跳跳基因”,非常的不安分,会在基因上跳来跳去)IAP(intracisternal A particle retrotransponson)的插入,导致了小鼠的Agouti基因过表达。从而引起小鼠的皮毛呈现黄色,并且会使小鼠出现肥胖等症状。(图三简直就是“黄金鼠饼”呀!) u2003u20033: 并不是基因相同表型就会相同。 有时候基因完全一样,表型不一定会完全一样,这都要从表观遗传上找找原因。表观遗传的改变包括了DNA甲基化,组蛋白修饰,非编码RNA等。我们都知道DNA是由4个碱基---A,T,C,G构成的。DNA甲基化(接下来会了解到的)是指C(胞嘧啶)上多了一个化学修饰而已,这个化学修饰就是胞嘧啶上多挂了一个甲基(DNA甲基化可以发生在腺嘌呤的N-6位、鸟嘌呤的N-7位、胞嘧啶的C-5位等。但在哺乳动物中DNA甲基化主要发生在5"-CpG-3"的C上生成5-甲基胞嘧啶(5mC),此处感谢大神的指正@ theViru )。 DNA发生甲基化修饰之后,可能导致基因的高表达或者是低表达。 u2003u2003回到之前提出的猜想问题,除了 Agouti 基因以外, 是不是个体的基因背景差异也会导致这种肥胖基因的出现呢 ? 为了解决这个问题,科学家们采取了“非常”手段, 让含有该突变的小鼠和同类系的小鼠近200代的近亲繁殖和强制性的杂合交配 ,得到的后代小鼠基本上没有任何遗传差异。 u2003u2003Waterland博士和Dolinoy博士他们几乎没有遗传和表观的差异的A y /a怀孕小鼠,分成2组,一组的饲料添加了VC,胆碱,叶酸,甜菜碱等可以促进DNA甲基化的食物,另一组则是正常的饮食,结果发现,喂有甲基化的饲料的组,小鼠出生后的皮毛表型颜色各异。进过研究发现,IAP的启动子区域甲基化程度升高,导致了Agouti的基因沉默表达,小鼠的皮毛出现了偏棕色,IAP的启动子甲基化的程度不同,小鼠的颜色也不同,但是它们的基因型都是一样的。 这一结果显示,在母亲怀孕期间,通过饮食对表观遗传的修饰可以影响后代的表型 。 u2003u2003人的 Agouti 基因也已经被找到了。主要表达在脂肪,睾丸,卵巢等地方。我们都知道孕妇在怀孕之初会不充叶酸等营养物质。而人类也有 Agouti 基因,为什么人类的毛色没有什么差异呢? Agouti 基因不在人的毛囊中表达, 且与毛发着色没有什么关系。 u2003u2003此外,在日常生活中,“奇趣”生物现象,比如说:生着生着没墨的小猫,还有着“十只橘猫九只胖,还有一只压倒炕”的橘喵。难到自带“土豪色”的小动物,都受这种神奇基因的影响嘛?(虽然之前介绍过Agouti基因表达有影响代谢的能力) u2003u2003但是,但是,但是!还未有科学依据显现这些有意思的生物表型和表观有关系,这些现象会让人不禁好奇的问:这些和 Agouti 基因相关嘛?和表观遗传学相关嘛? u2003u2003这些奇趣的生物学现象具体的机制,会随着今后的研究得到解释,此外还有很多未知的有意思的现象在等待探索和发现。 1;Dolinoy D C, Weidman J R, Waterland R A, et al. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome.[J]. Environmental Health Perspectives, 2006, 114(4):567-572. 2:Rosenfeld C S, Sieli P T, Warzak D A, et al. Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice[J]. Proc Natl Acad Sci U S A, 2013, 110(2):537-542. 3:杨云青, 高丹玫, 郭宗圣. Agouti和Agouti相关蛋白的一些生物学内涵[J]. 动物学杂志, 2008, 43(5):144-152.

什么是DNA甲基化?

DNA甲基化与基因表达调控在真核生物基因组中,基因仅仅占一小部分,例如在人类基因组中基因的编码序列还不到2%,那么在大量非编码DNA存在的情况下,实现精确控制基因的表达,降低周围的转录噪音对生物体至关重要。DNA甲基化作为一种可遗传的修饰方式为非编码DNA(内含子、重复元件以及潜在的具有活性的转座子)的长期沉默提供了一种有效的抑制机制。DNA复制后胞嘧啶的甲基化会改变DNA的构象,使DNA的大沟无法与DNA结合蛋白正常结合,从而使这些非编码区长期保持无表达活性的状态。而有转录活性的基因可利用非甲基化的启动子来进行转录表达,即使在相邻的非转录区是高度甲基化的,其启动子仍然可以起始转录并被调控。

DNA甲基化知识概述

u2003u2003DNA甲基化作为一种可遗传的表观遗传修饰,在生物个体的生长发育与繁殖过程中,维持遗传物质的稳定性是至关重要的。在真核生物基因组中,编码基因仅仅占一小部分,例如在人类基因组中编码基因还不到2%,那么在大量非编码DNA存在的情况下,实现精确控制基因的表达,降低周围的转录噪音对生物体至关重要,而DNA甲基化则为非编码DNA的长期沉默提供了一种有效的抑制机制。近年来的大量研究表明,DNA异常甲基化与肿瘤的发生、发展、细胞癌变有着密切的联系。DNA甲基化在肿瘤中的作用主要表现在以下几个方面:一是甲基化的CpG岛二核苷酸中的胞嘧啶以较高的频率脱氨基变成胸腺嘧啶,造成基因突变;二是抑癌基因和DNA修复基因由于超甲基化而沉默;三是癌基因甲基化水平降低而活化;四是基因组总体甲基化水平降低使转座子、重复序列活化导致染色体稳定性下降。这些因素是导致肿瘤发展、转移、恶化最终导致患者死亡的重要原因。DNA总体甲基化水平和特定基因甲基化程度改变可作为肿瘤诊断指标。正是由于DNA甲基化在维持正常细胞的功能、基因组结构稳定、遗传印记、胚胎发育、及肿瘤和疾病的发生、发展等方面发挥重要作的作用,所以在科研中受到越来越多的重视。 u2003u2003在基因组所有甲基化的碱基中占比最多的是5-甲基胞嘧啶(5mC),在哺乳动物中占比为98%左右,由DNA甲基转移酶家族(Dnmts)催化甲基从S-腺嘌呤甲硫氨酸(SAM)转移至胞嘧啶残基的第五个碳而形成。与此同时,5mC可以在氧化蛋白TET的作用下转化为5-羟甲基胞嘧啶(5-hmC),进一步在TET的氧化下转化为5-甲酰基胞嘧啶(5-fC),最终在TET的氧化下转化为5-羧基胞嘧啶(5-caC)。在基因组中含有很多CpG结构,60%~ 90% 的CpG 都被甲基化,未甲基化的CpG 成簇地组成CpG 岛,位于结构基因启动子的核心序列和转录起始点。关于甲基化的维持只要受DNMT1和UHRF1两个蛋白控制,用于在DNA复制时让新生成的链维持原有的甲基化模式。目前,在植物中,主要存在两种去甲基化方式,一是被动去甲基化,即DNA复制时新生成的链丢失甲基化;二是主动去甲基化,在DNA糖基化酶(DME)和ROS1的作用下,通过碱基错配修复途径(BER)去除甲基化。在哺乳动物中,被动去甲基化与植物相同,而DNA修复酶-胸腺嘧啶DNA糖基化酶(TDG)在DNA主动去甲基化上扮演了重要角色,关于主动去甲基化的过程还需进一步的研究。 u2003u2003目前,关于DNA甲基化的测序方法分为两大类,一类是以蛋白质特异性结合为基础的富集方法,该类方法类似ChIP-seq,可以将甲基化区域富集下来,然后测序分析甲基化情况,该类方法有一个很明显的缺点就是不是单碱基分辨率水平,因为富集到只是区间没法确定具体是哪一个位置发生了甲基化。如果只是想知道某些区域是否发生甲基化,得到一个定性的结论,那么用该类方法就很方便;二是以C碱基转化为T碱基为基础的测序方法,随着技术的发展,该类方法又可以分为两种技术,一种是将未甲基化的C碱基转化为T,另一种是将甲基化的C碱基转化为T。目前市场上还是以未甲基化的C碱基做转化的方法为主流,这其中以重亚硫酸盐处理的方法被大家认为是甲基化测序的“金标准”。该类方法有一个很明显的特点就是甲基化的分辨率可以达到单碱基的水平,再结合NGS的高通量特点,让科研人员很容易就能得到全基因组上的甲基化图谱。虽然优势很明显,但其也存在一些缺陷,体现在以下几个方面:1、对DNA的破坏,亚硫酸盐处理的反应条件比较剧烈,高温高酸的条件下会使很多DNA序列发生降解,使得DNA序列的多样性下降。为了达到很好的建库效果就需要高质量高有浓度的DNA样本;2、亚硫酸盐处理方法依赖未碱基化的C碱基转化为T碱基,而基因组范围内95%左右都是为甲基化的C,转化后导致文库碱基严重失衡,对测序结果造成影响,故这类文库上机测序时需要参入一定比例的Phix文库。同时,如果C->T的转化效率低,由于其基数很大也会造成很高的假阳性。随着技术的发展,一些将甲基化的C转碱基化为T的方法崭露头角脚,这些技术的天然优势就是甲基化的C碱基本身占比就很少,而且反应条件比较温和,基本不会引起DNA降解保持很好的序列多样性和复杂度,通过测定C->T转化有一种“所见即所得的感觉”,可以降低假阳性的产生。Bisulfite-free技术也在发展。虽然这些技术还不很成熟,但其优势却很明显,未来技术成有所突破一定会让其成为主流。 u2003u2003通过对DNA甲基化方面的知识做一个梳理,自己从中有所收获。个人觉得了解一个方面的知识,最好的方法可能是找一些好的综述来阅读。关于DNA甲基化,下面给出了一篇不错的综述,虽然文章发表于2014年,距离现在已经过去有些年限,但对于不了解的人来说里面的内容还是属于比较经典的,值得一看。今天就分享到这了~~~

DNA甲基化具体解释?

在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。DNA的甲基化可引起基因的失活。   DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)DNA甲基化是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

什么是DNA甲基化及其机制?

DNA甲基化是最早发现的修饰途径之一,存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA甲基化的主要形式:5-甲基胞嘧啶、N6-甲基腺嘌呤、7-甲基鸟嘌呤。真核生物细胞内存在两种甲基化酶活性:日常型甲基转移酶:对半甲基化的DNA有较高的亲和力,特异性强从头合成型甲基转移酶:不需要母链指导,但速度很慢DNA甲基化抑制基因转录的机理:DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率。

DNA甲基化的内容、功能、检测及其研究方法

Septin9基因甲基化检测技术,是由德国EIP公司(Epigenomics)研发的一项基于基因靶点是否出现甲基化表达变化的肿瘤超早期液体活检技术,该技术在与欧洲多家权威医疗机构进行临床试验后,获得了欧盟CE认证,在欧洲被广泛运用到肿瘤的超早期筛查和临床诊断中。之后德国EIP公司将技术授权给美国博尔诚公司(BioChain Institute Inc.)共同开发针对结直肠癌、胃癌、肝癌、食管癌、肺癌等癌症种类的检测试剂,并且与美国德州大学MD安德森癌症中心(UT MDAndersonCancerCenter)共同进行临床试验,在美获得了美国药监局FDA认证,该项技术于2016年被列入了美国疾病预防工作委员会(USPSTF)的筛查项目指南中,作为美国40岁以上人群的常规癌症超早期筛查项目之一。2014年美国博尔诚进入中国后,在北京成立博尔诚医学检验公司,与国内几十家顶级医院进行临床合作试验,试验人群超过100万例,并于2015年8月获得国家食药监局CFDA认证,目前该项目已进入到国内多家顶级三甲医院中(北京301医院、四川省人民医院、西安西京医院、中日友好医院、中南大学湘雅医院等),被运用于癌症超早期以及早期的筛查,具有重要的临床诊断学意义。同时也是目前国内最先进的癌症早期筛查技术之一,只需10-13毫升血液就可以查出体内的肿瘤各阶段变化,对于肿瘤的早筛、早诊断、早治疗有重大的帮助和意义。

什么是DNA甲基化及其机制

DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA的过渡,由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)资料来源:百度百科

真核生物中dna的甲基化普遍存在.以下哪个关于dna甲基化的描述是错误的

DNA甲基化是最早发现的修饰途径之一,真核生物中甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下的CpG二核苷酸5"端的胞嘧啶转变为5"-甲基胞嘧啶。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。DNA甲基化通常抑制基因表达,去甲基化则诱导了基因重新活化和表达。这种DNA修饰方式在不改变基因序列的前提下实现对基因表达的调控。脊椎动物DNA甲基化状态与生长发育调控及生理状态密切相关,比如在肿瘤发生时,抑癌基因CpG岛以外的CpG序列非甲基化程度增加,CpG岛中的CpG则程高度的甲基化状态,导致抑癌基因表达的下降。原核生物中甲基化多发生在CCA/TGG和GATC序列;真核生物中DNA甲基化一般发生在CpG位点上;哺乳动物DNA甲基化只发生在CpG岛的胞嘧啶,植物甲基化发生在CpG和CpNpG。甲基化会使胞嘧啶转为5-甲基胞嘧啶,CpG位点在基因组是不常见的,主要密集于接近基因启动子的位置,统称为CpG岛。CpG位点的甲基化可以对基因表现有重要的影响。哺乳动物中,CpG序列在基因组中出现的频率仅有1%,远低于的其它双核苷酸序列。但在基因组的某些区域中CpG序列密度很高,可以达均值的5倍以上即所谓的CpG岛。通常,CpG岛大约含有500多个碱基,位于基因的启动子区或第一个外显子区。 在哺乳动物基因组中约有4万个CpG岛,而且只有CpG岛的胞嘧啶能够被甲基化。

为什么dna甲基化主要形成5

在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。

与dna甲基化不相关的基因

DNA甲基化是一种最常见的表观遗传现象。一般起到抑制基因表达的作用甲基化的DNA主要分布于真核生物基因组的非编码区,DNA 甲基转移酶的作用下,在DNA分子的碱基上添加甲基,一般是在胞嘧啶核苷的嘧啶环5位上进行甲基化,即5-甲基胞嘧啶(5-mC)。当然也存在其他位置的甲基化。5-甲基胞嘧啶;N6-甲基腺嘌呤;7-甲基鸟嘌呤DNA及组蛋白的甲基化是非活性状态染色质的特征。真核生物中,5-甲基胞嘧啶主要出现在CpG二核苷酸序列上,由于CpG通常成串出现在DNA中,长度一般为1-2kb,所以这段序列被称为CpG岛。CpG岛主要位于基因的启动子区附近,表达量高的基因启动子附近的CpG岛通常不会甲基化。 研究表明,CpG 岛的甲基化一般与基因沉默相关联;而非甲基化一般与基因活化相关联。DNA 甲基化抑制基因表达的机理DNA甲基化会引起DNA的构象发生变化,影响蛋白与DNA的相互作用,从而导致转录因子无法结合或者结合效率下降,从而达到抑制基因表达。从另一方面,DNA甲基化同样有识别甲基化的蛋白会和甲基化的DNA结合,进一步使转录因子无法正常结合。DNA甲基化会导致染色体失活在一些生物中存在剂量补偿效应(会有另一篇专栏介绍这个效应),染色体会通过DNA的甲基化等一些方式进行失活。比如哺乳动物的X染色体的X失活中心的失活基因Xist会发生甲基化。本文禁止转载或摘编生物考研分子生物学生物化学展开阅读全文33分享推荐文章Ron Lemen 画出运动中的身体学习 · 49阅读利用XFLR5进行无人机气动数据分析学习 · 226阅读直播回放 | 无人机集群建模与分析学习 · 73阅读加载中...打开bilibili,查看全部评论打开App

DNA甲基化对基因表达的调控机制

DNA甲基化发生于DNA的CpG island (CG序列密集区)。发生甲基化后,那段DNA就可以和甲基化DNA结合蛋白相结合。结合后DNA链发生高度的紧密排列,其他转录因子,RNA合成酶都无法再结合了,所以这段DNA的基因就无法得到表达了。一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5—甲基胞嘧啶(5—mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。扩展资料由于Dnmtl和Dnmt3基因家族没有针对CpG二核苷酸序列的特异性,人们因此提出了DNA甲基化转移酶发现靶位点的机制。首先,甲基化转移酶并不是同等地接近所有染色体区域。具有染色体重构和DNA螺旋酶活性的蛋白质能调节哺乳动物细胞内DNA甲基化,如SNF2家族2个成员ATRX和Lsh;其次,附件因子(蛋白质、RNA等)能召集DNA甲基化转移酶到特定基因组序列或染色体结构中,如pRB蛋白等能够与Dnmtl作用,在S期晚期将它召集到高度甲基化的异染色质区。参考资料来源:百度百科-DNA甲基化

又是知道什么是DNA甲基化及其机制?

dna甲基化是最早发现的修饰途径之一,真核生物中甲基化仅发生于胞嘧啶,即在dna甲基化转移酶(dnmts)的作用下的cpg二核苷酸5"端的胞嘧啶转变为5"-甲基胞嘧啶。大量研究表明,dna甲基化能引起染色质结构、dna构象、dna稳定性及dna与蛋白质相互作用方式的改变,从而控制基因表达。dna甲基化通常抑制基因表达,去甲基化则诱导了基因重新活化和表达。这种dna修饰方式在不改变基因序列的前提下实现对基因表达的调控。脊椎动物dna甲基化状态与生长发育调控及生理状态密切相关,比如在肿瘤发生时,抑癌基因cpg岛以外的cpg序列非甲基化程度增加,cpg岛中的cpg则程高度的甲基化状态,导致抑癌基因表达的下降。原核生物中甲基化多发生在cca/tgg和gatc序列;真核生物中dna甲基化一般发生在cpg位点上;哺乳动物dna甲基化只发生在cpg岛的胞嘧啶,植物甲基化发生在cpg和cpnpg。甲基化会使胞嘧啶转为5-甲基胞嘧啶,cpg位点在基因组是不常见的,主要密集于接近基因启动子的位置,统称为cpg岛。cpg位点的甲基化可以对基因表现有重要的影响。哺乳动物中,cpg序列在基因组中出现的频率仅有1%,远低于的其它双核苷酸序列。但在基因组的某些区域中cpg序列密度很高,可以达均值的5倍以上即所谓的cpg岛。通常,cpg岛大约含有500多个碱基,位于基因的启动子区或第一个外显子区。在哺乳动物基因组中约有4万个cpg岛,而且只有cpg岛的胞嘧啶能够被甲基化。

为什么dna甲基化主要形成5

在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5"-CG-3"序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5"端的非编码区,并成簇存在。

dna甲基化是什么意思

dna甲基化的意思是:在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5"碳位共价键结合一个甲基基团。DNA甲基化反应分为2种类型:一种是2条链均未甲基化的DNA被甲基化,称为从头甲基化(denovo methylation);另一种是双链DNA的其中一条链已存在甲基化,另一条未甲基化的链被甲基化,这种类型称为保留甲基化(maintenance methylation)。酶分类:DNA甲基化酶分为2类:即维持DNA甲基化转移酶(Dnmtl或维持甲基化酶)和从头甲基化酶。根据序列的同源性和功能,真核生物DNA甲基化转移酶又分为4类:Dnmtl/METl、Dnmt2、CMTs和Dnmt3。DnmtliiMETl类酶参与CG序列甲基化的维持。CMTs类酶仅发现在植物中,主要特征是它的催化区T和Ⅳ包埋染色体的主区,并且特异性地维持CG序列的甲基化。Dnmt:3类酶在小鼠、人类和斑马鱼中得到鉴定。Dnmt3a和Dnmt3b在未分化的胚胎干细胞中高度表达,但在体细胞中表达水平很低。它们的主要作用是从头甲基化,但对维持甲基化也起到一定的作用,并且负责重复序列的甲基化。原理:DNA甲基化(3)DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶的催化作用下,以s腺苷甲硫氨酸(Sadenosyl methionine,SAM)作为甲基供体,通过共价键结合的方式获得一个甲基基团的化学修饰过程。这种DNA甲基化修饰可以发生在胞嘧啶的C5位、腺嘌呤的N6位及鸟嘌呤的N7位等位点。一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5甲基胞嘧啶(5mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。DNA甲基化作为一种相对稳定的修饰状态,在DNA甲基转移酶的作用下,可随DNA的复制过程遗传给新生的子代DNA,是一种重要的表观遗传机制。