校准的硅光电二极管可以做些什么
既然是校准的,可以保证可靠的灵敏度和线性度,可以用来做光传感器、激光功率计探头等等部件https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2822
pn光电二极管存在的问题?pin的优势在什么地方
pn结和pin结是两种最基本的器件结构,也是两种重要的二极管。从结构和导电机理上来说,它们有许多共同点,但是也存在不少的差异。l 相同点:(1)都存在空间电荷区和势垒区,则都有势垒电容;(2)都具有单向导电性和相应的整流作用,则都可用作为二极管;(3)在高的反向电压下,都有可能发生绝缘击穿的现象,因此都存在有最高工作电压的限制;(4)都具有感光作用,可以作为光电二极管和光电池等光电子器件。l 不同点:(1)空间电荷区:pn结的空间电荷区就是界面附近的区域,其中存在较强的内建电场,使得载流子往往被驱赶出去了,故一般可近似为耗尽层。pin结的空间电荷区是在i型层(本征层)两边的界面附近处,则有两个空间电荷区(即p-i和n-i两个界面的空间电荷区),一个空间电荷区包含有正电荷,另一个空间电荷区包含有负电荷,这些空间电荷所产生的电场——内建电场的电力线就穿过i型层。(2)势垒区:pn结中阻挡载流子运动的区域,即存在内建电场的区域就是势垒区;pn结的势垒区也就是空间电荷区,即空间电荷区与势垒区是一致的。但是pin结中存在内建电场的区域是整个i型层加上两边的空间电荷区,因此势垒区很宽(主要就是i型层的厚度),这时势垒区与空间电荷区并不完全一致(势垒厚度远大于空间电荷区)。(3)势垒电容:pn结的势垒电容也就是空间电荷区的电容,而空间电荷区的厚度与外加电压有关,则势垒电容是一种非线性电容;并且pn结的势垒电容也与两边半导体的掺杂浓度和温度有关(掺杂浓度越大,或者温度越高,势垒厚度就越小,则电容也就越大)。但是pin结的势垒电容基本上就是i型层的电容,因此该势垒电容是一种线性电容;并且pin结的势垒电容与两边半导体的掺杂浓度和温度基本上没有什么关系。由于i型层较厚,则pin结的势垒电容很小,因此可用作为微波二极管。(4)导电机理:pn结的电流主要是注入到势垒区两边扩散区中少数载流子的扩散电流,这就意味着:通过pn结的电流是少数载流子扩散电流,并且少数载流子的扩散是在势垒区以外的扩散区中进行的。而势垒区的影响只是其中复合中心提供少量的复合-产生电流(只在低电压时起重要作用)。但是pin结的电流主要是较宽的势垒区(~i型层)中的复合电流。因此在通过的电流的性质上,与一般pn结的大不相同。虽然它们的伏安特性基本上都是指数式上升的曲线关系,但是上升的速度却有一定的差别,pin结的正向伏安特性曲线上升得稍慢一点。(5)工作电压:pn结的势垒厚度一般较薄,并且电场在pn结界面处最大,则容易发生雪崩击穿,从而承受的反向电压有限。但是pin结的势垒厚度很大(~i型层),并且电场在i型层中的分布基本上是均匀的,则不容易发生雪崩击穿,能够承受很大的反向电压,从而pin结二极管可用作为高电压大功率器件。(6)感光(探测)灵敏度:作为光电子器件(光电二极管、红外探测器、太阳电池等)使用时,感光(探测)灵敏度主要决定于势垒区的宽度。pn结因为势垒厚度较薄,则感光灵敏度较小。但是pin结由于它的势垒厚度很大(~i型层),则能够吸收大量的光子、并转换为载流子——光生载流子,所以感光和探测辐射的灵敏度很高。这个估计需要详细的说明才弄的了去硬之城看看吧或许有人会。
光电二极管的伏安特性和光照特性。
光电 二极管器件 本征半导体、P型和N型半导体都不能单独构成半导体器件,PN结才是构成半导体器件的基本单元。 1.2.1 PN结的形成 在特殊工艺条件下,P型和N型半导体交界面处所形成的空间电荷区,称为PN结. 一. 多数载流子的扩散 在P型和N型半导体交界面两侧,电子和空穴的浓度差很大。在浓度差的作用下,P区中的多子空穴向N区扩散,在P区一侧留下杂质负离子,在N区一侧集中正电荷;同时,N区中的多子自由电子向P区扩散,在N区一侧留下杂质正离子,在P区一侧集中负电荷。结果,在P型和N型半导体交界面处形成空间电荷区,自建内电场ε内(从N区指向P区),如图1-6所示。 二. 少数载流子的漂移 在内电场的作用下,P区中的少子自由电子向N区漂移,而N区中的少子空穴向P区飘移,使内电场削弱。 三. 扩散与漂移的动态平衡 当内电场达到一定值时,多子的扩散运动与少子的漂移运动达到动态平衡时,空间电荷区不再变化,这个空间电荷区,就称为PN结。 空间电荷区无载流子停留,故曰耗尽层,又叫阻挡层或势垒层。无外电场作用时,PN结内部虽有载流子运动,但无定向电流形成。 1.2.2 PN结的单向导电特性 一. PN结加正向电压 PN结加正向电压(正偏)时,外电场与内电场反方向,使空间电荷区变窄,多子的扩散运动远大于少子的漂移运动,由浓度大的多子扩散形成较大的正向电流,PN结处于导通状态。此时,其正向通态电阻很小,正向通态管压降也很小,如图1-7(a)所示。 二. PN结加反向电压 PN结加反向电压(反偏)时,外电场与内电场同方向,使空间电荷区变宽,多子扩散运动大大减弱,而少子的漂移运动相对加强,由浓度很小的少子漂移形成很小的反向饱和电流IS,PN结处于截止状态。此时,反向电阻很大。如图1-7(b)所示。 PN结正偏时导通,反偏时截止,故具有单向导电特性。其特性曲线如 图1-8所示,电压U与电流I的关系式为 ID=IS( ) 三,反向击穿 当PN结所加反向电压达到UB时,其反向电流急剧增加,叫反向击穿,UB叫击穿电压。 PN结有雪崩击穿和齐纳击穿两种击穿状态。无论处于何种击穿时,反向电流只要不超过允许值,去掉反向电源后,仍能恢复单向导电性。 四,PN结的电容效应 1.势垒电容CT 当PN结的反偏电压变化时,空间电荷区随之变宽(相当于充入电荷)或变窄(相当于放出电荷),故具有电容效应,叫势垒电容,用CT表示。 2.扩散电容CD 当PN结的正偏电压变化时,P区和N 区中多子的浓度和浓度梯度均随之变化,也具有一定的电容效应,叫扩散电容,用CD表示 3.PN结的结电容CJ CJ=CT+CD 正偏时,CD起主要作用;反偏时,CT起主要作用。 1.2.3半导体二极管 一,二极管的结构 给PN结加上两个引线(管脚)和管壳即成二极管,接P区的管脚称阳极,接N区的管脚称阴极。 二,二极管的类型 1. 按结构区分, 如图1-2所示 点接触型:PN结面积小,工作电流小,PN结电容小,工作频率高。 面接触型:PN结面积大,工作电流大,PN结电容大,工作频率低。 2. 按工作频率区分 有高频管和低频管。 3. 按功率区分 有大功率管和小功率管。 4. 按用途区分 有普通管、整流管、稳压管、开关管等等。 三,二极管的特性 1. 正向特性,与PN结相同 2. 反向特性,与PN结相同 3. 击穿特性,与PN结相同 4. 温度特性, 温度升高时,二极管的正反向特性曲线均向纵轴靠近,如图1-13所示。 四. 主要参数 1. 最大整流电流IF,又叫额定电流。 2. 最大反向工作电压UR,又叫额定电压。 3. 反向饱和电流IS。 4. 反向电流IR,二极管未击穿时的电流值。 5. 最高工作频率fM。 6. 直流电阻RD:RD=UD/IF,如图1-14所示。 7. 交流电阻rd:RD=ΔUD/ΔID=dud/did,如图1-15所示。 rd系指某一工作点的动态电阻。常温下,rd=UT/ID=26(mv)/IDQ IDQ为直流工作点的电流,单位为mA 1.2.4 稳压二极管 一.结构 结构与普通二极管相似,只是掺杂浓度比普通二极管大得多,通常为硅材料稳压二极管。 二.特性 正向特性曲线与普通二极管的正向特性曲线相似;反响未击穿的特性曲线与普通二极管的反向击穿时的特性曲线相似。但稳压二极管的反向击穿特性曲线很陡。如图1-16所示。 三.参数 1.稳定电压UZ 2.稳定电流IZ 3.额定功率PZ 4.动态电阻rZ ,rZ=ΔUZ/ΔIZ ,rZ很小。 5.电压温度系数α。α=ΔUZ/Ut × 100%。UZ>7V时,α为正温度系数;UZ<5V时,α为负温度系数;5V<UZ<7
我想知道PHOTO DIODE(光电二极管) 的工作原理?还有分类
光电二极管工作原理 光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。 光电二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。 它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 光电二极管、光电三极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换,在电路图中文字符号一般为VD。光电三极管除具有光电转换的功能外,还具有放大功能,在电路图中文字符号一般为VT。光电三极管因输入信号为光信号,所以通常只有集电极和发射极两个引脚线。同光电二极管一样,光电三极管外壳也有一个透明窗口,以接收光线照射。 光电二极管主要特性1、光电二极管的伏安特性。光电二极管的伏安特性是指光电二极管上所产生的光电流与其两端所加电压之间的关系。2、光电二极管的光照特性当的灵敏度。3、光电二极管的光谱特性光电二极管的光电流与入射光的波长的关系叫光谱特性。光子能量的大小与光的波长有关:波长越长,光子具有的能量越小;相反,波长越短,光子具有的能量越大。 光电二极管的分类 光电二极管" 英文通常称为 Photo-Diode 光电二极管和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但是,在电路中不是用它作整流元件,而是通过它把光信号转换成电信号。那么,它是怎样把光信号转换成电信号的呢?大家知道,普通二极管在反向电压作用在处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收进射光。光电二极管是在反向电压作用在工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度约大,反向电流也约大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。 一、根据构造分类 半导体二极管主要是依*PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列进一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:1、点接触型二极管 点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流 2、键型二极管 键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。 3、合金型二极管 在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。4、扩散型二极管 在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。5、台面型二极管 PN结的制作方法固然与扩散型相同,但是,只保存PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。 6、平面型二极管 在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。7、合金扩散型二极管 它是合金型的一种。合金材料是轻易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。8、外延型二极管 用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。 9、肖特基二极管 基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。 二、根据用途分类 1、检波用二极管 就原理而言,从输进信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。 2、整流用二极管 就原理而言,从输进交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。 3、限幅用二极管 大多数二极管能作为限幅使用。也有象保护仪器|仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。 4、调制用二极管 通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。 5、混频用二极管 使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。 6、放大用二极管 用二极管放大,大致有依*隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。 7、开关用二极管 有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。8、变容二极管 用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。9、频率倍增用二极管 对二极管的频率倍增作用而言,有依*变容二极管的频率倍增和依*阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器固然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到封闭时的反向恢复时间trr短,因此,其特长是急速地变成封闭的转移时间明显地短。 10、稳压二极管 是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成很多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。 11、PIN型二极管(PIN Diode) 这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。 12、 雪崩二极管 (Avalanche Diode) 它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注进载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。 13、江崎二极管 (Tunnel Diode) 它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。14、快速关断(阶跃恢复)二极管 (Step Recovary Diode) 它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成“自助电场”。由于PN结在正向偏压下,以少数载流子导电,并在PN结四周具有电荷存贮效应,使其反向电流需要经历一个“存贮时间”后才能降至最小值(反向饱和电流值)。 15、肖特基二极管 (Schottky Barrier Diode) 它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。16、阻尼二极管 具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。 17、瞬变电压抑制二极管 TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。 18、双基极二极管(单结晶体管) 两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。 19、发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。 三、根据特性分类 点接触型二极管,按正向和反向特性分类如下。 1、一般用点接触型二极管 这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。 2、高反向耐压点接触型二极管 是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。 3、高反向电阻点接触型二极管 正向电压特性和一般用二极管相同。固然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输进电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。 4、高传导点接触型二极管 它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。 由於现代的开关电源工作频率都在20khz以上,比起一般的整流二极管,快速恢复二极管和超快速恢复二极管的反向恢复时间减小到了毫微秒极.因此,大大进步了电源的效率.据经验,在选择快速恢复二极管时,其反向恢复时间至少应该比开关晶体管的上升时间低三倍.这两种整流二极管还减少了开关电压尖峰.而这种尖峰直接影响输出直流电压的纹波.虽然某些称为软恢复型整流二极管的噪声较小,但是它们的反向恢复时间trr较长,反向电流Irm也较大.因此使得开关损耗较大.快速恢复整流二极管和超快恢复整流二极管在开关电源中作为整流器使用时,是否需要散热器,要根据电路的最大功率决定.一般情况下,这些二极管再制造时允许的结温在175度.生产厂家对其产品都有技术说明,提供给设计者往计算最大的输出工作电流,电压,及外壳温度等.
怎么提高PIN光电二极管的光电效率
1550NM的接收雪崩管有面积0.8M的,这个面积很小,噪音不会很大,PIN管的转换效率各个厂家的都不一样,而且每个厂家的产品也有高低端不同的,看你的要求了,OSRAM,OSI跟Hamamatsu的管子应该有能满足你要求的.PIN管才是不适合探测非常微弱的光信号,他的响应灵敏度非常弱,比雪崩管差很多,如果真的是非常微弱的光信号,建议用雪崩管,不过成本比较高.上面回答的∴想要变亮最好别用它“雪崩二极管”,是什么意思,我没弄明白,而且所说的10GHZ是指的哪一款管子? 响应速度快也是个疑问,跟雪崩管比较?如果是跟雪崩管比较的话,不可能有响应速度快的说法,供电电压低是肯定的,但稳定,就不一定了,他应该是没有正确使用雪崩管得出的结果.
大家好,有没有响应波长在632.8nm附件的光电二极管或者光电三极管呢?如果有,可以提供一些型号吗?
你可以找一下silicon sensor的光电二极管。我们用的是AD230-LCC6,波长635nm,雪崩二极管。下面是silicon sensor的官网
稳压二极管,光电二极管,发光二极管+,是正向特性还是反向特性?
稳压二极管利用的是二极管反向特性即雪崩区。发光二极管和光电二极管都工作在正向特性区间。
光电二极管的工作原理
光电二极管的工作原理如下:当用光照射PN结时,共价键被电离。这会产生空穴和电子对。由于电子-空穴对的产生而产生光电流。当能量超过1.1eV的光子撞击二极管时,就会形成电子空穴对。当光子进入二极管的耗尽区时,它以高能量撞击原子。这导致电子从原子结构中释放。电子释放后,产生自由电子和空穴。当用光照射PN结时,共价键被电离。这会产生空穴和电子对。由于电子-空穴对的产生而产生光电流。当能量超过1.1eV的光子撞击二极管时,就会形成电子空穴对。当光子进入二极管的耗尽区时,它以高能量撞击原子。这导致电子从原子结构中释放。电子释放后,产生自由电子和空穴。光电二极管的工作模式:光电二极管以三种不同的模式运行,它们是:(1)光伏模式。(2)光电导模式。(3)雪崩二极管模式。1.光伏模式。这也称为零偏置模式。当光电二极管工作在低频应用和超强光应用中时,这种模式是首选。当光电二极管受到闪光的照射时,就会产生电压。产生的电压将具有非常小的动态范围并且具有非线性特性。当光电二极管在这种模式下配置OP-AMP时,温度变化会非常小。2.光电导模式。在这种模式下,光电二极管将在反向偏置条件下工作。阴极为正极,阳极为负极。当反向电压增加时,耗尽层的宽度也增加。因此,响应时间和结电容将减少。相比之下,这种操作模式速度快,并且会产生电子噪声。跨阻放大器用作光电二极管的前置放大器。这种放大器的模式保持电压保持恒定,使光电二极管工作在光电导模式。3.雪崩二极管模式。在这种模式下,雪崩二极管在高反向偏置条件下工作。它允许将雪崩击穿乘以每个光产生的电子-空穴对。因此,这会在光电二极管内产生内部增益。内部增益增加了设备响应。
光电二极管工作在击穿区还是截止区
光电二极管工作是在反向击穿区,不在截止区
从学术方面比较光电二极管与光电池的异同?
光电二极管光电二极管" 英文通常称为 Photo-Diode光电二极管和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但是,在电路中不是用它作整流元件,而是通过它把光信e799bee5baa6e59b9ee7ad9431333337613830号转换成电信号。那么,它是怎样把光信号转换成电信号的呢?大家知道,普通二极管在反向电压作用在处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。光电二极管是在反向电压作用在工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度约大,反向电流也约大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。硅光电池(硅光二极管)是一个大面积的光电二极管,它被设计用于把射到它表面的光转化为电能,因此,可用在光电探测器和光通信等领域。特点:当它照射光时会流过大致与光量成正比的光电流.用途:1.作传感器用时,可广泛用于光量测定和视觉信息,位置信息的测定等.2.作通信用时,广泛用于红外线遥控之类的光空间通信,光纤通信等.3.紫蓝硅光电池是用于各种光学仪器,如分光光度计、比色度计、白度计、亮度计、色度计、光功率计、火焰检测器、色彩放大机等的半导体光接收器;紫蓝硅光电池具有光电倍增管,光电管无法比拟的宽光谱响应,它特别适用于工作在300nm-1000nm光谱范围的各种光学仪器对紫蓝光有较高的灵敏度、器件体积小、性能稳定可靠,电路设计简单灵活,是光电管的更新换代产品。目前也有可以使用到190-1100nm的产品,但紫外能量弱一些,光谱带宽不能太小,已经有很多厂家在紫外可见分光光度计上用了。
为什么PIN管的频率特性比普通光电二极管好
pin:光敏面接收对应波长的光照时,产生光生电流;雪崩光电二极管(apd):除了和pin相同部分外,多了一个雪崩增益区,光生电流会被放大,放大的倍数称为雪崩增益系数。当然同时也会产生噪声电流。
PIN型硅光电二极管典型响应电流及光弱的情况下最低响应电流,雪崩型光电二极管的最低响应电流。
对于硅光电二极管在使用中,最低的响应电流就是暗电流。而所谓最低响应,实际上是从暗电流开始变化,上升开始,这时候是最低的响应电流;对于应用来说,我们要求的是这个时候的光照度而对应的电流。这个电流和这个光照度为最低响应,实质上对于每个硅光电二极管都存在差异,只有典型值,最大值,最小值。 我是做过光电控制、光电检测,对于使用者,最重要的是灵敏度,线性性,暗电流对应的最低光照度,暗电流的大小。
PIN光电二极管与雪崩二极管的差别与优缺点
PIN光电二极管响应频率高,可高达10GHZ,响应速度快,供电电压低,工作十分稳定。雪崩二极管灵敏度高,响应快,但雪崩二极管需要上百伏的工作电压,而且性能和入射光功率有关,当入射光功率大时,增益引起的噪声大,带来电流失真。
雪崩光电二极管APD的工作原理是什么?
apd雪崩光电二极管的相应速度快,光电增益高,说明apd雪崩光电二极管在收到光辐射的时候产生的光电子在apd雪崩光电二极管内部的渡越时间短,受激产生的光电子多,光电流大,这些特性的产生需要器件内部的载流子浓度大,而在工艺中就表现为重参杂。重点可以看看《半导体物理》《半导体器件物理》其中对载流子在半导体器件中的渡越时间的描述这个其实不是很复杂的可以到硬之城上面看看有没有这个型号有的话就能在上面找到它的技术资料
半导体雪崩光电二极管的工作原理
当一个半导体二极管加上足够高的反向偏压时,在耗尽层内运动的载流子就可能因碰撞电离效应而获得雪崩倍增。人们最初在研究半导体二极管的反向击穿机构时发现了这种现象。当载流子的雪崩增益非常高时,二极管进入雪崩击穿状态;在此以前,只要耗尽层中的电场足以引起碰撞电离,则通过耗尽层的载流子就会具有某个平均的雪崩倍增值。碰撞电离效应也可以引起光生载流子的雪崩倍增,从而使半导体光电二极管具有内部的光电流增益。1953年,K.G.麦克凯和K.B.麦卡菲报道锗和硅的PN结在接近击穿时的光电流倍增现象。1955年,S.L.密勒指出在突变PN结中,载流子的倍增因子M随反向偏压V的变化可以近似用下列经验公式表示M=1/[1-(V/VB)n]式中VB是体击穿电压,n是一个与材料性质及注入载流子的类型有关的指数。当外加偏压非常接近于体击穿电压时,二极管获得很高的光电流增益。PN结在任何小的局部区域的提前击穿都会使二极管的使用受到限制,因而只有当一个实际的器件在整个PN结面上是高度均匀时,才能获得高的有用的平均光电流增益。因此,从工作状态来说,雪崩光电二极管实际上是工作于接近(但没有达到)雪崩击穿状态的、高度均匀的半导体光电二极管。
讲述雪崩二极管.肖特基光电二极管.光电二极管的特点。
雪崩二极管 它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。 发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。
光电二极管的应用
PN结型光电二极管与其他类型的光探测器一样,在诸如光敏电阻、感光耦合元件(Charge-coupled Device, CCD)以及光电倍增管等设备中有着广泛应用。它们能够根据所受光的照度来输出相应的模拟电信号(例如测量仪器)或者在数字电路的不同状态间切换(例如控制开关、数字信号处理)。光电二极管在消费电子产品,例如CD播放器、烟雾探测器以及控制电视机、空调的红外线遥控设备中也有应用。对于许多应用产品来说,可以使用光电二极管或者其他光导材料。它们都可以被用于测量光,常常工作在照相机的测光器、路灯亮度自动调节等。所有类型的光传感器都可以用来检测突发的光照,或者探测同一电路系统内部的发光。光电二极管常常和发光器件(通常是发光二极管)被合并在一起组成一个模块,这个模块常被称为光电耦合元件。如果这样就能通过分析接收到光照的情况来分析外部机械元件的运动情况(例如光斩波器)。光电二极管另外一个作用就是在模拟电路以及数字电路之间充当中介,这样两段电路就可以通过光信号耦合起来,这可以提高电路的安全性。在科学研究和工业中,光电二极管常常被用来精确测量光强,因为它比其他光导材料具有更良好的线性。在医疗应用设备中,光电二极管也有着广泛的应用,例如X射线计算机断层成像(computed tomography, CT)以及脉搏探测器。PIN结型光电二极管一般不用来测量很低的光强。然而,如果光强足够大,雪崩光电二极管、感光耦合元件或者光电倍增管就能发挥作用,例如天文学、光谱学、夜视设备、激光测距仪等应用产品。与光电倍增管的比较比光电倍增管更加优越的特性:1.更好的线性2.从190纳米到1100纳米(硅)的响应光谱范围3.低噪声4.被加固以适应机械挤压5.价格低廉6.结实但自重较轻7.使用寿命长8.无需高压电源即可工作缺点:1.面积太小2.没有内部增益(雪崩光电二极管除外,而且即使是雪崩光电二极管,其内部增益也通常只有102–103 ,远低于光电倍增管的108数量级3.总的来说灵敏度更低4.只有具有特殊设计的产品才能对光子进行技术5.许多产品设计的响应时间更慢
如何抑制雪崩光电二极管的下降沿抖动
雪崩光电二极管是利用二极管的雪崩击穿效应制成的,光电倍增二极管是放大光电信号的。
用什么元件可以替代雪崩光电二极管在激光测距电路中接收的作用
选用雪崩二极管主要是因为它的电流倍增作用,接收漫反射的激光信号的光学器件需要有比较高的频响和灵敏度,所以APD是比较好的选择
稳压管、发光二极管、光电二极管正常工作时各处于什么状态?各有什么作用?
稳压管工作状态:一般工作在反向击穿状态的稳态,在一定的电流范围内(或者说在一定功率损耗范围内),端电压几乎不变,表现出稳压特性。作用:稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。稳压管反向击穿后,电流虽然在很大范围内变化,但稳压管两端的电压变化很小。利用这一特性,稳压管在电路中能起稳压作用。发光二极管工作状态:处于正向饱和状态,通过电子与空穴复合释放能量发光,它在照明领域应用广泛,发光二极管可高效地将电能转化为光能。作用:发光二极管高亮度化和多色化的进展,应用领域也不断扩展。下边较低光通量的指示灯到显示屏,再从室外显示屏到中等光通量功率信号灯和特殊照明的白光光源,最后发展到右上角的高光通量通用照明光源。光电二极管工作状态:在反向电压作用下工作的,没有光照时,反向电流极其微弱;有光照时,反向电流迅速速增大到几十微安。作用:可用于监视,PN结型光电二极管与其他类型的光探测器一样,光电二极管在消费电子产品,例如CD播放器、烟雾探测器以及控制电视机、空调的红外线遥控设备中也有应用;所有类型的光传感器都可以用来检测突发的光照,或者探测同一电路系统内部的发光。扩展资料:光电二极管的缺点:1、面积太小2、没有内部增益(雪崩光电二极管除外,而且即使是雪崩光电二极管,其内部增益也通常只有102–103 ,远低于光电倍增管的108数量级3、总的来说灵敏度更低,只有具有特殊设计的产品才能对光子进行记数。4、许多产品设计的响应时间更慢参考资料来源:百度百科-发光二极管参考资料来源:百度百科-光电二极管参考资料来源:百度百科-稳压管
3. 分析比较以下几种光电检测器件的异同:硅光电池,光电二极管(PIN),雪崩光电二极管(APD)。主要从以
简单说,都可以产生光生电流,把光变成电。硅光电池:主要是能量转化,一般工作于可见光波段,把光能转化为电能,单晶硅18%左右, 多晶硅16%左右,一般不会考虑信噪比;PIN: 用于光至电信号转换,通讯中常用,主要的有工作于850nm波段和1100nm-1650nm波段的, 转化效率一般在0.85A/W左右,信噪比可以做到很高,这个过程中的噪声主要是热噪声;APD:和PIN相比,多了一个雪崩增益区,可以发大光生电流,从而提高转化效率,但是雪崩增益 本身也会产生噪声。
雪崩光电二极管为何有宽带宽
光电二极管的带宽主要和结电容相关,只要节电容做得小,就可以提高响应频率。当然雪崩效应对带宽也有些影响,会让同样结电容的APD带宽略小于PD,但不是主要影响因素。
雪崩光电二极管APD的偏置电压是一直加在上面吗 还是需要周期性的供给关断?
偏置电压是一直加在上面的,触发二极管是门脉冲电压加偏置电压。该二极管对偏置电压要求很高,波纹电压不大于100mv.
雪崩光电二极管的上升沿不抖而下降沿抖动是什么原因
单从光电二极管自身原因上来说,主要是因为光电二极管性能不稳定引起反向漏电流变大,可能是因为元件老化或受热引起的。
PIN光电二极管与雪崩二极管的差别与优缺点
PIN光电二极管响应频率高,可高达10GHZ,响应速度快,供电电压低,工作十分稳定。雪崩二极管灵敏度高,响应快,但雪崩二极管需要上百伏的工作电压,而且性能和入射光功率有关,当入射光功率大时,增益引起的噪声大,带来电流失真。
PIN光电二极管与雪崩光电二极管的工作原理与特点。
PIN: 光敏面接收对应波长的光照时,产生光生电流;雪崩光电二极管(APD):除了和PIN相同部分外,多了一个雪崩增益区,光生电流会被放大, 放大的倍数称为雪崩增益系数。当然同时也会产生噪声电流。
光电倍增管和雪崩光电二极管有何不同?
雪崩光电二极管是利用二极管的雪崩击穿效应制成的,光电倍增二极管是放大光电信号的。 二极管,(英语:Diode),电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。而变容二极管(Varicap Diode)则用来当作电子式的可调电容器。大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。
雪崩光电二极管的工作原理
雪崩光电二极管是一种p-n结型的光检测二极管,其中利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。其基本结构常常采用容易产生雪崩倍增效应的Read二极管结构(即N+PIP+型结构,P+一面接收光),工作时加较大的反向偏压,使得其达到雪崩倍增状态;它的光吸收区与倍增区基本一致(是存在有高电场的P区和I区)。P-N结加合适的高反向偏压,使耗尽层中光生载流子受到强电场的加速作用获得足够高的动能,它们与晶格碰撞电离产生新的电子一空穴对,这些载流子又不断引起新的碰撞电离,造成载流子的雪崩倍增,得到电流增益。在0.6~0.9μm波段,硅APD具有接近理想的性能。InGaAs(铟镓砷)/InP(铟磷)APD是长波长(1.3μn,1.55μm)波段光纤通信比较理想的光检测器。其优化结构如图所示,光的吸收层用InGaAs材料,它对1.3μm和1.55μn的光具有高的吸收系数,为了避免InGaAs同质结隧道击穿先于雪崩击穿,把雪崩区与吸收区分开,即P-N结做在InP窗口层内。鉴于InP材料中空穴离化系数大于电子离化系数,雪崩区选用n型InP,n-InP与n-InGaAs异质界面存在较大价带势垒,易造成光生空穴的陷落,在其间夹入带隙渐变的InGaAsP(铟镓砷磷)过渡区,形成SAGM(分别吸收、分级和倍增)结构。在APD制造上,需要在器件表面加设保护环,以提高反向耐压性能;半导体材料以Si为优(广泛用于检测0.9um以下的光),但在检测1um以上的长波长光时则常用Ge和InGaAs(噪音和暗电流较大)。这种APD的缺点就是存在有隧道电流倍增的过程,这将产生较大的散粒噪音(降低p区掺杂,可减小隧道电流,但雪崩电压将要提高)。一种改进的结构是所谓SAM-APD:倍增区用较宽禁带宽度的材料(使得不吸收光),光吸收区用较窄禁带宽度的材料;这里由于采用了异质结,即可在不影响光吸收区的情况下来降低倍增区的掺杂浓度,使得其隧道电流得以减小(如果是突变异质结,因为ΔEv的存在,将使光生空穴有所积累而影响到器件的响应速度,这时可在突变异质结的中间插入一层缓变层来减小ΔEv的影响)。
半导体雪崩光电二极管的影响响应速度的因素
载流子在耗尽层中获得的雪崩增益越大,雪崩倍增过程所需的时间越长。因而,雪崩倍增过程要受到“增益-带宽积”的限制。在高雪崩增益情况下,这种限制可能成为影响雪崩光电二极管响应速度的主要因素之一。但在适中的增益下,与其他影响光电二极管响应速度的因素相比,这种限制往往不起主要作用,因而雪崩光电二极管仍然能获得很高的响应速度。现代雪崩光电二极管增益-带宽积已达几百吉赫。与一般的半导体光电二极管一样,雪崩光电二极管的光谱灵敏范围主要取决于半导体材料的禁带宽度。制备雪崩光电二极管的材料有硅、锗、砷化镓和磷化铟等Ⅲ-Ⅴ族化合物及其三元、四元固熔体。根据形成耗尽层方法的不同,雪崩光电二极管有PN结型(同质的或异质结构的PN结。其中又有一般的PN结、PIN结及诸如 N+PπP+结等特殊的结构)、金属半导体肖特基势垒型和金属-氧化物-半导体结构等。
半导体雪崩光电二极管的雪崩二极管的发明
1965年,K.M.约翰逊及L.K.安德森等分别报道了在微波频率下仍然具有相当高光电流增益的、均匀击穿的半导体雪崩光电二极管。从此,雪崩光电二极管作为一种新型、高速、灵敏的固态光电探测器件渐渐受到重视。性能良好的雪崩光电二极管的光电流平均增益嚔可以达到几十、几百倍甚至更大。半导体中两种载流子的碰撞离化能力可能不同,因而使具有较高离化能力的载流子注入到耗尽区有利于在相同的电场条件下获得较高的雪崩倍增。但是,光电流的这种雪崩倍增并不是绝对理想的。一方面,由于嚔随注入光强的增加而下降,使雪崩光电二极管的线性范围受到一定的限制,另一方面更重要的是,由于载流子的碰撞电离是一种随机的过程,亦即每一个别的载流子在耗尽层内所获得的雪崩增益可以有很广泛的几率分布,因而倍增后的光电流I比倍增前的光电流I0有更大的随机起伏,即光电流中的噪声有附加的增加。与真空光电倍增管相比,由于半导体中两种载流子都具有离化能力,使得这种起伏更为严重。一般将光电流中的均方噪声电流〈i戬〉表示为〈i戬〉=2qI0嚔2F(嚔)B式中q为电子电荷,B为器件工作带宽,F(嚔)表示雪崩倍增过程所引起噪声的增加,称为过剩噪声因子。一般情况下,F随嚔的变化情况相当复杂。有时为简单起见,近似地将F表示为F=嚔x,x称为过剩噪声指数。F或x是雪崩光电二极管的重要参数。由于F大于1,并随嚔的增加而增加,因而只有当一个接收系统(包括探测器件即雪崩光电二极管、负载电阻和前置放大器)的噪声主要由负载电阻及放大器的热噪声所决定时,提高雪崩增益嚔可以有效地提高系统的信噪比,从而使系统的探测性能获得改善;相反,当系统的噪声主要由光电流的噪声决定时,增加嚔就不再能使系统的性能改善。这里起主要作用的是过剩噪声因子F的大小。为获得较小的F值,应采用两种载流子离化能力相差大的材料,使具有较高离化能力的载流子注入到耗尽层,并合理设计器件结构。
PIN光电二极管与APD雪崩二极管的优缺点
如下所示:1、PIN光电二极管优点在于响应度高响应速度快,频带也较宽工作电压低,偏置电路简单在反偏压下可承受较高的反向电压,而缺点在于I层电阻很大管子的输出电流小,一般多为零点几微安至数微安。2、APD雪崩二极管具有功率大、效率高等优点,它是固体微波源,特别是毫米波发射源的主要功率器件,广泛地使用于雷达、通信、遥控、遥测、仪器仪表中,其主要缺点是噪声较大。相关明细PIN光电二极管:光敏面接收对应波长的光照时,产生光生电流;APD雪崩二极管:除了和 PIN 相同部分外,多了一个雪崩增益区,光生电流会被放大,放大的倍数称为雪崩增益系数,当然同时也会产生噪声电流。
不可见光通信用LED作为信号发射器,用本征光电二极管(PD)或雪崩光电二极管(APD)作为信号接收器,是否正确?
【错误】可见光通信用LED作为信号发射器,用本征光电二极管(PD)或雪崩光电二极管(APD)作为信号接收器。
为什么APD雪崩光电二极管两端要做成重掺杂?什么原理?
APD雪崩光电二极管的相应速度快,光电增益高,说明APD雪崩光电二极管在收到光辐射的时候产生的光电子在APD雪崩光电二极管内部的渡越时间短,受激产生的光电子多,光电流大,这些特性的产生需要器件内部的载流子浓度大,而在制造工艺中就表现为重参杂。重点可以看看《半导体物理》《半导体器件物理》其中对载流子在半导体器件中的渡越时间的描述
光模块:PIN光电二极管和APD光电二极管
光电探测器。 光模块接收端能正确识别信号并完成光电转换,就需要光电探测器,光电探测器通过检测出照射在其上面的光功率,从而并完成光/电信号的转换。我们常用的PIN光电二极管和APD(雪崩)光电二极管就属于光电探测器。要说探测器,就必须说说探测器基本的结构PN结。 PN结 PN结,指的将P型半导体和N型半导体制作在同一块半导体的基片上,在这两个半导体的交界处形成的空间电荷区。我们先看看什么是P型和N型半导体。 P型半导体:含有较高浓度的“空穴”(空穴相当于正电荷),所以是Positive的P,成为能导电的物质; N型半导体:含电子浓度较高的半导体,导电性由自由电子导电,由于电子带负电,所以是Negative的N。 因此,在P型半导体和N型半导体交界处就出现了电子和空穴的浓度差,从而形成空穴和电子的扩散运动,导致一些电子从N型区向P型区扩散,一些空穴又从P型区向N型区扩散。最终的结果就是在PN交汇处形成空间电荷区电场(内电场,从N指向P),也称之为PN结(缺少“多子”也叫耗尽层)。 (图片来源于网络) 在这里说明一下内部电场,这个电场的形成就导致了载流子的漂移运动,一是N区的载流子空穴向P区漂移,另外是P区的载流子电子向N区漂移。 (图片来源于网络) 因此,单纯的PN二极管的扩散运动只发生在PN结附近,远离PN结的地方就没有电场存在,这也是为什么PN二极管的光电变换效率低下以及响应速度也很慢。 PIN光管二极管 为了解决这个问题,提高转换效率和响应速率,通过在P型和N型半导体之间增加 一层轻掺杂的N型材料 I (Intrinsic,本征的)层,以展宽耗尽层,提高转换效率,这是因为轻掺杂I层,电子浓度很低,经扩散后就可以形成一个很宽的耗尽层。这就是我们的PIN光电二极管。 PIN光电二极管 原理: (1)光子照射在半导体材料上产生光生载流子; (2)光电流在外部电路作用下形成电信号并输出。 APD雪崩光管二极管 在前面的文章中我们说到,APD雪崩光电二极管具有较高的接收机灵敏度,这个较高灵敏度靠的就是对初级的电光流进行雪崩倍增效果。说到雪崩,估计大家脑海中的第一印象就是大雪山发生雪崩,其实也是同样的道理,高山上的一点雪发生碰撞,从上而下一路累积,雪团越来越大,最后形成雪崩。 从这里我们可以看出,要发生雪崩,必须具备一个条件就是山要足够的高。因此,雪崩光电二极管也就是在PIN光电二极管的基础结构中增加了雪崩区。使得光生载流子在其耗尽区(高场区)内的碰撞电离效应激发出新的电子-空穴对,新产生的载流子通过电场加速,导致更多的碰撞电离产生,一生二,二生三,三生万物,从而获得光生电流的雪崩倍增。 APD雪崩光电二极管 原理: (1)光子照射在半导体材料上产生光生载流子; (2)光生载流子在雪崩区即高电场区发生雪崩倍增; (3)光电流在外部电路作用下形成电信号并输出。
采用硅材料的雪崩式光电二极管的响应波长范围
波长在370nm以下,透射深度大于20nm。硅是可见光探测领域最理想的材料之一,也是紫外光电传感的常用材料。硅材料对紫外光的响应较低,这是由于紫外光在硅材料中的透射深度极浅(波长在370nm以下,透射深度大于20nm)。载流子复合效应导致光响应随入射光波长的减小而迅速下降。光电二极管还用于消费电子产品,如CD播放器、烟雾探测器和用于控制电视和空调的红外遥控设备。对于许多应用,可以使用光电二极管或其他光导材料。它们都可以用来测量光线,经常工作在相机的光度计,路灯亮度的自动调节等等。所有类型的光学传感器都可以用于检测同一电路系统中的突然照明或光发射。光电二极管常与发光器件(通常是发光二极管)组合成一个模块,通常称为光电耦合元件。如果是,可以通过分析接收到的光照来分析外部机械元件(如光遮断器)的运动。光电二极管的另一个作用是充当模拟电路和数字电路的中介,使两个电路通过光信号耦合,可以提高电路的安全性。科研和工业中,光电二极管由于比其他光导材料具有更好的线性度,所以经常被用来精确测量光强。在医疗应用设备中,光电二极管也有广泛的应用,如计算机断层扫描(CT)和脉冲探测器。PIN结光电二极管一般不用于测量非常低的光强。但如果光强足够大,雪崩光电二极管、光敏耦合元件或光电倍增管都可以发挥作用,比如天文学、光谱学、夜视设备、激光测距仪等应用产品。