莫比

DNA图谱 / 问答 / 标签

简单概括什么是莫比斯环

http://baike.baidu.com/image/ac754782f698c6b50cf4d2e3就是这个样子了,你用纸都可以自己粘一个啊取一条长方形纸带,仔细观察会发现它有两个面和四条边。把一个短边扭转180度后,与另一短边粘在一起,便成了一个8字形的环。这时候再来观察就会发现:这条纸带现在只有一个面和一条边。这便是著名的拓朴学结构,魔比斯环的诞生使得数学的分支――拓扑学得以蓬勃发展。

莫比乌斯圈有什么特点,和一般的圆有啥不同

做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。  你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.  实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。  实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。  关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。  麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。  “手套易位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯61克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。  “莫比乌斯带”有点神秘,一时又派 不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。  县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。  现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯带”的特点。

莫比乌斯圈是整么来的???

对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。    有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。圆圈做成后,莫比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。莫比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊。实验一  如果在裁好的一张纸条正中间画一条线,粘成“莫比乌斯带”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。实验二  如果在纸条上划两条线,把纸条三等分,再粘成“莫比乌斯带”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不是一分为二,而是一大一小的相扣环。有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。    关于莫比乌斯带的单侧性,可如下直观地了解,如果给莫比乌斯带着色,色笔始终沿曲面移动,且不越过它的边界,最后可把莫比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。    麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。    “手套移位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯·克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。

莫比乌斯圈的过程

莫比乌斯圈 就是 麦比乌斯圈http://baike.baidu.com/view/90837.htm数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。

把一张长方形纸条画线平均分成四份,做成一个莫比乌斯带,沿线剪开你发现了什么

你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,麦比乌斯环只有一个面。 实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。 实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

莫比乌斯带是什么

这个看似简单、普通的小圈原来如此神奇、有趣,你们能给它取个符合它特点又有个性的名字吗?(生答)你们知道它叫什么吗?(莫比乌斯带) “莫比乌斯带”(板书),为什么呀?是19世纪的几何学家莫比乌斯发现的。很久以前有一个叫莫比乌斯的人,在一个阳光美好的午后,静静的坐在桌前,手中拿着一个长长的纸条,不经意的把纸条拧了一个圈又把两个头对接了起来。也巧,这时正好有一只小蚂蚁到他的桌面上旅游,他微笑着对小蚂说:小朋友,到我这个新建筑上来看看吧。于是小心翼翼地把小蚂蚁请到了手中的纸上,小蚂蚁也许是感到新鲜而又陌生,也就不停的到处游荡,莫比乌斯轻轻的注视着纸上的小蚂蚁,你们猜,他发现了什么?(小蚂蚁虽没翻越任任何一处的纸边沿,却爬过了纸表面的每一个地方。)这让莫比乌斯非常惊讶,这个本来是两个面的纸条经他刚才的一接怎么变成只有一个面了呢?一个伟大的数学发现就这样在不经意间产生了,并且以发现者莫比乌斯的名字命名。所以同学们平时在学好书本知识的同时,要留心观察生活,更多伟大的发明、发现还等着用你们的名字命名呢! 6、关于“莫比乌斯带”还有一个很有趣的故事。据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。执事官不想误判此案,但是又不敢得罪县官,你们猜他怎么做?做成“莫比乌斯带”状能改变结果吗?(生猜)现在你们桌上都有县官的这张判决书,请帮执事官想想办法。(生二人小组合作动手操作请个别小组上台演示),聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。 7、下面再给大家介绍一个关于“莫比乌斯带”的小游戏。宋朝诗人秦少游曾写过一首回形诗:“赏花归去马如飞,去马如飞酒力微,酒力微醒时已暮,醒时已暮赏花归。” (课件显示诗歌)首尾相衔,循环成趣。如果在纸条正面写上“赏花归去马如飞”,再把纸条翻转过来,在背面等距地写上“酒力微醒时已暮”。然后把纸条做成“莫比乌斯带”状,会有什么新发现呢?(顺着这个圈,你就可以反复无穷地读出秦少游的这首诗。) ①艾舍尔《红蚁》:让我们一起来看看蚂蚁在这个“莫比乌斯带”上的运动轨迹吧,由一生上台演示。 ②北京小区科技园“莫比乌斯圈”状阶梯:小朋友在上面玩会发现什么? ③瑞典《不可能的图形》邮票:瑞典1982年发行的一枚邮票,图案是一个古里古怪的图形,如果你用指尖沿着这个古怪的图形上任何一个面顺着一个方向划下去,结果会发现这是一个在现实中不可能造出来的东西。但如果你就这样一直顺着划下去,又会回到原来的出发点,似乎这个物体又不荒谬。其实这是一个立体化的“莫比乌斯圈”。发行这枚“不可能的图形”邮票,意在引导人们关注科学,探索宇宙不解之谜。 ④ 中国科技馆“三叶扭结”:这是中国科技馆的展品,叫“三叶扭结”。它实际上是由“莫比乌斯带”演变而成的,这蓝白相间的灯不停地闪烁,乍看是个漂亮的灯饰,但细瞧,它的特点是什么呀?(只有一面一边)它表示着科学没有国界,各种科学之间没有边界,科学是相互连通的,科学和艺术也是相互连通的意义呢! “莫比乌斯带”听起来确实挺神奇的,但许多事情,都或多或少如此,没有清晰的界限,就如成败,看似截然相反的二个方面,一组反义词。但其实不过是一步之遥。只要你努力,失败的教训会成为成功的基石;如果你骄奢,胜利会转瞬即逝,失败接踵而来。呵呵,原来小小的纸圈上还藏着做人的大道理呢!参考资料:http://jy.smjy.net/smsx/Article_Show.asp?ArticleID=173

莫比乌斯圈实验最后的样子是怎样的

你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,麦比乌斯环只有一个面。 实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。 实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

莫比乌斯带象征什么?

  莫比乌斯带象征:  莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。  莫比乌斯带简介:  公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)。

《神奇的莫比乌斯带》的数学日记怎么写

百度

莫比乌斯圈有什么特点,和一般的圆有啥不同?

做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。  你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.  实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。  实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。  关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。  麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。  “手套易位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯61克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。  “莫比乌斯带”有点神秘,一时又派 不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。  县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。  现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯带”的特点。

关于莫比乌斯环

妙的麦比乌斯圈:  做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。  你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.  实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。  实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。  关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。  麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。  “手套易位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体可以通过扭曲实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯61克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。  “莫比乌斯带”有点神秘,一时又派 不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。  县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。  现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯带”的特点。  (接下来所讲是关于实验1,并将其与宇宙联系起来)  莫比乌斯环的奇妙之处有三:   一、莫比乌斯环只存在一个面。   二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。   三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。  莫比乌斯环、环0和生成的所有的环的六个特征:   一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。   二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。   三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。   四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。   五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。   六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。  从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示:   一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。   二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。   三: 只要存在“裂变”就会使原来的莫比乌斯环不再以“本来面目”存在,或者说,原来的莫比乌斯环已经不存在了。从无中生有的、生成的、具有一个对立的、阴阳两性的环0“复原”成原来的莫比乌斯环,则需要化解一个对立的阴阳两性的面。   四、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。我们得知,任何一个肯定应该是一个具有同一个方向上的、有缺口的或说成是非绝对的否定之否定之否定之否定的矢量(有一定方向的否定)过程。   五、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。这说明宇宙万物之间存在普遍联系的法则,而且任何一点或一个事物都与其他所有的宇宙万物相通相连,是不可分割的、不可遗漏的。   六、宇宙万物从最终起源上来讲是没有任何差异的,均起源于只有一个面的空间或者说没有任何面的状态。因此也可以说宇宙万物都是从无中生有中而来,只不过是在演变的过程中呈现出差异而已。   七、在莫比乌斯环生成为环0的“裂变”过程中,无中生有的增加生成原有“拧劲”中的1倍的新的能量,也就是说在新产生的一对阴阳两性关系体的过程中的“裂变”不遵循“能量守恒原则”;而之后的所有的宇宙万物的再“裂变”只能使宇宙的时空增大,不再生成新的能量,而且在“裂变”中必然遵循“能量守恒原则”。   八、宇宙时空中的任何一个点都可以通过无中生有的方式第一次生成阴阳两性,然后再分别以刚生成的阴阳两性为基础生成第一次的阴阳两性的两个物质,第二次、第三次……直至永无穷尽。

莫比乌斯环的原理?

数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理可以建造立交桥和道路,避免车辆行人的拥堵。

数学上的莫比乌斯带怎么做?

步骤如下:1、取出A4纸(其他大一些的纸也可以),把纸沿着长边对折一次。2、然后接着再沿长边对这一次,就成了细条状3、将纸裁成细条状纸,取其中两条。4、把两条纸带的一端粘在一起。5、把粘好的纸条整个一面涂上颜色(绿色或黑色即可)。6、把纸条的一端扭转180度,也就是转一个面,然后将这一段与纸条另一端粘起来,就是一个莫比乌斯环了。

莫比乌斯圈的来历?

  数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。你想想,应该怎样粘这个纸圈?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?  对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。  有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。  一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。  叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈!  麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180。,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。  圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”

莫比乌斯带怎么用,有什么用?

数学中有一个重要分支叫拓扑学,主要是研究几何图形连续改变形状时的一些特征和规律的,麦比乌斯圈变成了拓扑学中最有趣的单侧面问题之一。一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。二、针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。三、在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞车——它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。四、麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计。微处理器厂商Power Architecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。

莫比乌斯圈实验最后的样子是怎样的

你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,麦比乌斯环只有一个面。实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

介绍一下莫比乌斯圈

  莫比乌斯环又叫麦比乌斯环。  做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。  你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,麦比乌斯环只有一个面。  实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。  实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。  麦比乌斯环的发现:  数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?  对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。  有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。  一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。  麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。  圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。

关于莫比乌斯圈的资料?

我也有急用

谁知道“ 莫比乌斯圈 ”是怎么回事

一个面,一个边的怪圈

莫比乌斯环象征着什么

问题一:莫比乌斯带象征什么? 麦比乌斯圈 麦比乌斯圈是什么: 麦比乌斯圈(M??bius strip, M??bius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand M??bius, 1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起 ,得到的曲面就是麦比乌斯圈。 麦比乌斯圈的发现: 数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。 麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。 圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。 奇妙的麦比乌斯圈: 做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。 你弄好一个圈,沾好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊. 如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。 如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。 有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。 关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。 麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决......>> 问题二:莫比乌斯环象征什么 莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法――橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个 *** 数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。 问题三:莫比乌斯之环到底是什么,深入的? 莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”所以,莫比乌斯带常被认为是无穷大符号「∞」的创意来源。莫比乌斯环和莫比乌斯环拧劲也可能是物质两面性的论证。 [ 从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。] - - 节选自“莫比乌斯指环-百度百科”。 借助以上的论证,证明了在宇宙时空下有“暗物质”的存在。“暗物质”是“暗能量”生成物质时的中间态,“空间”的生成而同时生成的新的一对“正反能量体”。 莫比乌斯之环,就是无限循环的一个象征。 问题四:什么是莫比乌斯环? 30分 莫比乌斯环 莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。它是由德国数学家、天文学家莫比乌斯和约翰u30fb李斯丁在1858年独立发现的。 中文名 莫比乌斯环 别 名 梅比斯环或麦比乌斯带 结 构 拓扑学结构 莫比乌斯指环奇妙之处 一、莫比乌斯环只存在一个面。 二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 莫比乌斯环、环0和生成的所有的环的六个特征: 一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。 二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。 三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。 四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。 五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。 六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示: 一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。 二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的......>> 问题五:把时间比作莫比乌斯环是什么意思 公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰u30fb李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个) 时间就像是个循环,一直向前却又与历史惊人相似,就像小虫在莫比乌斯环上爬 问题六:克莱因瓶和莫比乌斯环有什么意义 不是天文学的吗?德国著名数学家、天文学家莫比乌斯 问题七:什么是神奇的莫比乌斯带 麦比乌斯圈 莫比乌斯环的奇妙之处有三: 一、莫比乌斯环只存在一个面。 二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 莫比乌斯环、环0和生成的所有的环的六个特征: 一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。 二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。 三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。 四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。 五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。 六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示: 一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。 二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。 三: 只要存在“裂变”就会使原来的莫比乌斯环不再以“本来面目”存在,或者说,原来的莫比乌斯环已经不存在了。从无中生有的、生......>> 问题八:莫比乌斯环的定义 公元1858年,莫比乌斯发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。   因为,普通纸带具有两个面(即双侧 曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!   我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。   拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!   有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。   比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个莫比乌斯带。   莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。   莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!   比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。”   在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。   下面的图是一个管子旋转180度连接,中间一根管子旋转90度安装在两头,就是一个亏格为2时8个区域两两相连。林格尔(G.Ringel)和杨斯(F.YOUNGS)1974年证明:Np=[(7+√1+48P)/2],P=2时,N2=8。 问题九:谁能告我莫比乌斯环的原理 方法是两部放样,截面草图分别是一个横的长方形和一个竖的长方形,用半圆作为他们的中心路径。这样做出来就像一个扭曲了90度的半环了,同理再做另一半

什么是莫比乌斯带?

莫比乌斯带(M02bius strip或者M02bius band),又译梅比斯环或麦比乌斯带,是一种拓扑学结构,它只有一个面(表面),和一个边界。它是由德国数学家、天文学家莫比乌斯(August Ferdinand M02bius)和约翰·李斯丁(Johhan Benedict Listing)在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦类似。 莫比乌斯带本身具有很多奇妙的性质。如果你从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是莫比乌斯带)。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。 莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。

关于莫比乌斯环的几个问题

1:莫比乌斯环是一种单侧、不可定向的曲面。一张纸条扭转180°得到的莫比乌斯环是最简单的,但并不是唯一的一种。无论旋转几圈,贴上后得到的纸环,都是一种破坏了纸带原本二维结构的曲面,但都具备不可定向性和单侧性。也就是说,都具备从任意一点出发都可以回到这一点的特性。 2、3;第2点和第3点可以放在一起说,都要先看什么是手性。手性是结构及组成相同但无论怎样都不能重叠的镜像结构。而完全对称的物体是非手性的,因为稍作旋转即可重叠。所以在二维平面上的手性结构应该是非对称的几何图形,这就解释了为何你用2支笔划线却回到了原点,因为在二维的平面上,点是非手性的。你可以试用一个锐角直角三角形来重复这个实验,对于平面结构来说,非对称的图形就是手性的了,因为平面不存在翻转(即绕第3轴旋转——三维旋转)。 那么回到第2个问题,首先说结论,长铗的提法,在目前所能观测到的(即二维和三维世界里)是正确的。不过当时我看那篇文的时候,很是犹豫了一下它的理论基础是否成立。走题了,还是回到高维莫比乌斯环的问题。个人认为,我们所看到的三维莫比乌斯环本身应该是一个2.5维的物体,因为它是一个二维纸带进行三维构象但未完全构成3维立体的产物。同理,一个3维物体如果进行高维构象,形成高维的莫比乌斯环,那么当三维手性物体在其上运行最终回到原点的时候,应处在与其原本状态成镜像的状态。 但是这时就有一个疑问,高维构象的第4维究竟是什么。扯远一点,如果真的像有些人提出的那样,时间作为第4维,那么所谓的高维莫比乌斯环就有了一个大家都非常熟悉的名字了:轮回。 笑~顺便说一下,二维平面中的莫比乌斯环应该就是首尾相连的封闭线型,例如三角形、圆形。而二维平面中比它低维的只有一维的点,但非常遗憾,点在任何维度都不是手性的,所以难以继续验证……一家之言,欢迎拍砖。

莫比乌斯带是哪位数学家在哪年发现的

时间是公元1882年数学家当然是莫比乌斯(德国)故事  数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 莫比乌斯环莫比乌斯带的发现  对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。   有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。   一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。   莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。   圆圈做成后,莫比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。莫比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。   做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.

莫比乌斯圈的用途有哪些?

1、用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大。2、如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。3、还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。4、用皮带传送的动力机械的皮带就可以做成莫比乌斯带状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成莫比乌斯带状,就不存在正反两面的问题了,磁带就只有一个面了,还能平坦的嵌入三维空间。扩展资料:莫比乌斯圈的来历:1979年美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计,微处理器厂商Power Architecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。参考资料来源:百度百科-莫比乌斯圈

关于莫比乌斯圈的资料?

莫比乌斯,也就是梅比优丝,就是无穷的意思,莫比乌斯圈就是一张白纸有 A B2面,讲A面的一段旋转180°与B面相接,这样如果有一条毛毛虫在上面爬,那么它永远爬不到尽头。

莫比乌斯带是什么意思。。??

“莫比乌斯带”(板书),为什么呀?是19世纪的几何学家莫比乌斯发现的。很久以前有一个叫莫比乌斯的人,在一个阳光美好的午后,静静的坐在桌前,手中拿着一个长长的纸条,不经意的把纸条拧了一个圈又把两个头对接了起来。也巧,这时正好有一只小蚂蚁到他的桌面上旅游,他微笑着对小蚂说:小朋友,到我这个新建筑上来看看吧。于是小心翼翼地把小蚂蚁请到了手中的纸上,小蚂蚁也许是感到新鲜而又陌生,也就不停的到处游荡,莫比乌斯轻轻的注视着纸上的小蚂蚁,你们猜,他发现了什么?(小蚂蚁虽没翻越任任何一处的纸边沿,却爬过了纸表面的每一个地方。)这让莫比乌斯非常惊讶,这个本来是两个面的纸条经他刚才的一接怎么变成只有一个面了呢?一个伟大的数学发现就这样在不经意间产生了,并且以发现者莫比乌斯的名字命名。所以同学们平时在学好书本知识的同时,要留心观察生活,更多伟大的发明、发现还等着用你们的名字命名呢! 6、关于“莫比乌斯带”还有一个很有趣的故事。据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。执事官不想误判此案,但是又不敢得罪县官,你们猜他怎么做?做成“莫比乌斯带”状能改变结果吗?(生猜)现在你们桌上都有县官的这张判决书,请帮执事官想想办法。(生二人小组合作动手操作请个别小组上台演示),聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。 7、下面再给大家介绍一个关于“莫比乌斯带”的小游戏。宋朝诗人秦少游曾写过一首回形诗:“赏花归去马如飞,去马如飞酒力微,酒力微醒时已暮,醒时已暮赏花归。” (课件显示诗歌)首尾相衔,循环成趣。如果在纸条正面写上“赏花归去马如飞”,再把纸条翻转过来,在背面等距地写上“酒力微醒时已暮”。然后把纸条做成“莫比乌斯带”状,会有什么新发现呢?(顺着这个圈,你就可以反复无穷地读出秦少游的这首诗。) ①艾舍尔《红蚁》:让我们一起来看看蚂蚁在这个“莫比乌斯带”上的运动轨迹吧,由一生上台演示。 ②北京小区科技园“莫比乌斯圈”状阶梯:小朋友在上面玩会发现什么? ③瑞典《不可能的图形》邮票:瑞典1982年发行的一枚邮票,图案是一个古里古怪的图形,如果你用指尖沿着这个古怪的图形上任何一个面顺着一个方向划下去,结果会发现这是一个在现实中不可能造出来的东西。但如果你就这样一直顺着划下去,又会回到原来的出发点,似乎这个物体又不荒谬。其实这是一个立体化的“莫比乌斯圈”。发行这枚“不可能的图形”邮票,意在引导人们关注科学,探索宇宙不解之谜。 ④ 中国科技馆“三叶扭结”:这是中国科技馆的展品,叫“三叶扭结”。它实际上是由“莫比乌斯带”演变而成的,这蓝白相间的灯不停地闪烁,乍看是个漂亮的灯饰,但细瞧,它的特点是什么呀?(只有一面一边)它表示着科学没有国界,各种科学之间没有边界,科学是相互连通的,科学和艺术也是相互连通的意义呢! “莫比乌斯带”听起来确实挺神奇的,但许多事情,都或多或少如此,没有清晰的界限,就如成败,看似截然相反的二个方面,一组反义词。但其实不过是一步之遥。只要你努力,失败的教训会成为成功的基石;如果你骄奢,胜利会转瞬即逝,失败接踵而来。呵呵,原来小小的纸圈上还藏着做人的大道理呢!

介绍一下莫比乌斯环

莫比乌斯环又叫麦比乌斯环。  做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。  你弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,麦比乌斯环只有一个面。  实验1)如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。  实验2)如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不一分为二,一大一小的相扣环。  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。  麦比乌斯环的发现:  数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?  对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。  有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。  一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。  麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。  圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。

莫比的荣誉

Moby辉煌史葛莱美奖提名 Grammy Nominations最佳另类专辑「PLAY」for Best Alternative Performance (an album category)单曲<Bodyrock>;最佳摇滚乐曲<Bodyrock> for Best Rock Instrumental Performance英国音乐大奖提名Brit Award Nomination最佳国际男艺人Best International Male Artist1999年美国得奖成绩 Best of 1999村声音乐杂志 Village Voice 年度最佳专辑第1名独奏音乐杂志 Solo Magazine 年度最佳专辑第3名,Honey年度最佳单曲第10名及90年最佳专辑第20名美国娱乐周刊 Entertainment Weekly 年度最佳专辑第4名滚石杂志 Rolling Stone 年度最佳专辑第5名男性风尚杂志 GQ 年度最佳专辑第2名亚马逊网络书店Amozon.com年度最佳专辑第4名美国今日杂志 USA Today 年度最佳专辑第4名美国专业杂志Gear Magazine 年度最佳专辑时人杂志 People Magazine 年度最佳专辑华盛顿日报Washington Post 年度最佳专辑第10名芝加哥论坛 Chicago Tribune 年度最佳专辑第3名波士顿全球日报Boston Globe 年度最佳专辑第2名美国洛杉矶时报 L.A. Times 90年最佳专辑第10名美国校园电台杂志 CMJ 年度最佳专辑第4名美国DJ专业杂志 Mixer 年度最佳专辑第3名1999年英国得奖成绩英国Heal杂志 年度最佳专辑英国The Face杂志 年度最佳专辑第4名英国DJ专业杂志 Jockey Slut 年度最佳专辑英国Muzik音乐杂志 最佳单曲<Why Does My Heart Feel So Bed?>英国Esquire杂志 年度最佳专辑英国Ministry舞曲专业杂志 年度最佳专辑第8名英国Evening Standard杂志 年度最佳专辑英国Flipside杂志 年度最佳专辑第2名,年度最佳单曲<Run On>英国Molo专业杂志 年度最佳单曲<Honey>英国Q专业杂志 年度最佳专辑英国Sky杂志 年度最佳专辑第8名

跑步机什么牌子好,莫比的怎么样?

用锐步会好一点。国际国内市场有很多知名跑步机品牌。第一次买跑步机的伙伴,不知道什么牌子的跑步机好,但是了解锐步跑步机,不知道锐步跑步机属于什么档次,比较纠结。肖今天花时间总结了很多大家问的关于reebok锐步跑步机的档次和型号的问题。Reebok锐步是国际知名跑步机品牌,英国百年品牌。2006年被阿迪达斯收购,全球影响力进一步扩大。作为国际知名的一线跑步机品牌,锐步的突出特点除了品牌知名度高之外,还在于其领先的跑步机减震技术。锐步主要分为zjet系列、Z系列、iRun系列和TT系列。锐步Z系列是锐步跑步机的主流产品,分别经历了锐步Z系列、ZR系列、ZRK系列和最新的ZRN系列。每一代产品更新都在原有基础上做了相关改进,产品更加成熟。z系列配备锐步Zig Tceh减震,其根据跑鞋减震原理设计的Zig Tceh减震效果在同级别中名列前茅。在外观上,Z系列以高颜值的白色为主,加上成熟的减震系统和较高的性价比,赢得了年轻人的青睐。锐步zjet系列锐步zjet系列是锐步最新的家用跑步机产品。锐步Zjet系列经过锐变,减震技术得到了进一步的提升,产品更加成熟,高于Z系列。之所以命名为zjet,是因为这种跑步机融入了全新的zjet水平空气减震技术,采用流体力学原理,根据方形胶囊的弹性来减震。看跑步机的整体结构,可以看出zjet系列性能稳定。可以说锐步创新设计的空气减震很大胆,减震很好,跑感也不错。锐步iRun系列iRun系列的不同之处在于,iRun系列是锐步研发设计的全折叠跑步机系列,高颜值,免安装,时尚迷你,适合家居空间有限的朋友。锐步TT系列TT系列是锐步跑步机的高端家用系列,部分个人认为适合轻型商用。作为锐步高端跑步机,拥有良好的品质做工和科技感,配备Zone科技三段弹簧减震。总结:锐步和艾康一样,都是国际一线品牌。作为国际知名跑步机品牌,锐步在跑步机领域专注于年轻时尚和智能风格。外观和功能趋于年轻化,售后网点覆盖全国600多个城市。与其他国际品牌相比,锐步在售后服务上略占优势。多点配送,大量的售后网点,可以为用户减少很多不必要的麻烦。墨迹和悦步跑步机哪个好?我觉得自己喜欢的才是最好的。如果你有强迫症,你可以我建议你找个朋友问问。就看你适合哪种跑步机了,适合哪种!

为什么莫比乌斯看不了

因为没有版权,截至2022年3月,国内没有引进这部作品。《莫比乌斯》是由金基德编导,曹在显、徐英洙、李恩宇主演的爱情电影,讲述了一个意外造成儿子致命伤的女人和一个自宫赎罪的男人之间的故事。该片于2013年9月5日在韩国上映,截至目前,国内视频平台都没有引进该片,所以看不了。剧情介绍:父亲(曹在显饰)车震出轨,母亲(李恩宇饰)愤而阉割他未遂,看到儿子(徐英洙饰)因围观车震后在家自慰,就阉割了儿子。父亲自责之下也阉割了自己,将生殖器冷冻在医院,并且寻找可以在无生殖器的状态下达到性高潮的方式,结果发现,自残皮肤痛到极致就可以成功,因此推荐给儿子。儿子因为失去性功能被同学欺负,又被三个流氓拉入团伙中,他与杂货店(李恩宇饰)的女孩原本就互相有意思,三个流氓轮奸了杂货店女孩,儿子也假装分了一杯羹,但随后所有人都知道了他下身的秘密。好在女孩愿意陪他尝试新的性爱方式,两人都达到了高潮,接着就合谋阉割了流氓头子。父亲终于找到一种嫁接生殖器的手术,将自己的生殖器接在了儿子身上,可是这并不管用,大家惊讶地发现,只有母亲能唤醒它。母亲相助儿子达到高潮,父亲又忍无可忍,拿出了枪。

赛尔号里的稀有精灵(林克.莫比.利利.小豆芽.格林)谁能帮我抓.加我.在Hi里说

【各精灵的进化及捕捉地点】 1、伊优16级进化到尤里安,尤里安进化到36级巴鲁斯(捕捉地点:刚开始或搜集精灵、或在精灵王对战10胜,初始为5级)。 2、小火猴14级进化到烈火猴,烈火猴36级进化到烈焰猩猩(捕捉地点:同上,初始为5级)。 3、布布种子18级进化到布布草,布布草32级进化到布布花(捕捉地点:同上,初始为5级)。 4、利利21级进化到绵绵,绵绵37级进化到电击兔 (绝迹,可以玩了望露台的扭蛋机获得,几率不大,初始为1级)。 5、莫比17级进化到格格尔,格格尔37级进化到鲁加斯 (捕捉地点:云霄星地面层,较易出现,方法同上,初始为3~4级)。 6、小豆芽21级进化到叮叮,叮叮37级进化到魔花仙子 (捕捉地点:克洛斯星沼泽,方法同上,初始为11~12级)。 7、火炎贝17级进化到贝拉米,贝拉米34级进化到贝尔鲁斯 (捕捉地点:火山星,初始为7~8级)。 8、吉尔20级进化到里诺,里诺36级进化到洛吉拉斯(捕捉地点:火山星山洞初始为17~18级)。 9、胡里亚30级进化到里奥斯(火山星山洞深处打BOSS里奥斯送,有时会得不到,需要多打几次,初始为1级)。 10、比比鼠15级进化到闪电鼠,闪电鼠30级进化到天雷鼠 (捕捉地点:赫尔卡星,初始为9~10级)。 11、罗奇21级进化到基罗拉,基罗拉38级进化到西萨琉拉 (捕捉地点:赫尔卡星遗迹,初始为19~20级)。 12、皮皮14级进化到比波,比波3 4级进化到波克尔 (捕捉地点:克洛斯星草原,初始为1~2级)。 13、仙人球16级进化到仙人掌,仙人掌32级进化到巨型仙人掌 (捕捉地点:克洛斯星沼泽,初始为11~12级)。 14、小蘑菇20级进化到蘑菇怪(克洛斯星林间,打BOSS蘑菇怪送,初始为1级)。 15、贝尔16级进化到阿布,阿布36级进化到巴拉龟 (捕捉地点:海洋星浅水区,初始为5~6级)。 16、利牙鱼20级升到钢牙鲨 (捕捉地点:海洋星深水区,初始为15~16级)。 17、毛毛18级进化到卡洛,卡洛36级进化到巴洛卡 (捕捉地点:云霄星地面层,初始为3~4级)。 18、幽浮20级进化到哈尔浮 (捕捉地点:云霄星高空层,初始为13~14级) 。 19、西塔18级进化到铁达斯,38级进化为雷吉欧斯 (海盗任务送,须自己去实验室进化仓进化,现在可以去了望露台玩扭蛋机获得,不过几率有些小,初始为1级) 。 20、果冻鸭18级进化到波浪鸭. 波浪鸭35级进化到水晶鸭(捕捉地点:赫尔卡星精灵广场,顺着脚印用电磁棒电出来,一个赛尔只能捉一只,初始为16级)。 21、玄冰兽27级进化到急冻兽(捕捉地点:塞西利亚星赫尔卡飞船,初始为25~26级)。 22、索拉18级进化到赫拉斯,赫拉斯38级进化到阿克希亚(赛西利亚星打BOSS阿克希亚送精元,需用700元购买分子转化仪进行孵化,孵化后为1级)。 23、林克17级进化到林斯奇,林斯奇36级进化到布林克斯(捕捉地点:寒冰溶洞,进入后将灯转移方向,然后踩碎冰块,也可以重复进出地图,当右下角的时间为5:20 4:20 3:20 2:20 1:20 0:20会出现初始为15~16级)。 24、米拉美28进化到提亚斯(打BOSS提亚斯送精元,需用700元购买分子转化仪进行孵化,孵化后为1级)。 25、格林16级进化到格力姆,36级进化到格鲁奇高(捕捉地点;火山星三个场景不定,出现时博士会来信。目前周五、周六、周日出现时间已公示,初始为12级)。 26、派派17级进化到派鲁克(自己去进化仓进化),36级进化到派鲁基达(捕捉到莫比、小豆芽、林克后,去实验室领取,初始为1级)。 27、雷伊无进化(赫尔卡星荒地打BOSS雷伊送精元,需用700赛尔豆购买分子转化仪进行孵化,初始为1级,无退化和进化)。 28、奇洛16进化杰拉特,35级进化成塔奇拉顿。(8月21日的“闯入赛尔号的邪恶海盗”任务送,初始级数为15级.现已绝版)。 29、尼尔17级进化成菲利斯,菲利斯37进化成艾斯菲亚。(听说只要打野外精灵同一只,不到处走动打10到30几次就能遇到尼尔,尼尔是不会自动出现的必须先与野外精灵进入战斗,一开始他就会现形;初始为16级)。 30、帕诺16级进化成帕拉丝,帕拉丝35级进化成帕尔西斯(现在已经绝版,参加精灵王之战得到500个徽章,然后去了望露台领取,初始为1级,需到实验室的精灵进化仓进化。) 31、依依17级进化到依丁丝,依丁丝35级依卡莱恩(捕捉地点:克洛斯星3初始为15级)。 32、迪达28级进化到迪尔克(捕捉地点:双子阿尔法星一层)。 33、纳格17级进化到纳奇鲁,纳奇鲁38级进化到纳多雷(捕捉地点:双子阿尔法星岩地打BOOS纳多雷送精元初始为1级)。 34.悠悠进化20级冰系精灵(柯蓝) 电系精灵(希拉) 飞行系精灵(蝠迪)。(捕捉地点:双子阿尔法星一层 一个赛尔只能捉一只,初始为10级 20级后在实验室精灵进化仓进化需20个电笼球.20个玄冰20个空气结金。) 35.鲁克19级进化卡鲁加,卡鲁加37级进化为卡尔加斯。 36.卡西29级进化卡尔特(邀请完十个好友去船长室得到)。 详细吧!选我哦!

莫比德为何要杀蓝可儿 他们之间的关系足以说明一切

发生在美国洛杉矶塞西尔酒店的蓝可儿事件一直都是网友们关注的重要话题。因为整个案件看起来疑点重重,即便是警方已经结案了。但依然不少人对于事情的真相还十分的期待。不管是大家猜测还是从很多证据上推测来看,蓝可儿的死亡都不像是意外。更像是谋杀。而嫌疑最大的就是之前网友们所说的莫比德。但是莫比德的杀人动机是什么呢。莫比德为何要杀蓝可儿? 蓝可儿是一个加拿大华裔女孩,一个人到美国去旅行。但是在入住洛杉矶塞西尔酒店之后却神奇的失踪了。在多天之后被工作人员发现死在了酒店顶楼的水箱里。而且是赤身裸体,只是单纯的看死者死亡的地点就感觉有不少的疑问,加上后来警方公布的电梯视频。这更引起了大众们的猜疑。 虽然警方说掌握了100多分钟的监控视频,但最终公布出来的只有4分钟。在整个电梯画面中看到蓝可儿的举动十分的诡异。似乎是一会开心一会惊恐。像是旁边有什么可怕的东西。但是在监控中又看不到什么东西。而当时和她同住一家酒店的还有喜欢黑暗血腥的摇滚歌手莫比德,而且在蓝可儿的手机通话中还有多起两个人的通话记录。 莫比德为何要杀蓝可儿 莫比德本来就是一个很黑暗的摇滚歌手。总是在网上发一些血腥的图片。而且据说在这之前他还发过有关要杀死一个女孩的内容。不过后来很快就删除了。这更像是一些心理变态人玩的杀人游戏,虽然整个过程不用他们动手。但是用心理暗示的手段让被锁定的目标一步步的走进他们预设好的陷阱。这大概也是为什么莫比德的嫌疑很大。但是警方却没有抓他的原因吧! 之前有不少网友猜测莫比德杀害蓝可儿是因为两个人是男女朋友的关系。这点从通话记录能够有所证明。也有人说莫比德就是那种比较变态的人。他们会私下玩杀人游戏。也有一种说法是蓝可儿早就得了抑郁症。其实这中间除了网友的一些猜测之外,还有很多令人费解的疑点。为什么蓝可儿会认识莫比德,为什么视频没有全部曝光等等,这些都是未知的。希望事情的真相有一天能够公之于众还死者和家属一个真实的说法。

蓝可儿就是莫比德杀的吗 过程太诡异事情没有这么简单

发生在2013年华裔女子蓝可儿溺死在美国洛杉矶塞西尔酒店水箱事件。从发生至今一直是外界关注的重要话题。毕竟整个事件太过于蹊跷。而且警方又给出了那样的说法。又因为公开的部分视频。让网友们的猜测越来越多。到底蓝可儿是怎么死的?这样离奇的案子背后是有人操纵吗?不少人说蓝可儿就是被他杀的。蓝可儿就是莫比德杀的吗?过程太诡异事情没有这么简单。 蓝可儿就是莫比德杀的? 2013年加拿大籍华裔女孩蓝可儿一个人到美国洛杉矶旅行。而就在入住塞西尔酒店之后就神秘的失踪了。失踪后的20天被警方发现溺死在酒店顶楼高三米的水箱中。而且是全裸。原本这看起来就十分的离奇了。后来警方公布的一段视频让网友们对整个案件的猜测又更多了。 在蓝可儿死亡之前的一段电梯视频中看到蓝可儿的行为异常。时而害怕时而兴奋。看起来整个人的状态很不正常。而且警方表示掌握120分钟的监控,但是公布出来的才4分钟。难道是有些见不得人的监控给凶手删除了吗?当时和蓝可儿住在同一家酒店的还有比较喜欢血腥和暴力的摇滚歌手莫比德。 蓝可儿 而且蓝可儿生前还和莫比德有多起通话记录。所以莫比德成为了嫌疑最大的凶手人选。虽然他表示那些只是巧合。他跟案件无关。但是网友们仍没有觉得事情就那么简单。一个单纯的失足落水就能够结案。广大的民众是不买账的,但是想要破案就要有证据。即便大家的猜测是对的,也要有凶手行凶的证据才行。 令人感到蹊跷的是蓝可儿在电梯中的诡异行为,似乎有一个看不到的东西在暗中驱使着他一些不可思议的事情。但是后来官方给出的说法是蓝可儿生前很长一段时间都有抑郁症。不然他的家人得知蓝可儿死亡之后,并没有太过于强烈的反应。不过也有人说是私了了。至于事情的真相到底是什么至今还是一个谜团。