对数螺线的弧长公式:r=e^θ,对数螺线指的是臂的距离以几何级数递增的螺线。弧长元素=rdθ则弧长=∫e^(aθ)*θdθ=1/a∫θd[e^(aθ)]=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2弧长元素=rdθ则弧长=∫e^(aθ)*θdθ=1/a∫θd[e^(aθ)]=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2定理设 C 为以原点为圆心的任意圆,则 C 与等角螺线的相交的角永远相等,而此值为,名为「倾斜度」。等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。等角螺线的渐屈线和垂足线都是等角螺线。从原点到等角螺线的任意点上的长度有限,但由该任意点出发沿等角螺线走到原点却需绕原点转无限次。这是由 Torricelli 发现的。(指数函数的取值范围为负无穷到正无穷,x轴是渐近线,因此极径r永远不会等于0,也即无法到达原点o)。