博弈论的纳什均衡,求学过的朋友解答!!
纳什均衡是一种策略组合,使得同一时间内每个参与人的策略是对其他参与人策略的最优反应。假设有n个局中人参与博弈,如果某情况下无一参与者可以独自行动而增加收益(即为了自身利益的最大化,没有任何单独的一方愿意改变其策略的[1] ),则此策略组合被称为纳什均衡。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,需要注意的是,只有最优策略才可以达成纳什均衡,严格劣势策略不可能成为最佳对策,而弱优势和弱劣势策略是有可能达成纳什均衡的。在一个博弈中可能有一个以上的纳什均衡,而囚徒困境中有且只有一个纳什均衡。数学定义纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策略组合(s1*,…,sn*)中,任一博弈方i的策略si*,都是对其余博弈方策略的组合(s1*,…s*i-1,s*i+1,…,sn*)的最佳对策,也即ui(s1*,…s*i-1,si*,s*i+1,…,sn*)≥ui(s1*,…s*i-1,sij*,s*i+1,…,sn*)对任意sij∈Si都成立,则称(s1*,…,sn*)为G的一个纳什均衡。经济学定义所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。
请问什么是纳什均衡?
又称为非合作博弈均衡来源 约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。编辑本段定义 假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的 纳什均衡最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。 纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。编辑本段标准定义 纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博弈方策略的组合(s1*,…s*i-1,s*i+1,…,sn*)的最佳对策,也即ui(s1*,…s*i-1,si*,s*i+1,…,sn*)≥ui(s1*,…s*i-1,sij*,s*i+1,…,sn*)对任意sij∈Si都成立,则称(s1*,…,sn*)为G的一个纳什均衡。编辑本段纳什均衡经典案例:囚徒困境 (1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。) 假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证 纳什均衡据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。表2.2给出了这个博弈的支付矩阵。 表2.2 囚徒困境博弈 A╲B 坦白 抵赖 坦白 -8,-8 0,-10 抵赖 -10,0 -1,-1 关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,我抵赖,得坐10年监狱,坦白最多才8年;他要是抵赖,我就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。 基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原 纳什均衡本对双方都有利的策略不招供从而均被释放就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。编辑本段另一个简单的例子 你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗? 每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,而在这个游戏中,便应该采用混合策略纳什均衡。 nm 美女出正面 美女出反面 你出正面 +3,-3 -2,+2 你出反面 -2,+2 +1,-1 假设我们出正面的概率是x,反面的概率是1-x。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,不然对手总是可以改变正反面出现的概率让我们的总收入减少,由此列出方程就是 3x + (-2)*(1-x)=(-2) * x + 1*( 1-x ) 解方程得x=3/8,也就是说平均每八次出示3次正面,5次反面是我们的最优策略。而将x= 3/8代入到收益表达式 3*x + (-2)*(1-x) 中就可得到每次的期望收入,计算结果是 -1/8元。 同样,设美女出正面的概率是y,反面的概率是1-y,列方程 -3y + 2( 1-y )= 2y + (-1) * ( 1-y ) 解得y也等于3/8,而美女每次的期望收益则是 2(1-y)- 3y = 1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。 其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是 (3+3+3-2-2-2-2-2)/8=-1/8元;如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任 何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。编辑本段重要影响 纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费"近期文献的领域。”纳什均衡的重要影响可以概括为以下六个方面 1.改变了经济学的体系和结构。非合作博弈论的概念、内容、模型和分析工具等,均已渗透到微观经济学、宏观经济学、劳动经济学、国际经济学、环境经济学等经济学科的绝大部分学科领域,改变了这些学科领域的内容和结构,成为这些学科领域的基本研究范式和理论分析工具,从而改变了原有经济学理论体系中各分支学科的内涵。 2.扩展了经济学研究经济问题的范围。原有经济学缺乏将不确定性因素、变动环境因素以及经济个体之间的交互作用模式化的有效办法,因而不能进行微观层次经济问题的解剖分析。纳什均衡及相关模型分析方法,包括扩展型博弈法、逆推归纳法、子博弈完美纳什均衡等概念方法,为经济学家们提供了深入的分析工具。 3.加强了经济学研究的深度。纳什均衡理论不回避经济个体之间直接的交互作用,不满足于对经济个体之间复杂经济关系的简单化处理,分析问题时不只停留在宏观层面上而是深入分析表象背后深层次的原因和规律,强调从微观个体行为规律的角度发现问题的根源,因而可以更深刻准确地理解和解释经济问题。 4.形成了基于经典博弈的研究范式体系。即可以将各种问题或经济关系,按照经典博弈的类型或特征进行分类,并根据相应的经典博弈的分析方法和模型进行研究,将一个领域所取得的经验方便地移植到另一个领域。 5.扩大和加强了经济学与其他社会科学、自然科学的联系。纳什均衡之所以伟大,就因为它普通,而且普通到几乎无处不在。纳什均衡理论既适用于人类的行为规律,也适合于人类以外的其他生物的生存、运动和发展的规律。纳什均衡和博弈论的桥梁作用,使经济学与其他社会科学、自然科学的联系更加紧密,形成了经济学与其他学科相互促进的良性循环。 6.改变了经济学的语言和表达方法。在进化博弈论方面相当有造诣的坎多利(Kandori,1997)对保罗·萨缪尔森(Paul Samuelson)的名言“你甚至可以使一只鹦鹉变成一个训练有素的经济学家,因为它必须学习的只有两个词,那就是‘供给"和‘需求"”,曾做过一个幽默的引申,他说,“现在这只鹦鹉需要再学两个词,那就是‘纳什均衡"”。
为什么纳什均衡不一定是占优策略?
简单来说,占优策略是不管对方有什么策略,"我"都有唯一最优的策略,不会随着情况不同改变。而纳什均衡则是,根据对方的选择来决定自己的最优策略,会根据情况而变。所以,占优策略均衡一定是纳什均衡,而纳什均衡却不一定是占优策略均衡。扩展资料:案例硬币正反你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?每一种游戏依具其规则的不同会存在两种纳什平衡,一种是纯策略纳什平衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什平衡,而在这个游戏中,便应该采用混合策略纳什平衡。参考资料来源:百度百科-纳什均衡
该博弈是否存在策略纳什均衡?如果存在请找出
博弈圣经著作人的经典名句;博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。来源:美国资讯网;博弈圣经著作人对纳什的嘲讽博弈圣经著作人的经典名句;0、1、二维平均,称平衡,0、1、2、三维平均,称均衡。在0、1、二维记录的系统中,有一个冯·诺依曼极小极大定理,0、1、二维系统就不存在平均律,就是不存在均衡,纳什均衡当时就遭到冯·诺依曼的贬低、嘲笑和断然否定。谈到“纳什均衡”,有位记者请纳什用通俗的语言来解释他的理论。纳什说;“‘纳什均衡"并不高深,它就像中国人发明的一种、三个人玩的扑克游戏,“纳什均衡”就是一个简单的三人博弈游戏”。中国有那么多人玩扑克,又玩了那么多年,纳什均衡还提醒了中国人半个多世纪,中国人竟没有一个人发现三个人玩的扑克游戏中、还有‘均衡占优理论"。人们不禁要问;纳什他自己玩过几次中国的三人扑克游戏?他和谁玩的?他是怎么发现的均衡?均衡理论又是怎么单方占优的?他为什么没有了下文。博弈圣经著作人的经典名句;科学家在纳什均衡理论中、尚未发现博弈占优策略的任何迹象。在纳什的语文学中,就没有出现过一次0、1、2、三维均衡的概念,纳什均衡哪里来。博弈圣经著作人的经典名句;纳什均衡理论没有任何明确的说法,纳什均衡是美国伪造的产物,传到了世界各地,当然也传遍了中国。“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。博弈圣经著作人的经典名句;二维平衡是指生物的竞争行为,三维均衡是指自然的优劣特性。博弈圣经著作人的经典名句;揭开纳什均衡的画皮,露出真相。【如果纳什均衡是以纳什的名字、命名的一个博弈论术语;假如我把纳什名字去掉、只剩下均衡一词、均衡也就是纯净的博弈论术语;倘若所有博弈论的文章中、都把纳什名字去掉只剩下均衡;再读一篇篇博弈论文章、也都是围绕着均衡一词展开的叙述;发现通篇文章逻辑不通、词意变异、不知所云;只要是属于纳什均衡的理论文章、去掉纳什名字之后、纳什的鬼魅就出现了;通篇文章,捕风捉影、张冠李戴、以讹传讹,添油加醋又像是疯言疯语,更不能被常人所理解。】博弈圣经著作人的经典名句;纳什-是纳什,均衡-是均衡。博弈圣经著作人的经典名句;“纳什均衡” 之所以鬼魅,纳什自己不知道什么是纳什均衡,追随他的门外汉,都假装懂得纳什均衡。“纳什均衡”把所有的门徒变成了精神病、变成了不懂装懂;任何人谈到纳什均衡,就像掉进了魔鬼坑,开口就是自问自答、自说自话、反复无常、自己感到莫名其妙时,还会自圆其说。纳什均衡是什么,纳什自己不知道,中国的傻吊全都知道……。博弈圣经著作人的经典名句;纳什均衡是一份内容不明的谜语,它似乎和任何可理解的逻辑语言都对不上。博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;如果说纳什均衡是一份学术遗产,那就是学术中、独一份的滑稽遗产,他的滑稽级别、足够七星级。博弈圣经著作人的经典名句;“纳什均衡成了中国的一个宗教,追随他的门徒;有无知的青年、有无畏的傻吊、还有无耻的教授。”博弈圣经著作人的经典名句;傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;中国人醒来吧,应该扪心自问;“纳什均衡”理论在哪里?中国人从“纳什均衡”中、学到了什么?纳什演示“纳什均衡”的数学符号,是用某些简单的游戏规则、重组了一些毫无意义的符号,也是纳什均衡在被逼无奈时、在纸上进行的符号游戏。博弈圣经著作人的经典名句;【“纳什均衡”一词,像是宗教的“圣言”,追随它的门徒,各自像精神病人一样、在纳什均衡中寻找理由,都想找到合理的理由解释“纳什均衡”,其结果把纳什均衡变成了博弈宗教、纳什变成了教主,门徒解释纳什均衡的疯言疯语,其实就是胡说八道。】博弈圣经著作人的经典名句;如果中国的教授抄袭“纳什均衡”作为标题,捕风捉影、以讹传讹的炒作,是为了编书、售书、挣钱,假如读者想通过“纳什均衡”想占优、想赢钱,就应该先查查纳什50年以来讲过一句“赢钱”吗,他赢过一次吗?因为没有在赌场中验证,他受到了爱因斯坦的冷遇。【纳什既然是个数学家,他就应该把占优策略给出一个数字量化的数学公式、或者是一个数学模板,让所有的人都能成功模仿,也就是说都能赢。科学的有效性,就应该像打电话一样,只要给出一个电话号码,任何人有序的按下按键,都能打通电话。炒作半个多世纪的纳什均衡,什么非合作博弈策略,什么博弈占有策略,竟然没有一个人能赢,实在是荒唐。】博弈圣经著作人的经典名句;科学家的博弈功能,是让其傻吊与天才同等水平。人们等到纳什车祸身亡、全无博弈取胜的结果,历史证明他就没有所谓的占优策略。“纳什均衡”它会是什么?它像UFO一样诡异、令人百思不解。“纳什均衡”的鬼魅让人想入非非,层出不穷的解释让人匪夷所思。1958年,从《财富》杂志对纳什的炒作,把纳什评为新一代天才数学家中、最出色的人物之后,纳什就迅速赢得了荣耀。他到处讲学、演说,与各国大牌数学家会面,事业如日中天。博弈圣经著作人的经典名句;电影《美丽心灵》用构思、杜撰的艺术形式、编造了纳什戏剧性的一生,“纳什均衡”像西方宗教的“经文”一样,演变成了博弈宗教传奇。诺贝尔经济学奖意外地、砸到纳什头上的那种巧合,给了纳什幸运的一生、羞羞答答的一生、不愿见人的一生、学术欺骗的一生、也是他难堪的一生。博弈圣经著作人的经典名句;纳什均衡是半个世纪前,一个“驴头不对马嘴”的概念,纳什之所以一直沉默,是因为他没法说,他不敢说,他到死都不会说。【来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02,从博弈圣经著作人对纳什的嘲讽,到纳什2015年5月23号出车祸死亡,中间有一年半时间他没有作出回应。】博弈圣经著作人的经典名句;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。博弈圣经著作人的经典名句;几个(因为博弈论)获得诺贝尔经济学奖的得主、管理股票的炒股公司,因亏空、也关门大吉了。瑞典皇家科学院、诺贝尔经济学奖委员会委员,斯塔尔说;纳什均衡是一个博弈取胜的幻想,他自己也不知道怎么均衡、不知道怎么单方占优、不知道怎么取胜。因此,纳什在世期间不会向世人做出博弈如何取胜的解释,所以他一直保持沉默。斯塔尔还说;我们今天既然把纳什均衡带到公众面前,可以断定,未来一定会出现博弈的取胜理论,大家担心纳什均衡可能一败涂地,若干年后将变成一大丑闻。来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02博弈圣经著作人对纳什的嘲讽......。纳什均衡 以讹传讹 是什么玩意儿 博弈论理论 是停滞不前的理论博弈圣经著作人笑谈博弈论,人们在寻找一粒爆香的黄豆时,还不如老鼠能选择最近的路程。《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。博弈圣经著作人对博弈、宗教、伟人,有过美妙的阐述 博弈圣经著作人说;博弈是人与宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有些为我们所不能洞察的东西存在其中,感觉到有一种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现时代伟人。博弈论就是张冠李戴捕风捉影以讹传讹 【典故】讽刺博弈论的最高博弈水平;有人问博弈圣经著作人,什么是博弈论。他回答说;博弈论就是,一问、二答、三无知。也就是说;问者无知、回答者无知、听者更无知。有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,就想赢你一本书钱。博弈圣经著作人通俗的谈菜鸟与金鸟一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然的钻进了金鸟笼。博弈论理论,是停滞不前的理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误的认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,博弈竞争的欲望在远古就出现了。一个人有了欲望,就要有实现欲望的对象和博弈对局的背景,加上自己行为的结果,才能取得想要的东西。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。 《博弈圣经》赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的0、1、2,三维随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。但明眼的人都能看得出,所谓那些自称的博弈专家抄来的无效理论、编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。以往经济学家为了降低风险,建议投资多元化,“不要把鸡蛋放在一个篮子里”,这种分散投资的经济思想,实在是经济学家对博弈取胜的无奈。《博弈圣经》在453节有一段风趣的表述:“我们根本不能完全理解大自然,或许人们不如老鼠在寻找食物时能选择最近的路程,那是大自然的拓扑几何图像的捷径。”看看权威媒体上发表的理论文章,标题或者落款,都是什么什么单位(一个金鸟笼)、某某某人的大名(一个金鸟),即使有一个金鸟笼做背书、做包装,再看他那排列整齐错落有致的垃圾文章,如果只看外观不读内容,真像是一篇好文章,假如读者直接读内容,就会得出结论;文章的段子就是破碎的八卦、文章的内容就是拼凑的垃圾、金鸟笼就是忽悠人、金鸟其实就是一个菜鸟。中国新领导人形容过“笼子政治”的概念,因此中国就是一个笼子政治,金鸟笼里豢养了很多菜鸟,(政治菜鸟、经济菜鸟、学术菜鸟、司法菜鸟、还有博弈论菜鸟等)。他们给中国百姓制造了无数的罪恶,中国百姓很善良,面对东方暴力机器,强权暴力,强权学术,都忍了……。【新领导人说;把权力关进笼子里,就是要把菜鸟的权力关进笼子里……。】......。《博弈圣经》给出的一部分定义博弈圣经著作人说;每一个定义,都是一种逻辑语言,里面一致性的逻辑结构清晰可辨,只是人们以前从没真正看懂过。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》预测的定义;只有对每一个粒子相邻的未来状态、作出“大与小” 或‘多与少"的数字化判定,才称其为预测。《博弈圣经》预言的定义;在一个事件或若干个事件未发生之前的一段时间内、对某一状态的结果,给出命题公理化的语言判定,才称其为预言。《博弈圣经》政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于个体的一个整体结构,称为政治。《博弈圣经》实体政治的定义;一人为粒子、二人为病毒、三人为“私湍”,它们共同组成了、像似实体政治的幻象。(二人为“一株寄生”病毒、三人为团伙“私湍” )《博弈圣经》博弈实体政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于众多个体的平等性质、用文化私湍规矩与实体法则建立的笼子机构,称其为博弈实体政治。《博弈圣经》博弈实体外交的定义;我们在国际外交关系中,平等、互信、包容、合作、共赢的精神,看成博弈实体外交。《博弈圣经》外交的本质定义;外交不是交易、外交不是科学、外交的博弈结果,是徘徊在双方第三空地里的教训。《博弈圣经》经济的定义;经济,就是不断地对0、1、2、三维状态的熵区分。《博弈圣经》经济学的定义;经济学是输赢与均衡在公共空间里的概念。《博弈圣经》经济学家的定义;经济学家就像赌场中一个个旁观输赢的马仔,围绕着博弈实体经济学的理论,凭个人临时的感觉,谈输、谈赢、谈均衡。《博弈圣经》博弈实体经济学的定义;我们把博弈实体分离不变性学说,能容得下宏观经济实体与微观经济性质的语文学通论,看成博弈实体经济学。《博弈圣经》实体经济的定义;我们把飞秒瞬间看到的天、地、人、事、物、情感的抽象概念融合在一起,在没有时间概念的场景中,形成的一个个金融特性的文化私湍,称其为实体经济。《博弈圣经》虚拟经济的定义;犹如看魔术大师让一群狗争夺一块骨头,让众人押注的赌博游戏。《博弈圣经》金融的定义;我们感受到的“金钱宗教”与‘金钱神学",在天、地、人的情感中,用虚无的谎言进行类似于物品概念的买卖与交换,称其为金融。《博弈圣经》金融经济的定义;我们在飞秒瞬间看到的天、地、人之间,人们用情感和虚无的谎言,进行类似于物品概念的买卖、流通、产生利息的货币交换,称其为金融经济。《博弈圣经》金融犯罪的定义;我们把金融单位看成私湍,把私湍的实体与性质看成两重天;金融单位都有共同的理想、共同的欺骗;法定允许欺骗的欺骗、就是金融秩序;法定没允许欺骗的欺骗、就是金融犯罪。《博弈圣经》经济神学的定义;博弈圣经著作人把股民炒股的神秘性,把股评家传教炒股的童话、人话、鬼话、神话,称其为荒唐的经济神学。《博弈圣经》发明家的定义;发明家就是意见的推翻者、行为的摧残者。《博弈圣经》哲学的定义;我们把文化中,借助国正论的语文学反映,定义为哲学。《博弈圣经》科学的定义;文明的永恒、普适、唯一性,就是科学。《博弈圣经》精神的定义;我们把主体的瘾魂,用气质、自由合成的唯一个性,看成精神。《博弈圣经》科学精神的定义:用盲从在道德与博弈混合的概念里,执着于终极正理的唯一理性,看成是科学精神。《博弈圣经》禅的定义;禅是第三空间里飘荡的一个“神化迈迈”。《博弈圣经》文明的定义;文化进程里恩怨游戏的终结就是文明。《博弈圣经》工作的定义;唯独用这一物改变成那一物的创作形式,才称其为工作,才能预知结果。《博弈圣经》实体社会的定义;文化是政治的灵魂,政治是知识论的母体——博弈实体,它构成了实体社会。《博弈圣经》文化的定义;我们把脱离大脑的感觉、思维、意识、观念,向主观、理性、真理,一级一级的私湍增量,称为文化。《博弈圣经》内涵的定义:是主体里的瘾魂、气质、个性、精神被我们用情感的概念,创作出来的一切属性之和。《博弈圣经》实体与性质的定义;博弈实体的可分不变性是博弈的性质,凡是与实体能分离的就是性质,凡是与实体同在的就是实体。《博弈圣经》金融企业的定义;实体与性质的理论学说告诉我们,由政府批准(实体特性)的团伙欺骗行为、属于金融企业,由警局找到未被政府批准(个体性质)的金融企业、属于经济咋骗团伙。《博弈圣经》法律的定义:法律是一个实体特性与两个灵性的结合,是实体分离不变性学说。《博弈圣经》司法均赢力的定义;法律加上情感的行为能在两个灵性的精神上产生双赢的感觉,我们把发展双赢的能力,称为——司法均赢力。《博弈圣经》和谐司法精神的定义;实体法则对待当事人可以像股价一样随时间向空间膨胀,让当事人的精神上在司法中找到赢的感觉,这就是——和谐司法精神。《博弈圣经》中国梦的定义;让人民体面的劳动、自由的创造、有尊严的活着、找到赢的感觉,这就是中国梦的标志性内容。《博弈圣经》公正的定义;公正是非自愿与高兴之间的均赢。《博弈圣经》幸福的定义;信任并自由地给予和欲意的收入,定义为幸福。《博弈圣经》感情的定义;感情是依赖,是瘾魂驱动欲望过程中的殷勤创作。 《博弈圣经》爱的定义;我们把文化进程中被瘾魂驱动的欲望抛弃了自我之后,自由给予的真、善、美,定义为爱。《博弈圣经》规律的定义;规律,就是前因后果,是前一个状态和后一个状态之间可复制的恒定关系。《博弈圣经》草根的定义;草根二字,在中共媒体上经常出现,它是中国特色社会主义理论,也是东方暴徒对中国同胞的侮辱性言论。(中共土改,杀了资本家、杀了地、富、反、坏、右,中国已无贵族。也许自己刚刚从草根脱贫,自以为是贵族。西方贵族文化中有一个数字,3代以上……称为贵族)《博弈圣经》智慧的定义;智慧就是文化进程中独创的执行力。《博弈圣经》领导的定义;我们把指向‘私湍"或指向“实体”权威的信息,看成领导。《博弈圣经》政党的定义;在一个司法独立的国家实体里,法定允许团伙冠名、发展、壮大成的帮派,称其为政党。《博弈圣经》经典理论的定义;我们把历史选择的原创性、持久性、震撼性的理论,称之为经典理论。《博弈圣经》战略的定义:战略是,寻找、连续、正理、科学的,文明实体。《博弈圣经》战术的定义:战术是,达成、局部、真理、文明的,文化性质。《博弈圣经》赢的定义;赢,不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》道德的定义;优先预测悲剧后、作出的忍让,是道德。《博弈圣经》博弈的定义;优先预测胜利前、作出的竞争,是博弈。《博弈圣经》博弈论的定义;我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。《博弈圣经》决策的定义:意识,在没有引入空间之前,可以改变自己的状态,一旦被空间包围,就是决策。《博弈圣经》进步的定义;就是你在传承的方向上播撒的欲望,反应在他者的思维中。《博弈圣经》交流的定义;就是共同驱逐自我身中和它者身中之后建立的关系。《博弈圣经》真理的定义;真理是一个观念、在个别情况下、判断中,现时的体验。《博弈圣经》知识的定义;我把识别万物实体与性质的是与不是,定义为知识。《博弈圣经》经验的定义;我们用矛盾论的辩证法进行的逻辑推理,区分出两个同性质——是到是的过程,称其为经验。《博弈圣经》博弈知识论的定义;人们用国正论对实体与性质的区分,统称为博弈知识论。《博弈圣经》博弈的基本原则定义;以人为本对应的唯物主义是一项博弈的基本原则。《博弈圣经》互联网的定义;互联网是博弈实体,是地球上最美的三人之舞,他们是大众、实体、上帝,在博弈的第三空间里一起互动。《博弈圣经》主义的定义;博弈圣经著作人悄悄的披露,主义就是个人主张。《博弈圣经》革命斗争的定义;马克思主张的革命斗争,比动物目光的相互对视、表达的敌意,更加凶残。《博弈圣经》矛盾论哲学的定义;后辈发现“人”是一粒病毒,一粒容易变异成矛盾论的二维病毒,专门寄生在实体、私湍、粒子体上,才能实现矛盾论哲学的扩充,当宿主遇到危机或困难时,矛盾论哲学将每一个人变成一个个复仇的怪物。《博弈圣经》马克思主义的定义;人们把马克思的个人主张看成主题,在博弈的第三空地里,用欲望的集体狂欢,实验主体、主张、主题的意义,这就是马克思主义。《博弈圣经》共产主义的定义;共产主义是马克思,在穷困、绝望时的幻像,为了摆脱清贫,任何一个人都会构造出来一套,掠夺、瓜分、共产的文化主张。《博弈圣经》意识形态的定义;意识形态,像是一段无声流动的电影画面。《博弈圣经》观念的定义;观念近似一张中心思想的相片、独立的存在文化进程中。《博弈圣经》中心思想的定义;我们把感觉、思维、意识、观念,定义为中心思想。……。经济学世界十部经典著作1、亚当斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”实体经济特性与性质自由主义理论,对后人博弈实体经济学的启发,对经济学的贡献堪比牛顿对物理学的贡献。2、曹国正(新加坡)《博弈圣经》。独创了国正论、国正双赢理论和粒子行为论,是新加坡政府认定的一部,影响人类非物质文化的经济学高级学术著作,他的粒子基因的映射均衡和单方占优的博弈取胜理论,引起世界政治、经济、军事、外交、科学,自然哲学和博弈论界的极大关注。3、大卫李嘉图(英国)《政治经济学与赋税原理》(第一卷)。李嘉图是伦敦交易所里成功的投机商人,又能在经济学理论领域做出不朽贡献。本书中他阐明的比较优势理论是现代自由贸易政策的理论基础。4、马克思(德国)《资本论》。马克思的剩余价值理论,人人耳熟能详,就其概述的经济学现象对改变世界的力量之大,入选了最重要的经济学著作。5、瓦尔拉斯(法国)《纯粹经济学要义》。现代经济学的主观价值(效用)论、边际革命、经济学数理化的转向通过本书而系统化,熊彼特曾赞誉此书为,经济学所取得的最高成就。6、费雪(美国)《利息理论》。此书是迄今为止最伟大的关于资本理论的研究,在马克思发现剩余价值的地方,他看见的是放弃当前消费而承担未来的不确定性风险,所获得的报酬。7、凯恩斯(英国)《就业、利息和货币通论》。被称为宏观经济学的奠基者,他最重要的理论认为,理性通过个人性质与性质的自由竞争会自然产生社会理性,就这一理论遭到了质疑和批判,其争议的主要原因,是来自社会的理性遇到国家政治干预时缺失了博弈实体政治的理论。8、马歇尔(英国)《经济学原理》。马歇尔的最主要著作是1890年出版的《经济学原理》一书,被西方经济学界公认为划时代的著作,也是继《国富论》之后最伟大的经济学著作。该书所阐述的经济学说,在西方经济学中一直占据着支配地位。9、萨缪尔逊(美国)《经济学》。把一本教科书选为最重要的经济学著作,也是发行量最大的经济学教科书,他在经济学知识的标准化、体系化方面做出的贡献,比当代任何一个人都多,就其入选最重要的经济学著作。10、布坎南(美国)《同意的计算》。本书开创的“公共选择”理论,使宪政民主制可以用数理工具定量分析和定量运算,人们用他的理论研究政治与经济制度的形成,开辟了全新的路径。来源:美闻网-美国资讯网-美国麻省理工学院 ……。
纳什均衡的含义 应用
在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。这个均衡是条件最优的均衡,而占优策略均衡是无条件最优的均衡。占优策略均衡是纳什均衡的真子集。纳什均衡的应用主要是寡头厂商之间的策略选择。你可以看看那些著名的商界大鳄之间的商战的故事,比如coke与pepsi,联合利华与P&G,微软、苹果、谷歌,等等。
在完全信息动态博弈中纳什均衡与逆向归纳策略有什么不同
泽尔腾则在60年代中期将纳什均衡概念引入动态分析。在1965年发表《需求减少条件下寡头垄断模型的对策论描述》一文,提出了“子博弈精炼纳什均衡”的概念,又称“子对策完美纳什均衡”。这一研究对纳什均衡进行了第一次改进,选择了更具说服力的均衡点。海萨尼在60年代末把不完全信息引入博弈分析。将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的,决策者要“随机应变”,“向前看”,而不是固守旧略。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。这一点对预测分析是非常有意义的。用动态博弈理论来讨论实际究竟发生哪个纳什均衡。给定“历史”,每一个行动选择开始至博弈结束构成了一个博弈,称为“子博弈”。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
2×2矩阵博弈纳什均衡怎么求
2×2矩阵博弈纳什均衡求法:找到利润最高的单元格,然后将它们连起来。1、从BB的定价开始,在其定价确定的前提下,分别从每一列中寻找对RE公司而言,利润最高的单元格,然后将这些单元格连接起来。2、从RE的定价开始,在其定价确定的前提下,分别从每一行中寻找对BB公司而言,利润最高的单元格,然后将这些单元格连接起来。3、两条曲线的交点就是2×2纳什均衡点。纳什均衡是博弈论中一种解的概念,它是指满足下面性质的策略组合:任何一位玩家在此策略组合下单方面改变自己的策略(其他玩家策略不变)都不会提高自身的收益。纳什均衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什均衡。一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
主导策略均衡与纳什均衡的区别
1、主导策略均衡是指对某参与者而言,不管其竞争对手的反应如何,这一决策总是最优的策略。2、纳什平衡是指博弈中的局面,对于每个参与者要其他人不改变策略,就无法改善自己的状况。在每个参与者都只有有限种策略选择并允许混合策略的前提下,纳什平衡定存在。
求该博弈的纳什均衡
1.纳什均衡(A,B):(进,退),(退,进) 混合策略纳什均衡:-10p+10(1-p)=p*0+5*(1-p) 解得:各保持1/3概率进,2/3概率退的策略,期望收益:10/32.设建立成本为X的协调机制,即获益高的一方支付X给获益底的一方收益矩阵:B 进 退A 进 -10,-10 10-X,X 退 X,10-X 5,5则:建立在混合策略下的纳什均衡-10p+(1-P)(10-X)=Xp+5(1-p)p=1/3-X/15期望收益E=(1/3-X/15)X+5*(1-1/3+X/15)=-X^2/15+2/3X+10/3令E>10/3 解得X=0、10所以只要0<X<10时 期望收益就会增加当X=5时取得极大值E(MAX)=5所以当X<10时通过建立协调机制能提高双方福利水平。 有不懂到我空间留言
跪求微观经济学的两个题揭发解法,一是运用生产理论或成本理论,要求画图!二是混合策略纳什均衡。
(1)是中国的等产量曲线靠近原点,因为投入相同的LK中国生产效率低即产量低。在成本论里的话,总成本曲线中国比美国靠右(2)是LK比例问题,如果L是横轴的话,中国的等产量线靠下且平坦,美国的靠上且陡峭(3)可以用AC来画吧,就像短期平均成本和长期平均成本的例子这大概是我的理解,给你做个参考,如果和你们老师讲的不一样我也不负责啊,呵呵。混合策略纳什均衡的那个我记得我昨天已经答过了,也是仅供参考
占优策略均衡和纳什均衡怎么区分?
主要从两者定义来区分:(1)占优策略均衡是指博弈中的所有参与者的占优策略组合所构成的均衡就是占优策略均衡。(2)纳什平衡又称非合作博弈均衡,是博弈论的一个重要术语。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,则这个组合就定义为纳什平衡。(3)无论其他博弈者采用何种策略,若某一个博弈者的策略总是最好的,则该策略就是占优策略。在两个(或全部)博弈者都采用占优策略时这种结果是一种占优均衡。在其他博弈者的策略给定时,没有一方还能改善获利的情况则称为纳什均衡。扩展资料纳什平衡的由来:关于纳什平衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在普林斯顿大学攻读博士学位时完成的。实际上,博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar Morgenstern)合著的《博弈论和经济行为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什平衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什平衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论.进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。阿尔伯特·塔克(Albert tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。”参考资料来源百度百科-纳什平衡百度百科-占优策略均衡
什么是纳什均衡?纳什均衡一定是最优的吗?
没有最优,只有相对合适。
情侣博弈中一定会存在两个纳什均衡么
不是所有博弈都存在纳什均衡 如纯策略就不存在混合策略则一定会存在纳什均衡 它是通过概率来计算纳什均衡在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率。
混合策略纳什均衡的定理
矩阵博弈A中,A=(aij),混合策略纳什均衡 点存在的充分必要条件为:v1=max min E(x,y)=min max E(x,y)=v2
3×3混合策略纳什均衡
为什么混合策略((3/7U,4/7M),(3/7L,4/7M))中不包括D和R? 你应该还没弄清楚什么是混合策略,这里面是包括D和R的,他正规的书写应该是 (3/7U,4/7M,0/7D),(3/7L,4/7M,0/7R) 求不出正确的解? 表示看不懂你说的是什么意思.题目要求你求出什么解?
如何判断是否存在混合策略纳什均衡以及求这种均衡的方法?
在一个Normal form game里,是一定存在至少一个混合策略纳什均衡的。Normal form game简单地说就是常见的那种可以画出M*N的矩阵的game。 证明如下:定义一个game:n个player,用i来表示;每个人有有限个策略,player i的策略集用表示, 里有个元素;表示player i出第j个策略的概率,, ;定义效用函数, 是一个维simplex,代表了player i所有可能出的混合策略, 是笛卡尔积。这里有一个非常重要的假定: 是concave函数,可以理解成边际效用递减的效用函数。对于player i来说,我们把其他所有player的策略写成 ,所以player i的效用就是 。定义best response,也就是给定别人的策略 ,player i的最优策略: ;所以best response是一个correspondence: 。注意:给定别人的策略,player i的best response可以是一个集合(不止一个best response)。可证 是convex的。 把所有人的best response写成 ,这是一个给定所有人的策略,每个个体都觉得更好的策略组合,我们可以写成 ,这是一个自己到自己的correspondence。同时可证 是一个convex-valued correspondence。是n维欧几里得空间的子集,满足非空、紧(compact)、凸(convex)的性质; 是一个自己到自己的correspondence,满足非空、凸(convex-valued)、closed-graph。根据Kakutani fixed-point theorem, 有一个不动点,即存在满足 ,也就是说在所有人的决策是 的情况下,任意player i都觉得,如果其他人策略不变, 比较简单的game都可以用求出best response correspondence的方法解,这应该包括在你会的两种方法内。但比较复杂的或者决策集是连续的game,一般没有固定解法,很多情况下你找到某个game的纳什均衡就可以发paper了(比如Levitan & Shubik, 1972)。
怎么求混合策略纳什均衡
通俗地说,纳什均衡含义就是:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是你最好的策略。即双方在对方给定的策略下不愿意调整自己的策略。一般都用在经济学和薪酬体系上。
有三个企业的霍特林模型如何解出混合策略的纳什均衡?
三个企业的霍特林模型,如果你说的是最简化的版本——即有三家商店在一段线段上,售卖同品质的商品,消费者均匀分布的线段上。此时没有Nash Equilibrium,三家商店无论处于哪个位置都是不稳定的。
【博弈论】关于下面支付矩阵的混合策略纳什均衡? 2,1 3,-1 对手的策略
在计算混合策略时,自己选上的概率p应当使得对手选择两种策略所得的期望收益相同。你不能用自己的支付矩阵来计算对方的期望收益,应当写出对方的支付矩阵,再找p。
小白也懂博弈论:纳什均衡
原文发布于自己的博客平台【 http://www.jetchen.cn/nash-equilibrium/ 】 具有竞争或对抗性质的行为称为博弈行为,并且博弈理论在经济学、国际关系、军事战略等很多领域都有广泛的应用,其中以纳什均衡为代表的非合作性博弈理论在日常中最为常用。 在很多场景下,比如玩德州扑克等游戏时,虽然有些时候选择的策略并不一定是全局的最优解,但却是相对于其他人的策略而做出的最优解,即每个人都是对自己最有利的解决方案,我们将其称为为 纳什均衡 。 纳什均衡(或者纳什平衡),Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要策略组合,以约翰·纳什命名。 再解释一下,所谓纳什均衡,指的是参与者的一种策略组合,在该策略上,任何参与人单独改变策略都不会得到好处,即 每个人的策略都是对其他人的策略的最优反应 。换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。 枯燥的描述很难理解,下面使用几个案例来理解下。 背景:有两个囚犯A和B,犯事儿进去了,然后警官对其分开审讯,所以A和B是没有机会进行串供的 奖惩:如果双双招供,则各判2年,如果双双不招供,则各判1年,如果一个招供一个不招供,则招供的人立即释放,不招供的人判刑十年 结果:最后囚犯A和B都会选择招供,所以各判2年,这个便是此时的纳什均衡。 但是明明双双不招供才是最优解啊,其实不然,回头再看一下概念,纳什均衡其实并不是全局的最优解,而是每个人相对于每个人的策略而做出的最佳策略,下面来解释下。 我们来建立一个数学模型,使用 -2、-1、0、-10 来形容上面的奖惩,见下面的分析图。 A的心路历程: 所以,不管B招不招供,A只要招供了,对A而言是最优的策略。 同理,对于B的心路历程也相似,B也会选择招供: 所以最终的结果是A和B都选择了招供。 即此时的纳什均衡点为:A和B都招供。 综述,敲黑板,纳什均衡的前提是: 决策圈中的个体是独立,不合作,不横向沟通的 背景:有两只猪,一只是大猪,另一只是小猪,然后有一个食槽,里面会有食物落下,但是需要去远处按一下按钮,每次按一下按钮,食槽中便会补满食物。但是呢,在按按钮的来回路上,是需要消耗一定的能量的。 奖惩:跑过去按一下按钮再跑回来吃食物,会消耗一些能量,记为 -2,每次食槽中补满食物,总食物量为 10份,大猪先吃的话能吃到 9 份,小猪先吃的话,大猪能吃到 6 份,一起吃的话,大猪能吃到 7 份 结果:大猪会选择去按按钮,而小猪会选择不去按按钮,即在原地等着。 小猪心路历程: 所以,不管大猪怎么样,小猪都会选择在原地等待。 大猪心路历程: 所以,表面上看,大猪的决策是受到小猪的决策所影响的,但是分析小猪的心路历程得知,小猪是不会去按按钮的,那么大猪最后的决策还是会选择去按按钮,这样大猪的收益才会最大化。 所以综上,最终结果是大猪去按按钮,而小猪在原地等待着。 即此时的纳什均衡点为:大猪去,小猪不去。 在每次参与者都只有有限种策略选择并且允许混合策略的前提下,纳什均衡是一定存在的。 比如选举、群体之间的利益竞争、会议中的法案竞争等,是必然存在纳什均衡的。 以公司间的价格战为例:如果对方一直降价,那我方继续降价必然会出现亏本买卖,然而如果不降价,也会出现失去市场的情况,损失更大,但如果对方不降价,我方更要降价才能谋得一丝丝利益,所以只要出现价格战,必然会两败俱伤,这是纳什均衡体现的必然结局。所以要改变这种结局,双方必须坐下来谈判寻求新的利益评估分摊方案,从而改变原先的利益格局(比如当年京东和当当的一场价格战,最终以双方各占某一方面的主市场从而获得新的利益分割方案)。 纳什均衡是基于非合作博弈论的平衡不动点解 例如上文的囚徒困境问题,如果两个囚徒是有合作的,则必然不存在纳什均衡点。 所以,在现实生活中,纳什均衡这一博弈是很重要但是也是很有限的,因为在很多情况下,即使知道平衡不动点必然存在,但是往往却很难找到。 纳什均衡(这一非合作博弈论模型)仅仅是突破了博弈论中的一个局限 因为在社会这一庞大的博弈环境下,还会掺杂着复杂的经济行为,虽然社会中的大家并非是集体合作性的,但在这种庞大的非合作性对象中,纳什均衡点是几乎不可能找到的。 纳什均衡属于NP问题 (摘自 wik i上面的一段话,暂时看不懂但却觉得很有道理)纳什均衡属于NP问题,Daskalakis 证明它属于 NP 问题的一个子集,不是通常认为的 NP-完全问题,而是 PPAD-完全问题。这项研究成果被一些计算机科学家认为是十年来博弈论领域的最大进展。
什么是对称的纳什均衡
假设两个人有相同行动集a1,a2.若U1(a1,a2)=U2(a2,a1)则具有对称性,比如在那道题中,a1=告发,a2=不告发,等式左边表示“1告发2不告发时1的效用”,为3;右边表示“1不告发2告发时2的效用”,也为3,两者相等。满足该等式时,每个人在混合策略中取ai的概率是相同的,所以对于k个人时,可以设每个人告发的概率为p。
求市民责任博弈对称的混合策略纳什均衡
每个人报警收益v-c,袖手旁观的情况下,别人报警他收益v,都不报收益0每个人选择报警的概率为p,则混合策略纳什均衡应该使二者收益相等,即v-c=[1-p^(n-1)]vp=(c/v)^[1/(n-1)]其中p^n-1为其余人都不报警的概率
为什么严格控制的策略不能在任何混合策略纳什均衡中以正概率发挥作用?
严格控制的策略是指的什么?我根据你的题意推测是指严格劣势策略(strictly dominated strategy) 在一个混合策略均衡当中,,在对方不改变策略的情况下,单独选择任意一个以正概率发挥作用的策略,其个人的效用(利得)是一样的。即若a和b战略在玩家1的混合策略均衡中,那么必然有u1(a,s2)=u1(b,s2)这里u1是玩家1的效用函数,s2是玩家2的混合策略。如果这里b是严格劣势策略,那么我们有u1(a,s2)>u1(b,s2)对于任意的p∈(0,1),我们有u1(a,s2)>p*u1(b,s2)+(1-p)*u1(a,s2)=u1(s1,s2)这里s1是任意的以正概率p选择b和正概率1-p选b的混合战略。我们发现不论p是是什么值,玩家1的效用都低于纯战略a,所以严格劣势策略不能在任何混合策略纳什均衡中以正概率发挥作用
每个有限博弈都至少有一个混合策略纳什均衡是对的吗
每个有限博弈都至少有一个混合策略纳什均衡是对的。根据查询相关公开信息显示,每个有限博弈都至少有一个混合策略纳什均衡是正确的混合策略,符合策略要求。
标准式博弈的混合战略纳什均衡是什么
简单说来,对每个决策方做出的决策赋予概率,然后求收益的数学期望。这就是通俗的 混合策略纳什均衡。
占优策略均衡和纳什均衡怎么区分?
主要从两者定义来区分:(1)占优策略均衡是指博弈中的所有参与者的占优策略组合所构成的均衡就是占优策略均衡。(2)纳什平衡又称非合作博弈均衡,是博弈论的一个重要术语。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,则这个组合就定义为纳什平衡。(3)无论其他博弈者采用何种策略,若某一个博弈者的策略总是最好的,则该策略就是占优策略。在两个(或全部)博弈者都采用占优策略时这种结果是一种占优均衡。在其他博弈者的策略给定时,没有一方还能改善获利的情况则称为纳什均衡。扩展资料纳什平衡的由来:关于纳什平衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在普林斯顿大学攻读博士学位时完成的。实际上,博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar Morgenstern)合著的《博弈论和经济行为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什平衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什平衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论.进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。阿尔伯特·塔克(Albert tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。”参考资料来源百度百科-纳什平衡百度百科-占优策略均衡
如何判断是否存在混合策略纳什均衡以及求这种均衡的方法?
在一个Normal form game里,是一定存在至少一个混合策略纳什均衡的。Normal form game简单地说就是常见的那种可以画出M*N的矩阵的game。 证明如下:定义一个game:n个player,用i来表示;每个人有有限个策略,player i的策略集用表示, 里有个元素;表示player i出第j个策略的概率,, ;定义效用函数, 是一个维simplex,代表了player i所有可能出的混合策略, 是笛卡尔积。这里有一个非常重要的假定: 是concave函数,可以理解成边际效用递减的效用函数。对于player i来说,我们把其他所有player的策略写成 ,所以player i的效用就是 。定义best response,也就是给定别人的策略 ,player i的最优策略: ;所以best response是一个correspondence: 。注意:给定别人的策略,player i的best response可以是一个集合(不止一个best response)。可证 是convex的。 把所有人的best response写成 ,这是一个给定所有人的策略,每个个体都觉得更好的策略组合,我们可以写成 ,这是一个自己到自己的correspondence。同时可证 是一个convex-valued correspondence。是n维欧几里得空间的子集,满足非空、紧(compact)、凸(convex)的性质; 是一个自己到自己的correspondence,满足非空、凸(convex-valued)、closed-graph。根据Kakutani fixed-point theorem, 有一个不动点,即存在满足 ,也就是说在所有人的决策是 的情况下,任意player i都觉得,如果其他人策略不变, 比较简单的game都可以用求出best response correspondence的方法解,这应该包括在你会的两种方法内。但比较复杂的或者决策集是连续的game,一般没有固定解法,很多情况下你找到某个game的纳什均衡就可以发paper了(比如Levitan & Shubik, 1972)。
混合策略纳什均衡的实现
1、最大化支付法:即最大化各个参与人的效用函数。2、支付相等法:根据前面分析的猜硬币博弈中参与人的策略的思路,每个参与人的混合策略都使其余参与人的任何纯策略的期望支付相等,因此,解混合策略纳什均衡可以令参与人的各个纯策略支付相等,构成方程组求解。
如何求三个人的混合策略纳什均衡
博弈圣经著作人的经典名句;博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。来源:美国资讯网;博弈圣经著作人对纳什的嘲讽博弈圣经著作人的经典名句;0、1、二维平均,称平衡,0、1、2、三维平均,称均衡。在0、1、二维记录的系统中,有一个冯·诺依曼极小极大定理,0、1、二维系统就不存在平均律,就是不存在均衡,纳什均衡当时就遭到冯·诺依曼的贬低、嘲笑和断然否定。谈到“纳什均衡”,有位记者请纳什用通俗的语言来解释他的理论。纳什说;“‘纳什均衡"并不高深,它就像中国人发明的一种、三个人玩的扑克游戏,“纳什均衡”就是一个简单的三人博弈游戏”。中国有那么多人玩扑克,又玩了那么多年,纳什均衡还提醒了中国人半个多世纪,中国人竟没有一个人发现三个人玩的扑克游戏中、还有‘均衡占优理论"。人们不禁要问;纳什他自己玩过几次中国的三人扑克游戏?他和谁玩的?他是怎么发现的均衡?均衡理论又是怎么单方占优的?他为什么没有了下文。博弈圣经著作人的经典名句;科学家在纳什均衡理论中、尚未发现博弈占优策略的任何迹象。在纳什的语文学中,就没有出现过一次0、1、2、三维均衡的概念,纳什均衡哪里来。博弈圣经著作人的经典名句;纳什均衡理论没有任何明确的说法,纳什均衡是美国伪造的产物,传到了世界各地,当然也传遍了中国。“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。博弈圣经著作人的经典名句;二维平衡是指生物的竞争行为,三维均衡是指自然的优劣特性。博弈圣经著作人的经典名句;揭开纳什均衡的画皮,露出真相。【如果纳什均衡是以纳什的名字、命名的一个博弈论术语;假如我把纳什名字去掉、只剩下均衡一词、均衡也就是纯净的博弈论术语;倘若所有博弈论的文章中、都把纳什名字去掉只剩下均衡;再读一篇篇博弈论文章、也都是围绕着均衡一词展开的叙述;发现通篇文章逻辑不通、词意变异、不知所云;只要是属于纳什均衡的理论文章、去掉纳什名字之后、纳什的鬼魅就出现了;通篇文章,捕风捉影、张冠李戴、以讹传讹,添油加醋又像是疯言疯语,更不能被常人所理解。】博弈圣经著作人的经典名句;纳什-是纳什,均衡-是均衡。博弈圣经著作人的经典名句;“纳什均衡” 之所以鬼魅,纳什自己不知道什么是纳什均衡,追随他的门外汉,都假装懂得纳什均衡。“纳什均衡”把所有的门徒变成了精神病、变成了不懂装懂;任何人谈到纳什均衡,就像掉进了魔鬼坑,开口就是自问自答、自说自话、反复无常、自己感到莫名其妙时,还会自圆其说。纳什均衡是什么,纳什自己不知道,中国的傻吊全都知道……。博弈圣经著作人的经典名句;纳什均衡是一份内容不明的谜语,它似乎和任何可理解的逻辑语言都对不上。博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;如果说纳什均衡是一份学术遗产,那就是学术中、独一份的滑稽遗产,他的滑稽级别、足够七星级。博弈圣经著作人的经典名句;“纳什均衡成了中国的一个宗教,追随他的门徒;有无知的青年、有无畏的傻吊、还有无耻的教授。”博弈圣经著作人的经典名句;傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;中国人醒来吧,应该扪心自问;“纳什均衡”理论在哪里?中国人从“纳什均衡”中、学到了什么?纳什演示“纳什均衡”的数学符号,是用某些简单的游戏规则、重组了一些毫无意义的符号,也是纳什均衡在被逼无奈时、在纸上进行的符号游戏。博弈圣经著作人的经典名句;【“纳什均衡”一词,像是宗教的“圣言”,追随它的门徒,各自像精神病人一样、在纳什均衡中寻找理由,都想找到合理的理由解释“纳什均衡”,其结果把纳什均衡变成了博弈宗教、纳什变成了教主,门徒解释纳什均衡的疯言疯语,其实就是胡说八道。】博弈圣经著作人的经典名句;如果中国的教授抄袭“纳什均衡”作为标题,捕风捉影、以讹传讹的炒作,是为了编书、售书、挣钱,假如读者想通过“纳什均衡”想占优、想赢钱,就应该先查查纳什50年以来讲过一句“赢钱”吗,他赢过一次吗?因为没有在赌场中验证,他受到了爱因斯坦的冷遇。【纳什既然是个数学家,他就应该把占优策略给出一个数字量化的数学公式、或者是一个数学模板,让所有的人都能成功模仿,也就是说都能赢。科学的有效性,就应该像打电话一样,只要给出一个电话号码,任何人有序的按下按键,都能打通电话。炒作半个多世纪的纳什均衡,什么非合作博弈策略,什么博弈占有策略,竟然没有一个人能赢,实在是荒唐。】博弈圣经著作人的经典名句;科学家的博弈功能,是让其傻吊与天才同等水平。人们等到纳什车祸身亡、全无博弈取胜的结果,历史证明他就没有所谓的占优策略。“纳什均衡”它会是什么?它像UFO一样诡异、令人百思不解。“纳什均衡”的鬼魅让人想入非非,层出不穷的解释让人匪夷所思。1958年,从《财富》杂志对纳什的炒作,把纳什评为新一代天才数学家中、最出色的人物之后,纳什就迅速赢得了荣耀。他到处讲学、演说,与各国大牌数学家会面,事业如日中天。博弈圣经著作人的经典名句;电影《美丽心灵》用构思、杜撰的艺术形式、编造了纳什戏剧性的一生,“纳什均衡”像西方宗教的“经文”一样,演变成了博弈宗教传奇。诺贝尔经济学奖意外地、砸到纳什头上的那种巧合,给了纳什幸运的一生、羞羞答答的一生、不愿见人的一生、学术欺骗的一生、也是他难堪的一生。博弈圣经著作人的经典名句;纳什均衡是半个世纪前,一个“驴头不对马嘴”的概念,纳什之所以一直沉默,是因为他没法说,他不敢说,他到死都不会说。【来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02,从博弈圣经著作人对纳什的嘲讽,到纳什2015年5月23号出车祸死亡,中间有一年半时间他没有作出回应。】博弈圣经著作人的经典名句;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。博弈圣经著作人的经典名句;几个(因为博弈论)获得诺贝尔经济学奖的得主、管理股票的炒股公司,因亏空、也关门大吉了。瑞典皇家科学院、诺贝尔经济学奖委员会委员,斯塔尔说;纳什均衡是一个博弈取胜的幻想,他自己也不知道怎么均衡、不知道怎么单方占优、不知道怎么取胜。因此,纳什在世期间不会向世人做出博弈如何取胜的解释,所以他一直保持沉默。斯塔尔还说;我们今天既然把纳什均衡带到公众面前,可以断定,未来一定会出现博弈的取胜理论,大家担心纳什均衡可能一败涂地,若干年后将变成一大丑闻。来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02博弈圣经著作人对纳什的嘲讽......。纳什均衡 以讹传讹 是什么玩意儿 博弈论理论 是停滞不前的理论博弈圣经著作人笑谈博弈论,人们在寻找一粒爆香的黄豆时,还不如老鼠能选择最近的路程。《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。博弈圣经著作人对博弈、宗教、伟人,有过美妙的阐述 博弈圣经著作人说;博弈是人与宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有些为我们所不能洞察的东西存在其中,感觉到有一种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现时代伟人。博弈论就是张冠李戴捕风捉影以讹传讹 【典故】讽刺博弈论的最高博弈水平;有人问博弈圣经著作人,什么是博弈论。他回答说;博弈论就是,一问、二答、三无知。也就是说;问者无知、回答者无知、听者更无知。有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,就想赢你一本书钱。博弈圣经著作人通俗的谈菜鸟与金鸟一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然的钻进了金鸟笼。博弈论理论,是停滞不前的理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误的认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,博弈竞争的欲望在远古就出现了。一个人有了欲望,就要有实现欲望的对象和博弈对局的背景,加上自己行为的结果,才能取得想要的东西。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。 《博弈圣经》赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的0、1、2,三维随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。但明眼的人都能看得出,所谓那些自称的博弈专家抄来的无效理论、编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。以往经济学家为了降低风险,建议投资多元化,“不要把鸡蛋放在一个篮子里”,这种分散投资的经济思想,实在是经济学家对博弈取胜的无奈。《博弈圣经》在453节有一段风趣的表述:“我们根本不能完全理解大自然,或许人们不如老鼠在寻找食物时能选择最近的路程,那是大自然的拓扑几何图像的捷径。”看看权威媒体上发表的理论文章,标题或者落款,都是什么什么单位(一个金鸟笼)、某某某人的大名(一个金鸟),即使有一个金鸟笼做背书、做包装,再看他那排列整齐错落有致的垃圾文章,如果只看外观不读内容,真像是一篇好文章,假如读者直接读内容,就会得出结论;文章的段子就是破碎的八卦、文章的内容就是拼凑的垃圾、金鸟笼就是忽悠人、金鸟其实就是一个菜鸟。中国新领导人形容过“笼子政治”的概念,因此中国就是一个笼子政治,金鸟笼里豢养了很多菜鸟,(政治菜鸟、经济菜鸟、学术菜鸟、司法菜鸟、还有博弈论菜鸟等)。他们给中国百姓制造了无数的罪恶,中国百姓很善良,面对东方暴力机器,强权暴力,强权学术,都忍了……。【新领导人说;把权力关进笼子里,就是要把菜鸟的权力关进笼子里……。】......。《博弈圣经》给出的一部分定义博弈圣经著作人说;每一个定义,都是一种逻辑语言,里面一致性的逻辑结构清晰可辨,只是人们以前从没真正看懂过。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》预测的定义;只有对每一个粒子相邻的未来状态、作出“大与小” 或‘多与少"的数字化判定,才称其为预测。《博弈圣经》预言的定义;在一个事件或若干个事件未发生之前的一段时间内、对某一状态的结果,给出命题公理化的语言判定,才称其为预言。《博弈圣经》政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于个体的一个整体结构,称为政治。《博弈圣经》实体政治的定义;一人为粒子、二人为病毒、三人为“私湍”,它们共同组成了、像似实体政治的幻象。(二人为“一株寄生”病毒、三人为团伙“私湍” )《博弈圣经》博弈实体政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于众多个体的平等性质、用文化私湍规矩与实体法则建立的笼子机构,称其为博弈实体政治。《博弈圣经》博弈实体外交的定义;我们在国际外交关系中,平等、互信、包容、合作、共赢的精神,看成博弈实体外交。《博弈圣经》外交的本质定义;外交不是交易、外交不是科学、外交的博弈结果,是徘徊在双方第三空地里的教训。《博弈圣经》经济的定义;经济,就是不断地对0、1、2、三维状态的熵区分。《博弈圣经》经济学的定义;经济学是输赢与均衡在公共空间里的概念。《博弈圣经》经济学家的定义;经济学家就像赌场中一个个旁观输赢的马仔,围绕着博弈实体经济学的理论,凭个人临时的感觉,谈输、谈赢、谈均衡。《博弈圣经》博弈实体经济学的定义;我们把博弈实体分离不变性学说,能容得下宏观经济实体与微观经济性质的语文学通论,看成博弈实体经济学。《博弈圣经》实体经济的定义;我们把飞秒瞬间看到的天、地、人、事、物、情感的抽象概念融合在一起,在没有时间概念的场景中,形成的一个个金融特性的文化私湍,称其为实体经济。《博弈圣经》虚拟经济的定义;犹如看魔术大师让一群狗争夺一块骨头,让众人押注的赌博游戏。《博弈圣经》金融的定义;我们感受到的“金钱宗教”与‘金钱神学",在天、地、人的情感中,用虚无的谎言进行类似于物品概念的买卖与交换,称其为金融。《博弈圣经》金融经济的定义;我们在飞秒瞬间看到的天、地、人之间,人们用情感和虚无的谎言,进行类似于物品概念的买卖、流通、产生利息的货币交换,称其为金融经济。《博弈圣经》金融犯罪的定义;我们把金融单位看成私湍,把私湍的实体与性质看成两重天;金融单位都有共同的理想、共同的欺骗;法定允许欺骗的欺骗、就是金融秩序;法定没允许欺骗的欺骗、就是金融犯罪。《博弈圣经》经济神学的定义;博弈圣经著作人把股民炒股的神秘性,把股评家传教炒股的童话、人话、鬼话、神话,称其为荒唐的经济神学。《博弈圣经》发明家的定义;发明家就是意见的推翻者、行为的摧残者。《博弈圣经》哲学的定义;我们把文化中,借助国正论的语文学反映,定义为哲学。《博弈圣经》科学的定义;文明的永恒、普适、唯一性,就是科学。《博弈圣经》精神的定义;我们把主体的瘾魂,用气质、自由合成的唯一个性,看成精神。《博弈圣经》科学精神的定义:用盲从在道德与博弈混合的概念里,执着于终极正理的唯一理性,看成是科学精神。《博弈圣经》禅的定义;禅是第三空间里飘荡的一个“神化迈迈”。《博弈圣经》文明的定义;文化进程里恩怨游戏的终结就是文明。《博弈圣经》工作的定义;唯独用这一物改变成那一物的创作形式,才称其为工作,才能预知结果。《博弈圣经》实体社会的定义;文化是政治的灵魂,政治是知识论的母体——博弈实体,它构成了实体社会。《博弈圣经》文化的定义;我们把脱离大脑的感觉、思维、意识、观念,向主观、理性、真理,一级一级的私湍增量,称为文化。《博弈圣经》内涵的定义:是主体里的瘾魂、气质、个性、精神被我们用情感的概念,创作出来的一切属性之和。《博弈圣经》实体与性质的定义;博弈实体的可分不变性是博弈的性质,凡是与实体能分离的就是性质,凡是与实体同在的就是实体。《博弈圣经》金融企业的定义;实体与性质的理论学说告诉我们,由政府批准(实体特性)的团伙欺骗行为、属于金融企业,由警局找到未被政府批准(个体性质)的金融企业、属于经济咋骗团伙。《博弈圣经》法律的定义:法律是一个实体特性与两个灵性的结合,是实体分离不变性学说。《博弈圣经》司法均赢力的定义;法律加上情感的行为能在两个灵性的精神上产生双赢的感觉,我们把发展双赢的能力,称为——司法均赢力。《博弈圣经》和谐司法精神的定义;实体法则对待当事人可以像股价一样随时间向空间膨胀,让当事人的精神上在司法中找到赢的感觉,这就是——和谐司法精神。《博弈圣经》中国梦的定义;让人民体面的劳动、自由的创造、有尊严的活着、找到赢的感觉,这就是中国梦的标志性内容。《博弈圣经》公正的定义;公正是非自愿与高兴之间的均赢。《博弈圣经》幸福的定义;信任并自由地给予和欲意的收入,定义为幸福。《博弈圣经》感情的定义;感情是依赖,是瘾魂驱动欲望过程中的殷勤创作。 《博弈圣经》爱的定义;我们把文化进程中被瘾魂驱动的欲望抛弃了自我之后,自由给予的真、善、美,定义为爱。《博弈圣经》规律的定义;规律,就是前因后果,是前一个状态和后一个状态之间可复制的恒定关系。《博弈圣经》草根的定义;草根二字,在中共媒体上经常出现,它是中国特色社会主义理论,也是东方暴徒对中国同胞的侮辱性言论。(中共土改,杀了资本家、杀了地、富、反、坏、右,中国已无贵族。也许自己刚刚从草根脱贫,自以为是贵族。西方贵族文化中有一个数字,3代以上……称为贵族)《博弈圣经》智慧的定义;智慧就是文化进程中独创的执行力。《博弈圣经》领导的定义;我们把指向‘私湍"或指向“实体”权威的信息,看成领导。《博弈圣经》政党的定义;在一个司法独立的国家实体里,法定允许团伙冠名、发展、壮大成的帮派,称其为政党。《博弈圣经》经典理论的定义;我们把历史选择的原创性、持久性、震撼性的理论,称之为经典理论。《博弈圣经》战略的定义:战略是,寻找、连续、正理、科学的,文明实体。《博弈圣经》战术的定义:战术是,达成、局部、真理、文明的,文化性质。《博弈圣经》赢的定义;赢,不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》道德的定义;优先预测悲剧后、作出的忍让,是道德。《博弈圣经》博弈的定义;优先预测胜利前、作出的竞争,是博弈。《博弈圣经》博弈论的定义;我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。《博弈圣经》决策的定义:意识,在没有引入空间之前,可以改变自己的状态,一旦被空间包围,就是决策。《博弈圣经》进步的定义;就是你在传承的方向上播撒的欲望,反应在他者的思维中。《博弈圣经》交流的定义;就是共同驱逐自我身中和它者身中之后建立的关系。《博弈圣经》真理的定义;真理是一个观念、在个别情况下、判断中,现时的体验。《博弈圣经》知识的定义;我把识别万物实体与性质的是与不是,定义为知识。《博弈圣经》经验的定义;我们用矛盾论的辩证法进行的逻辑推理,区分出两个同性质——是到是的过程,称其为经验。《博弈圣经》博弈知识论的定义;人们用国正论对实体与性质的区分,统称为博弈知识论。《博弈圣经》博弈的基本原则定义;以人为本对应的唯物主义是一项博弈的基本原则。《博弈圣经》互联网的定义;互联网是博弈实体,是地球上最美的三人之舞,他们是大众、实体、上帝,在博弈的第三空间里一起互动。《博弈圣经》主义的定义;博弈圣经著作人悄悄的披露,主义就是个人主张。《博弈圣经》革命斗争的定义;马克思主张的革命斗争,比动物目光的相互对视、表达的敌意,更加凶残。《博弈圣经》矛盾论哲学的定义;后辈发现“人”是一粒病毒,一粒容易变异成矛盾论的二维病毒,专门寄生在实体、私湍、粒子体上,才能实现矛盾论哲学的扩充,当宿主遇到危机或困难时,矛盾论哲学将每一个人变成一个个复仇的怪物。《博弈圣经》马克思主义的定义;人们把马克思的个人主张看成主题,在博弈的第三空地里,用欲望的集体狂欢,实验主体、主张、主题的意义,这就是马克思主义。《博弈圣经》共产主义的定义;共产主义是马克思,在穷困、绝望时的幻像,为了摆脱清贫,任何一个人都会构造出来一套,掠夺、瓜分、共产的文化主张。《博弈圣经》意识形态的定义;意识形态,像是一段无声流动的电影画面。《博弈圣经》观念的定义;观念近似一张中心思想的相片、独立的存在文化进程中。《博弈圣经》中心思想的定义;我们把感觉、思维、意识、观念,定义为中心思想。……。经济学世界十部经典著作1、亚当斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”实体经济特性与性质自由主义理论,对后人博弈实体经济学的启发,对经济学的贡献堪比牛顿对物理学的贡献。2、曹国正(新加坡)《博弈圣经》。独创了国正论、国正双赢理论和粒子行为论,是新加坡政府认定的一部,影响人类非物质文化的经济学高级学术著作,他的粒子基因的映射均衡和单方占优的博弈取胜理论,引起世界政治、经济、军事、外交、科学,自然哲学和博弈论界的极大关注。3、大卫李嘉图(英国)《政治经济学与赋税原理》(第一卷)。李嘉图是伦敦交易所里成功的投机商人,又能在经济学理论领域做出不朽贡献。本书中他阐明的比较优势理论是现代自由贸易政策的理论基础。4、马克思(德国)《资本论》。马克思的剩余价值理论,人人耳熟能详,就其概述的经济学现象对改变世界的力量之大,入选了最重要的经济学著作。5、瓦尔拉斯(法国)《纯粹经济学要义》。现代经济学的主观价值(效用)论、边际革命、经济学数理化的转向通过本书而系统化,熊彼特曾赞誉此书为,经济学所取得的最高成就。6、费雪(美国)《利息理论》。此书是迄今为止最伟大的关于资本理论的研究,在马克思发现剩余价值的地方,他看见的是放弃当前消费而承担未来的不确定性风险,所获得的报酬。7、凯恩斯(英国)《就业、利息和货币通论》。被称为宏观经济学的奠基者,他最重要的理论认为,理性通过个人性质与性质的自由竞争会自然产生社会理性,就这一理论遭到了质疑和批判,其争议的主要原因,是来自社会的理性遇到国家政治干预时缺失了博弈实体政治的理论。8、马歇尔(英国)《经济学原理》。马歇尔的最主要著作是1890年出版的《经济学原理》一书,被西方经济学界公认为划时代的著作,也是继《国富论》之后最伟大的经济学著作。该书所阐述的经济学说,在西方经济学中一直占据着支配地位。9、萨缪尔逊(美国)《经济学》。把一本教科书选为最重要的经济学著作,也是发行量最大的经济学教科书,他在经济学知识的标准化、体系化方面做出的贡献,比当代任何一个人都多,就其入选最重要的经济学著作。10、布坎南(美国)《同意的计算》。本书开创的“公共选择”理论,使宪政民主制可以用数理工具定量分析和定量运算,人们用他的理论研究政治与经济制度的形成,开辟了全新的路径。来源:美闻网-美国资讯网-美国麻省理工学院 ……。
如何解3*3的博弈矩阵的混合策略纳什均衡?
为什么混合策略((3/7U,4/7M),(3/7L,4/7M))中不包括D和R?你应该还没弄清楚什么是混合策略,这里面是包括D和R的,他正规的书写应该是(3/7U,4/7M,0/7D),(3/7L,4/7M,0/7R)求不出正确的解?表示看不懂你说的是什么意思。题目要求你求出什么解?
如何判断是否存在混合策略纳什均衡以及求这种均衡的方法?
在一个Normal form game里,是一定存在至少一个混合策略纳什均衡的。Normal form game简单地说就是常见的那种可以画出M*N的矩阵的game。 证明如下:定义一个game:n个player,用i来表示;每个人有有限个策略,player i的策略集用表示, 里有个元素;表示player i出第j个策略的概率,, ;定义效用函数, 是一个维simplex,代表了player i所有可能出的混合策略, 是笛卡尔积。这里有一个非常重要的假定: 是concave函数,可以理解成边际效用递减的效用函数。对于player i来说,我们把其他所有player的策略写成 ,所以player i的效用就是 。定义best response,也就是给定别人的策略 ,player i的最优策略: ;所以best response是一个correspondence: 。注意:给定别人的策略,player i的best response可以是一个集合(不止一个best response)。可证 是convex的。 把所有人的best response写成 ,这是一个给定所有人的策略,每个个体都觉得更好的策略组合,我们可以写成 ,这是一个自己到自己的correspondence。同时可证 是一个convex-valued correspondence。是n维欧几里得空间的子集,满足非空、紧(compact)、凸(convex)的性质; 是一个自己到自己的correspondence,满足非空、凸(convex-valued)、closed-graph。根据Kakutani fixed-point theorem, 有一个不动点,即存在满足 ,也就是说在所有人的决策是 的情况下,任意player i都觉得,如果其他人策略不变, 比较简单的game都可以用求出best response correspondence的方法解,这应该包括在你会的两种方法内。但比较复杂的或者决策集是连续的game,一般没有固定解法,很多情况下你找到某个game的纳什均衡就可以发paper了(比如Levitan & Shubik, 1972)。
混合策略纳什均衡的原理
博弈圣经著作人的经典名句;博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。来源:美国资讯网;博弈圣经著作人对纳什的嘲讽博弈圣经著作人的经典名句;0、1、二维平均,称平衡,0、1、2、三维平均,称均衡。在0、1、二维记录的系统中,有一个冯·诺依曼极小极大定理,0、1、二维系统就不存在平均律,就是不存在均衡,纳什均衡当时就遭到冯·诺依曼的贬低、嘲笑和断然否定。谈到“纳什均衡”,有位记者请纳什用通俗的语言来解释他的理论。纳什说;“‘纳什均衡"并不高深,它就像中国人发明的一种、三个人玩的扑克游戏,“纳什均衡”就是一个简单的三人博弈游戏”。中国有那么多人玩扑克,又玩了那么多年,纳什均衡还提醒了中国人半个多世纪,中国人竟没有一个人发现三个人玩的扑克游戏中、还有一个‘均衡占优理论"。人们不禁要问;纳什他自己玩过几次三人扑克游戏?他和谁玩的?他是怎么发现的均衡?均衡理论又是怎么单方占优的?他为什么没有了下文。博弈圣经著作人的经典名句;科学家在纳什均衡理论中、尚未发现博弈占优策略的任何迹象。在纳什的语文学中,就没有出现过一次0、1、2、三维均衡的概念,纳什均衡哪里来。博弈圣经著作人的经典名句;纳什均衡理论没有任何明确的说法,纳什均衡是美国伪造的产物,传到了世界各地,当然也传遍了中国。“纳什均衡”的本质,是对中国人的发现、发明、创造精神的一种羞辱。博弈圣经著作人的经典名句;二维平衡是指生物的竞争行为,三维均衡是指自然的优劣特性。博弈圣经著作人的经典名句;揭开纳什均衡的画皮,露出真相。【如果纳什均衡是以纳什的名字、命名的一个博弈论术语;假如我把纳什名字去掉、只剩下均衡一词、均衡也就是纯净的博弈论术语;倘若所有博弈论的文章中、都把纳什名字去掉只剩下均衡;再读一篇篇博弈论文章、也都是围绕着均衡一词展开的叙述;发现通篇文章逻辑不通、词意变异、不知所云;只要是属于纳什均衡的理论文章、去掉纳什名字之后、纳什的鬼魅就出现了;通篇文章,捕风捉影、张冠李戴、以讹传讹,添油加醋又像是疯言疯语,更不能被常人所理解。】博弈圣经著作人的经典名句;纳什-是纳什,均衡-是均衡。博弈圣经著作人的经典名句;“纳什均衡” 之所以鬼魅,纳什自己不知道什么是纳什均衡,追随他的门外汉,都假装懂得纳什均衡。“纳什均衡”把所有的门徒变成了精神病、变成了不懂装懂;任何人谈到纳什均衡,就像掉进了魔鬼坑,开口就是自问自答、自说自话、反复无常、自己感到莫名其妙时,还会自圆其说。博弈圣经著作人的经典名句;纳什均衡是一份内容不明的谜语,它似乎和任何可理解的逻辑语言都对不上。博弈圣经著作人把“纳什均衡”戏称为“傻吊博弈的图腾”。博弈圣经著作人的经典名句;如果说纳什均衡是一份学术遗产,那就是学术中、独一份的滑稽遗产,他的滑稽级别、足够七星级。纳什均衡是什么,纳什自己不知道,中国的傻吊全都知道……。博弈圣经著作人的经典名句;“纳什均衡成了中国的一个宗教,追随他的门徒;有无知的青年、有无畏的傻吊、还有无耻的教授。”博弈圣经著作人的经典名句;中国的傻吊谈博弈,必谈纳什均衡。博弈圣经著作人的经典名句;中国人醒来吧,应该扪心自问;纳什均衡既然是中国人发明的三人扑克游戏,它的游戏规则是什么?游戏理论又是什么?中国人,从三个人玩的扑克游戏中、也就是从“纳什均衡”中、到底学到了什么?纳什演示“纳什均衡”的数学符号,是用简单的游戏规则、进行毫无意义的重组,也可以说、纳什在被逼无奈时、能拖一天算一天的学术欺骗行为、在纸上进行的符号游戏。博弈圣经著作人的经典名句;【“纳什均衡”一词,像是宗教的“圣言”,追随它的门徒,各自像精神病人一样、在纳什均衡中寻找理由,都想找到合理的理由解释“纳什均衡”,其结果把纳什均衡变成了博弈宗教、纳什变成了教主,门徒解释纳什均衡的疯言疯语,其实就是胡说八道。】博弈圣经著作人的经典名句;如果中国的教授抄袭“纳什均衡”作为标题,捕风捉影、以讹传讹的炒作,是为了编书、售书、挣钱,假如读者想通过“纳什均衡”想占优、想赢钱,就应该先查查纳什50年以来讲过一句“赢钱”吗,他赢过一次吗?因为没有在赌场中验证,他受到了爱因斯坦的冷遇。【纳什既然是个数学家,他就应该把占优策略给出一个数字量化的数学公式、或者是一个数学模板,让所有的人都能成功模仿,也就是说,无论是傻吊或天才操作它,都是一样的赢。科学的有效性,就应该像打电话一样,只要给出一个电话号码,无论是傻吊或天才有序的按下按键,都是一样的打通电话。博弈圣经著作人的经典名句;科学家的博弈功能,是让其傻吊与天才同等水平。人们等到纳什车祸身亡、全无博弈取胜的结果,历史证明他就没有所谓的占优策略。“纳什均衡”它会是什么?它像UFO一样诡异、令人百思不解。“纳什均衡”的鬼魅让人想入非非,层出不穷的解释让人匪夷所思。美国学术传媒疯狂炒作,把纳什说成天才,吹捧了半个多世纪的纳什均衡、什么非合作博弈策略、什么博弈占有策略,全世界经过半个多世纪的寻找、验证、竟然没有一个人找到赢的策略,纳什天才的纳什均衡,荒唐的理论属性、确定了它是学术界丑闻的特征,“纳什均衡”一定会沦为、世界的一大笑柄。1958年,从《财富》杂志对纳什的炒作,把纳什评为新一代天才数学家中、最出色的人物之后,纳什就迅速赢得了荣耀。他到处讲学、演说,与各国大牌数学家会面,事业如日中天。博弈圣经著作人的经典名句;电影《美丽心灵》用构思、杜撰的艺术形式、编造了纳什戏剧性的一生,“纳什均衡”像西方宗教的“经文”一样,演变成了博弈宗教传奇。诺贝尔经济学奖意外地、砸到纳什头上的那种巧合,给了纳什幸运的一生、羞羞答答的一生、不愿见人的一生、学术欺骗的一生、也是他难堪的一生。博弈圣经著作人的经典名句;纳什均衡是半个世纪前,一个“驴头不对马嘴”的概念,纳什之所以一直沉默,是因为他没法说,他不敢说,他到死都不会说。【来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02,从博弈圣经著作人对纳什的嘲讽,到纳什2015年5月23号出车祸死亡,中间有一年半时间他没有作出回应。】博弈圣经著作人的经典名句;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。博弈圣经著作人的经典名句;几个(因为博弈论)获得诺贝尔经济学奖的得主、管理股票的炒股公司,因亏空、也关门大吉了。瑞典皇家科学院、诺贝尔经济学奖委员会委员,斯塔尔说;纳什均衡是一个博弈取胜的幻想,他自己也不知道怎么均衡、不知道怎么单方占优、不知道怎么取胜。因此,纳什在世期间不会向世人做出博弈如何取胜的解释,所以他一直保持沉默。斯塔尔还说;我们今天既然把纳什均衡带到公众面前,可以断定,未来一定会出现博弈的取胜理论,大家担心纳什均衡可能一败涂地,若干年后将变成一大丑闻。来源:美国资讯网;麻省理工福布斯纳什-著名大学名人-正文-时间:2013-12-02博弈圣经著作人对纳什的嘲讽......。纳什均衡 以讹传讹 是什么玩意儿 博弈论理论 是停滞不前的理论博弈圣经著作人笑谈博弈论,人们在寻找一粒爆香的黄豆时,还不如老鼠能选择最近的路程。《博弈圣经》中《人类未知的蓝色档案》一文给出了博弈论的定义:“我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。”博弈圣经著作人说;博弈论是青年人的毒品,是无知者的兴奋剂,是沉默者的摇头丸。博弈圣经著作人对博弈、宗教、伟人,有过美妙的阐述 博弈圣经著作人说;博弈是人与宇宙的宗教。博弈的使命是探索自然界里和思维世界里,所显示出来的崇高、庄严、不可思议的秩序。人们对宇宙,实体、知识、未知的神秘,以及对个体,性质、经验、已知的恐惧——产生了宗教。人们认识到,有些为我们所不能洞察的东西存在其中,感觉到有一种最原始的形式、最深奥的理性、最灿烂的壮美、所产生的博弈情感,构成了真正的宗教感情。没有宗教、没有信仰、没有博弈感情,就不会出现时代伟人。博弈论就是张冠李戴捕风捉影以讹传讹 【典故】讽刺博弈论的最高博弈水平;有人问博弈圣经著作人,什么是博弈论。他回答说;博弈论就是,一问、二答、三无知。也就是说;问者无知、回答者无知、听者更无知。有人追问,到目前为止,那么多博弈论图书,那么多作者,他们的最高博弈水平是什么?博弈圣经著作人一听就笑了;目前他们的最高博弈水平,就是想卖给你一本书,就想赢你一本书钱。博弈圣经著作人通俗的谈菜鸟与金鸟一个人想变得伟大,从一个菜鸟变成一个金鸟,就要利用国家实体特性造个金鸟笼。日后,就可以在媒体的报道中、绘声绘色地描述那个金鸟笼;他是某某大学院校、某某著名教授、某某首席科学家、某某诺贝尔奖得主、甚至某某政府官员,他就自然的钻进了金鸟笼。博弈论理论,是停滞不前的理论,它是太过于急躁、太过于草率的理论。由于博弈论新奇、古怪、原始,一个“囚徒困境”的三维谜团像似神话,人们又错误的认为博弈论能够取胜,因此受到了人们盲目的吹捧和疯狂的参与。人们把博弈取胜的欲望作为动力,博弈竞争的欲望在远古就出现了。一个人有了欲望,就要有实现欲望的对象和博弈对局的背景,加上自己行为的结果,才能取得想要的东西。欲望的天性就是进行交往,建立行为二特性对局,就是博弈的合作。 《博弈圣经》赢的定义;赢不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的0、1、2,三维随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。赢也不是福,输也不是罪,输赢与均衡属于第三空地论的内容。但明眼的人都能看得出,所谓那些自称的博弈专家抄来的无效理论、编成的一本本博弈论,就是张冠李戴、捕风捉影、“以讹传讹”,不管他从外国哪个地方抄来的,不管他抄了多少、编了多少本书、多少篇文章,究其低劣的学术品质,他仍然是一个菜鸟。假如博弈论大师,走出那个金鸟笼,再靠讲课赚大钱,靠卖书赚小钱,靠博弈取胜策略赚不到一毛钱,他就是骗子,也许是一个罪犯。更为讽刺的是,一本本博弈论著作,古老的内容千篇一律,里面没有几句精彩的话,没有几个经典的词,更没有定理、定律、定义和法则。至今一个个博弈论专家、矛盾论专家、概率论专家和外行知道得一样多。以往经济学家为了降低风险,建议投资多元化,“不要把鸡蛋放在一个篮子里”,这种分散投资的经济思想,实在是经济学家对博弈取胜的无奈。《博弈圣经》在453节有一段风趣的表述:“我们根本不能完全理解大自然,或许人们不如老鼠在寻找食物时能选择最近的路程,那是大自然的拓扑几何图像的捷径。”看看权威媒体上发表的理论文章,标题或者落款,都是什么什么单位(一个金鸟笼)、某某某人的大名(一个金鸟),即使有一个金鸟笼做背书、做包装,再看他那排列整齐错落有致的垃圾文章,如果只看外观不读内容,真像是一篇好文章,假如读者直接读内容,就会得出结论;文章的段子就是破碎的八卦、文章的内容就是拼凑的垃圾、金鸟笼就是忽悠人、金鸟其实就是一个菜鸟。中国新领导人形容过“笼子政治”的概念,因此中国就是一个笼子政治,金鸟笼里豢养了很多菜鸟,(政治菜鸟、经济菜鸟、学术菜鸟、司法菜鸟、还有博弈论菜鸟等)。他们给中国百姓制造了无数的罪恶,中国百姓很善良,面对东方暴力机器,强权暴力,强权学术,都忍了……。【新领导人说;把权力关进笼子里,就是要把菜鸟的权力关进笼子里……。】......。《博弈圣经》给出的一部分定义博弈圣经著作人说;每一个定义,都是一种逻辑语言,里面一致性的逻辑结构清晰可辨,只是人们以前从没真正看懂过。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》预测的定义;只有对每一个粒子相邻的未来状态、作出“大与小” 或‘多与少"的数字化判定,才称其为预测。《博弈圣经》预言的定义;在一个事件或若干个事件未发生之前的一段时间内、对某一状态的结果,给出命题公理化的语言判定,才称其为预言。《博弈圣经》政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于个体的一个整体结构,称为政治。《博弈圣经》实体政治的定义;一人为粒子、二人为病毒、三人为“私湍”,它们共同组成了、像似实体政治的幻象。(二人为“一株寄生”病毒、三人为团伙“私湍” )《博弈圣经》博弈实体政治的定义:我们把统治者模仿大自然博弈实体的秩序,外在于众多个体的平等性质、用文化私湍规矩与实体法则建立的笼子机构,称其为博弈实体政治。《博弈圣经》博弈实体外交的定义;我们在国际外交关系中,平等、互信、包容、合作、共赢的精神,看成博弈实体外交。《博弈圣经》外交的本质定义;外交不是交易、外交不是科学、外交的博弈结果,是徘徊在双方第三空地里的教训。《博弈圣经》经济的定义;经济,就是不断地对0、1、2、三维状态的熵区分。《博弈圣经》经济学的定义;经济学是输赢与均衡在公共空间里的概念。《博弈圣经》经济学家的定义;经济学家就像赌场中一个个旁观输赢的马仔,围绕着博弈实体经济学的理论,凭个人临时的感觉,谈输、谈赢、谈均衡。《博弈圣经》博弈实体经济学的定义;我们把博弈实体分离不变性学说,能容得下宏观经济实体与微观经济性质的语文学通论,看成博弈实体经济学。《博弈圣经》实体经济的定义;我们把飞秒瞬间看到的天、地、人、事、物、情感的抽象概念融合在一起,在没有时间概念的场景中,形成的一个个金融特性的文化私湍,称其为实体经济。《博弈圣经》虚拟经济的定义;犹如看魔术大师让一群狗争夺一块骨头,让众人押注的赌博游戏。《博弈圣经》金融的定义;我们感受到的“金钱宗教”与‘金钱神学",在天、地、人的情感中,用虚无的谎言进行类似于物品概念的买卖与交换,称其为金融。《博弈圣经》金融经济的定义;我们在飞秒瞬间看到的天、地、人之间,人们用情感和虚无的谎言,进行类似于物品概念的买卖、流通、产生利息的货币交换,称其为金融经济。《博弈圣经》金融犯罪的定义;我们把金融单位看成私湍,把私湍的实体与性质看成两重天;金融单位都有共同的理想、共同的欺骗;法定允许欺骗的欺骗、就是金融秩序;法定没允许欺骗的欺骗、就是金融犯罪。《博弈圣经》经济神学的定义;博弈圣经著作人把股民炒股的神秘性,把股评家传教炒股的童话、人话、鬼话、神话,称其为荒唐的经济神学。《博弈圣经》发明家的定义;发明家就是意见的推翻者、行为的摧残者。《博弈圣经》哲学的定义;我们把文化中,借助国正论的语文学反映,定义为哲学。《博弈圣经》科学的定义;文明的永恒、普适、唯一性,就是科学。《博弈圣经》精神的定义;我们把主体的瘾魂,用气质、自由合成的唯一个性,看成精神。《博弈圣经》科学精神的定义:用盲从在道德与博弈混合的概念里,执着于终极正理的唯一理性,看成是科学精神。《博弈圣经》禅的定义;禅是第三空间里飘荡的一个“神化迈迈”。《博弈圣经》文明的定义;文化进程里恩怨游戏的终结就是文明。《博弈圣经》工作的定义;唯独用这一物改变成那一物的创作形式,才称其为工作,才能预知结果。《博弈圣经》实体社会的定义;文化是政治的灵魂,政治是知识论的母体——博弈实体,它构成了实体社会。《博弈圣经》文化的定义;我们把脱离大脑的感觉、思维、意识、观念,向主观、理性、真理,一级一级的私湍增量,称为文化。《博弈圣经》内涵的定义:是主体里的瘾魂、气质、个性、精神被我们用情感的概念,创作出来的一切属性之和。《博弈圣经》实体与性质的定义;博弈实体的可分不变性是博弈的性质,凡是与实体能分离的就是性质,凡是与实体同在的就是实体。《博弈圣经》金融企业的定义;实体与性质的理论学说告诉我们,由政府批准(实体特性)的团伙欺骗行为、属于金融企业,由警局找到未被政府批准(个体性质)的金融企业、属于经济咋骗团伙。《博弈圣经》法律的定义:法律是一个实体特性与两个灵性的结合,是实体分离不变性学说。《博弈圣经》司法均赢力的定义;法律加上情感的行为能在两个灵性的精神上产生双赢的感觉,我们把发展双赢的能力,称为——司法均赢力。《博弈圣经》和谐司法精神的定义;实体法则对待当事人可以像股价一样随时间向空间膨胀,让当事人的精神上在司法中找到赢的感觉,这就是——和谐司法精神。《博弈圣经》中国梦的定义;让人民体面的劳动、自由的创造、有尊严的活着、找到赢的感觉,这就是中国梦的标志性内容。《博弈圣经》公正的定义;公正是非自愿与高兴之间的均赢。《博弈圣经》幸福的定义;信任并自由地给予和欲意的收入,定义为幸福。《博弈圣经》感情的定义;感情是依赖,是瘾魂驱动欲望过程中的殷勤创作。 《博弈圣经》爱的定义;我们把文化进程中被瘾魂驱动的欲望抛弃了自我之后,自由给予的真、善、美,定义为爱。《博弈圣经》规律的定义;规律,就是前因后果,是前一个状态和后一个状态之间可复制的恒定关系。《博弈圣经》草根的定义;草根二字,在中共媒体上经常出现,它是中国特色社会主义理论,也是东方暴徒对中国同胞的侮辱性言论。(中共土改,杀了资本家、杀了地、富、反、坏、右,中国已无贵族。也许自己刚刚从草根脱贫,自以为是贵族。西方贵族文化中有一个数字,3代以上……称为贵族)《博弈圣经》智慧的定义;智慧就是文化进程中独创的执行力。《博弈圣经》领导的定义;我们把指向‘私湍"或指向“实体”权威的信息,看成领导。《博弈圣经》政党的定义;在一个司法独立的国家实体里,法定允许团伙冠名、发展、壮大成的帮派,称其为政党。《博弈圣经》经典理论的定义;我们把历史选择的原创性、持久性、震撼性的理论,称之为经典理论。《博弈圣经》战略的定义:战略是,寻找、连续、正理、科学的,文明实体。《博弈圣经》战术的定义:战术是,达成、局部、真理、文明的,文化性质。《博弈圣经》赢的定义;赢,不是大小、不是多少、不是均衡平衡、不是战略战术,而是在未来国正论的随机状态中,一粒期望的粒子(常数0.007813,也是私湍边际效应)优先达成。《博弈圣经》纳什均衡的定义;纳什均衡,是黑暗中的教唆、无知中的误判、猎奇中的杂耍。《博弈圣经》道德的定义;优先预测悲剧后、作出的忍让,是道德。《博弈圣经》博弈的定义;优先预测胜利前、作出的竞争,是博弈。《博弈圣经》博弈论的定义;我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。《博弈圣经》决策的定义:意识,在没有引入空间之前,可以改变自己的状态,一旦被空间包围,就是决策。《博弈圣经》进步的定义;就是你在传承的方向上播撒的欲望,反应在他者的思维中。《博弈圣经》交流的定义;就是共同驱逐自我身中和它者身中之后建立的关系。《博弈圣经》真理的定义;真理是一个观念、在个别情况下、判断中,现时的体验。《博弈圣经》知识的定义;我把识别万物实体与性质的是与不是,定义为知识。《博弈圣经》经验的定义;我们用矛盾论的辩证法进行的逻辑推理,区分出两个同性质——是到是的过程,称其为经验。《博弈圣经》博弈知识论的定义;人们用国正论对实体与性质的区分,统称为博弈知识论。《博弈圣经》博弈的基本原则定义;以人为本对应的唯物主义是一项博弈的基本原则。《博弈圣经》互联网的定义;互联网是博弈实体,是地球上最美的三人之舞,他们是大众、实体、上帝,在博弈的第三空间里一起互动。《博弈圣经》主义的定义;博弈圣经著作人悄悄的披露,主义就是个人主张。《博弈圣经》革命斗争的定义;马克思主张的革命斗争,比动物目光的相互对视、表达的敌意,更加凶残。《博弈圣经》矛盾论哲学的定义;后辈发现“人”是一粒病毒,一粒容易变异成矛盾论的二维病毒,专门寄生在实体、私湍、粒子体上,才能实现矛盾论哲学的扩充,当宿主遇到危机或困难时,矛盾论哲学将每一个人变成一个个复仇的怪物。《博弈圣经》马克思主义的定义;人们把马克思的个人主张看成主题,在博弈的第三空地里,用欲望的集体狂欢,实验主体、主张、主题的意义,这就是马克思主义。《博弈圣经》共产主义的定义;共产主义是马克思,在穷困、绝望时的幻像,为了摆脱清贫,任何一个人都会构造出来一套,掠夺、瓜分、共产的文化主张。《博弈圣经》意识形态的定义;意识形态,像是一段无声流动的电影画面。《博弈圣经》观念的定义;观念近似一张中心思想的相片、独立的存在文化进程中。《博弈圣经》中心思想的定义;我们把感觉、思维、意识、观念,定义为中心思想。……。经济学世界十部经典著作1、亚当斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”实体经济特性与性质自由主义理论,对后人博弈实体经济学的启发,对经济学的贡献堪比牛顿对物理学的贡献。2、曹国正(新加坡)《博弈圣经》。独创了国正论、国正双赢理论和粒子行为论,是新加坡政府认定的一部,影响人类非物质文化的经济学高级学术著作,他的粒子基因的映射均衡和单方占优的博弈取胜理论,引起世界政治、经济、军事、外交、科学,自然哲学和博弈论界的极大关注。3、大卫李嘉图(英国)《政治经济学与赋税原理》(第一卷)。李嘉图是伦敦交易所里成功的投机商人,又能在经济学理论领域做出不朽贡献。本书中他阐明的比较优势理论是现代自由贸易政策的理论基础。4、马克思(德国)《资本论》。马克思的剩余价值理论,人人耳熟能详,就其概述的经济学现象对改变世界的力量之大,入选了最重要的经济学著作。5、瓦尔拉斯(法国)《纯粹经济学要义》。现代经济学的主观价值(效用)论、边际革命、经济学数理化的转向通过本书而系统化,熊彼特曾赞誉此书为,经济学所取得的最高成就。6、费雪(美国)《利息理论》。此书是迄今为止最伟大的关于资本理论的研究,在马克思发现剩余价值的地方,他看见的是放弃当前消费而承担未来的不确定性风险,所获得的报酬。7、凯恩斯(英国)《就业、利息和货币通论》。被称为宏观经济学的奠基者,他最重要的理论认为,理性通过个人性质与性质的自由竞争会自然产生社会理性,就这一理论遭到了质疑和批判,其争议的主要原因,是来自社会的理性遇到国家政治干预时缺失了博弈实体政治的理论。8、马歇尔(英国)《经济学原理》。马歇尔的最主要著作是1890年出版的《经济学原理》一书,被西方经济学界公认为划时代的著作,也是继《国富论》之后最伟大的经济学著作。该书所阐述的经济学说,在西方经济学中一直占据着支配地位。9、萨缪尔逊(美国)《经济学》。把一本教科书选为最重要的经济学著作,也是发行量最大的经济学教科书,他在经济学知识的标准化、体系化方面做出的贡献,比当代任何一个人都多,就其入选最重要的经济学著作。10、布坎南(美国)《同意的计算》。本书开创的“公共选择”理论,使宪政民主制可以用数理工具定量分析和定量运算,人们用他的理论研究政治与经济制度的形成,开辟了全新的路径。来源:美闻网-美国资讯网-美国麻省理工学院 ……。
为什么混合策略纳什均衡一定存在?
纳什均衡是指这样一种均衡:在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。”也就是说,所有人的战略都是最优的。而讲解“纳什均衡”的最著名的案例就是“囚徒的困境”。a,b两个囚徒,a坦白b抵赖,b判10年,a判1年.若两人均坦白则各判5年,若两人均抵赖则都判2年。a,b面临抉择。显然最好的策略是双方都抵赖,结果是大家都只被判2年。但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐1年,而他会坐10年牢,也是招了划算。综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。两个人都会动这样的脑筋,最终,两个人都选择了招,结果都被判5年刑期。原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。这就是著名的“囚徒困境”。它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。
细说纳什均衡?
约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的 最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。 纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。 编辑本段标准定义 纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博弈方策略的组合(s1*,…s*i-1,s*i+1,…,sn*)的最佳对策,也即ui(s1*,…s*i-1, si*,s*i+1,…,sn*)≥ui(s1*,…s*i-1, sij*,s*i+1,…,sn*)对任意sij∈Si都成立,则称(s1*,…,sn*)为G的一个纳什均衡。 纳什均衡经典案例:囚徒困境 1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。 假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。 囚徒困境博弈 A╲B坦白抵赖坦白-8,-80,-10抵赖-10,0-1,-1 关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,我抵赖,得坐10年监狱,坦白最多才8年;他要是抵赖,我就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
博弈论问题。3*3混合战略纳什均衡
求混合策略纳什均衡,最通用的办法是假定概率参数,写出预期payoff,然后用库恩塔克条件求导。这个题第一问问你可理性化了,你的纯策略和混合策略均衡肯定是里面的子集。排除c。变成3*2矩阵。求导。光看P1是看不出来的。只有给定P2是(0.5,0.5,0)的时候才能排除C。
为什么混合策略纳什均衡一定存在?
纳什均衡是指这样一种均衡:在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。”也就是说,所有人的战略都是最优的。而讲解“纳什均衡”的最著名的案例就是“囚徒的困境”。 a,b两个囚徒,a坦白b抵赖,b判10年,a判1年.若两人均坦白则各判5年,若两人均抵赖则都判2年。a,b面临抉择。 显然最好的策略是双方都抵赖,结果是大家都只被判2年。但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐1年,而他会坐10年牢,也是招了划算。综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。两个人都会动这样的脑筋,最终,两个人都选择了招,结果都被判5年刑期。 原本对双方都有利的策略(抵赖)和结局 (被判1年刑)就不会出现。这就是著名的“囚徒困境”。它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。
为什么一个博弈有多个纳什均衡但最终结果只有一个
您好 你问题貌似有点儿小错误 其实多个纳什平衡是叫做弱纳什平衡 但是还是可以通过混合纳什平衡来得出一个混合战略纳什平衡也就是说 一个博弈中 混合战略纳什平衡肯定存在 而纯纳什平衡不一定存在 你的意思是 有多个纯纳什平衡下为什么还会有一个吧 这个就是 Wilson 在1971年证明的 纳什均衡的奇数定理也就是 在一般情况下 如果一个博弈有两个纯战略纳什均衡 则一定存在第三个混合战略纳什均衡 May this answer help
一道博弈论纳什均衡的题目,在线等
1)如果(上,左)是上策均衡,那么a>e,b>d,c>g,f>h(2)如果(上,左)是上策均衡,上述哪几个不等式必须满足?a>e ,b>d上策均衡:不管你选择什么策略,我选择的是最好的; 不管我选择什么策略,你选择的是最好的;纳什均衡:给定你的策略,我所选择的是最好的; 给定我的策略,你选择的是最好的。
多次的囚徒困境有没有纳什均衡?为什么说混合策略一定存在纳什均衡
你这条提问包含5问。其中有的提问大前提就不对。 多次的囚徒困境,和单次发生的囚徒困境,结果是不会一样。 多次的囚徒困境,存在纳什均衡。 纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。纳什均衡是一种策略组合,使得每个参与人的策略是对其他参与人策略的最优反应。 在完全信息博弈中,如果在每个给定信息下,只能选择一种特定策略,这个策略为纯策略(pure strategy)。如果在每个给定信息下只以某种概率选择不同策略,称为混合策略(mixed strategy)。 在重复的囚徒困境中,博弈被反复地进行。因而每个参与者都有机会去"惩罚"另一个参与者前一回合的不合作行为。这时,合作可能会作为均衡的结果出现。欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。作为反复接近无限的数量,纳什均衡趋向于帕累托最优。
求解 博弈论 找出纳什均衡
大哥啊,96怎么会是psne?为什么不是我就不说了,大哥自己想想吧,我就说说ieds吧1、对于2,m显然劣于r2、对于1,显然md劣于u3、对于2,r劣于l三次ieds后只剩下ul(4,3)了,哪里有什么混合策略?
混合策略纳什均衡的原理
严格占优策略均衡、重复剔除的占优策略均衡、纯策略纳什均衡和混合策略纳什均衡。一般将上述四种均衡统称为纳什均衡。在这四种均衡概念中每种均衡依次是前一种均衡的扩展。前一种均衡是后一种均衡的特例。严格占优策略均衡是重复剔除的占优策略均衡的特例;重复剔除的占优策略均衡是纯策略纳什均衡的特例;纯策略纳什均衡是混合策略纳什均衡的特例。如果将完全信息静态博弈中存在某种均衡的所有博弈定义为一个集合,那么就存在前一种均衡的博弈集合是后一种均衡的博弈集合的子集。完全信息静态博弈四种均衡概念之间的关系可以用图2—13表示。
所有博弈都存在纳什均衡吗? 包括混合策略~请大概解释下原因~
不是所有博弈都存在纳什均衡 如纯策略就不存在 混合策略则一定会存在纳什均衡 它是通过概率来计算纳什均衡 在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率.
零和博弈可能有纳什均衡吗
零和博弈可能有纳什均衡。在零和游戏中所有的参与者其获利与亏损正好等于零。赢家的利润来自于输家的亏损。以下有一些重要的观念是你在了解该交易是否为零和游戏所必须先知道的。这个分类决定于我们对玩家利润与亏损的定义有多宽广。它本身的分类对我们并不重要,但是对发起人就很重要了。纳什平衡理论奠定了现代主流博弈理论和经济理论的根本基础,在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中。扩展资料:纳什均衡出现情况:所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科—零和博弈百度百科—纳什均衡
纳什均衡理论具体讲些什么?
有两类详细入小:1、纯战略——即参与之中的所有玩家都玩纯战略提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。2、混合战略——至少有一位玩家玩混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。扩展资料纳什均衡理论创始人介绍约翰·纳什,1928年6月13日—2015年5月23日,提出纳什均衡的概念和均衡存在定理,是著名经济学家。正当纳什本人处于梦境一般的精神状态时,他的名字开始出现在70年代和80年代的经济学课本、进化生物学论文、政治学专著和数学期刊的各领域中。他的名字已经成为经济学或数学的一个名词,如“纳什均衡”、“纳什谈判解”、“纳什程序”、“德乔治-纳什结果”、“纳什嵌入”和“纳什破裂”等。纳什没有因为获得了诺贝尔奖就放弃他的研究,在诺贝尔奖得主自传中,他写道:从统计学看来,没有任何一个已经66岁的数学家或科学家能通过持续的研究工作,在他或她以前的成就基础上更进一步。但是,我仍然继续努力尝试。参考资料来源:百度百科——纳什均衡理论
现代管理专题的分析题 问题: (1)这两个企业有没有占优战略? (2)该博弈有没有纳什均衡? (3
(1)两企业都没有占有策略;(2)两个纯策略纳什均衡(高档,中档)和(中档,高档),一个混合策略纳什均衡((2/3,1/3),(2/3,1/3))。(3)此时的纳什均衡是(中档,高档)由于在网上没法写game tree之类的东西,只能直接给出结果,希望能有所帮助。
结果中有几个纳什均衡点,哪一个均衡点是实际行为最为可能的结果? 为什么?
有三个纳什均衡,第一和第三个是混合策略,第二个是纯策略,即(2,3)组合策略;纯策略是实际可能结果,是稳定的必然事件,而混合策略要求重复博弈的随机事件。
所有博弈都存在纳什均衡吗? 包括混合策略~请大概解释下原因~
不是所有博弈都存在纳什均衡 如纯策略就不存在 混合策略则一定会存在纳什均衡 它是通过概率来计算纳什均衡 在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率.
纳什均衡的形成
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
纳什均衡的经典案例
(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。)假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。 囚徒困境博弈A╲B 坦白 抵赖 坦白 -8,-8 0,-10 抵赖 -10,0 -1,-1 关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,如果我抵赖,得坐10年监狱,如果我坦白最多才8年;假如他要是抵赖,如果我也抵赖,我就会被判一年,如果我坦白就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判处一年就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。 你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,而在这个游戏中,便应该采用混合策略纳什均衡。 你美女 美女出正面 美女出反面 你出正面 +3,-3 -2,+2 你出反面 -2,+2 +1,-1 假设我们出正面的概率是x,反面的概率是1-x,美女出正面的概率是y,反面的概率是1-y。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等(不然对方可以改变正反面出现的概率让我们的总收入减少),由此列出方程就是3x + (-2)*(1-x)=(-2) * x + 1*( 1-x )解方程得x=3/8。同样,美女的收益,列方程-3y + 2( 1-y)= 2y+ (-1) * ( 1-y)解得y也等于3/8,而美女每次的期望收益则是 2(1-y)- 3y = 1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是 (3+3+3-2-2-2-2-2)/8=-1/8元;如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。
请高手帮我解决以下两个题目的纳什均衡. 谢
以第一个博弈为例设选择L的概率为p,那么选择R的概率就是1-p设选择T的概率为q1,选择M的概率为q2,那么选择B的概率为1-q1-q2那么博弈双方的期望收益分别为Eu1=Eu2=p*(10*q1+4*(1-q1-q2))+(1-p)*(10*q2+4*(1-q1-q2))=10*p*q1+10*(1-p)*q2+4*(1-q1-q2)分别求偏导可得dEu1/dp=10*(q1-q2)dEu2/dq1=10*p-4dEu2/dq2=10*(1-p)-4=6-10*p从以上三个式子可以得到的结论是:一,当q1=q2时,p*任意;当q1>q2时,p*=1;当q1<q2时,p*=0二,当p>0.4时,q1*=1;当p<0.4时,q1*=0;当p=0.4时,q1*任意三,当p>0.6时,q2*=0;当p<0.6时,q2*=1;当q=0.6时,q2*任意所以可以看出,这个博弈的混合策略纳什均衡解是(1,0;1,0,0),(0,1;0,1,0)分别对应纯策略纳什均衡(L,T),(R,M)思路应该是这样的,你再演算下,看看有没有算错另外,博弈论只是我的一门选修,我当时只学了两个 博弈者各有两种选择的博弈的混合策略纳什均衡,上面这种方法是我自己想出来的我不知道是不是有更简单的方法(推理不算)
怎样用划线法求纳什均衡?
依据策略之间的相对优劣关系,分别寻找行和列的最优解:固定其中一个量,在另一个量收益大的下面划线;然后固定另一个量,对另外一个量收益大的划线。两者都有线的就是纯策略纳什均衡。纳什均衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。纳什证明了在每个参与者都只有有限种策略选择并允许混合策略的前提下,纳什均衡定存在。以两家公司的价格大战为例,价格大战存在着两败俱伤的可能,在对方不改变价格的条件下既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案。相互作用的经济主体假定其他主体所选择的战略为既定时,选择自己的最优战略的状态,也就是纳什均衡。假设有n个局中人参与博弈,如果某情况下无一参与者可以独自行动而增加收益(即为了自身利益的最大化,没有任何单独的一方愿意改变其策略的),则此策略组合被称为纳什均衡。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,需要注意的是,最优策略不一定达成纳什均衡,严格劣势策略不可能成为最佳对策,而弱优势和弱劣势策略是有可能达成纳什均衡的。在一个博弈中可能有一个以上的纳什均衡,而囚徒困境中有且只有一个纳什均衡。
纳什均衡的求解方法
纳什均衡的求解方法如下:纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。
纳什均衡通俗解释
纳什平衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。 在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什平衡。 一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。 纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。 要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。
纳什均衡点怎么找
(1)如果是完全信息博弈 张三认为李四:左,中,右的策略概率设为p1,p2,1-p1-p2 张三上策略的期望收益为E1=12*p1+42*p2+42*(1-p1-p2) 同理 中:E2=24*p1+12*p2+60*(1-p1-p2) 下:E3=72*p1+36*p2+42*(1-p1-p2) 如果是完全信息博弈,则较优策略为三者相同,即E1=E2=E3 可解得p1=0.0370 p2=0.3700 1-p1-p2=0.5930 同理李四认为张三:上中下的策略概率为q1 q2 (1-q1-q2) 李四的左策略的期望收益为T1=83*q1+12*q2+47*(1-q1-q2) 中策略收益为T2=56*q1+42*q2+95*(1-q1-q2) 右策略的收益为T3=45*q1+76*q2+59*(1-q1-q2) 同理解得q1=0.6276 q2=0.0140 (1-q1-q2)=0.3584 综上所述 在完全信息博弈的情况下张三的混合策略的策略概率为上0.6276 中0.0140 下0.3584 李四的混合策略的策略概率为左0.0370 中0.3700 右0.5930 其中张三的期望收益为40.8900 李四的期望收益为50.4516 (2)如果是不完全信息无限重复博弈,开始时双方都是以0.333的自然混合概率预测,根据两者的信息背叛不同,回归结果也可不同,此题条件不足.但结果是会是纯策略,博弈次数则无法确定 作业2:纯策略纳什均衡的收益为(60,76)混合策略纳什均衡的收益为(40.8900,50.4516) 实际中应该是纯策略占优
纳什均衡通俗解释
纳什平衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。 在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什平衡。 一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。 纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。 要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。
什么情况下会达成纳什均衡?
纳什均衡又称非合作博弈均衡,是博弈论中的一个重要术语,以约翰·纳什的名字命名。在博弈过程中,无论对方的战略选择是什么,一方都会选择一定的战略,这就叫主导战略。如果两个博弈者的战略组合构成各自的主导战略,则该组合被定义为纳什均衡。当每个球员的平衡策略是达到其预期收益的最大值时,一个策略组合被称为纳什均衡,同时,所有其他球员遵循这一策略。扩展资料;纳什均衡可分为两类:纯战略纳什均衡和混合战略纳什均衡。要解释纯策略纳什均衡和混合策略纳什均衡,首先要解释纯策略和混合策略。所谓纯策略,就是为玩家提供一个完整的游戏定义。特别是,纯粹的策略决定了在任何情况下都要进行的运动,策略集合是玩家可以执行的纯策略集合。混合策略是通过给每一个纯策略分配一个概率而形成的策略,混合策略允许玩家随机选择纯策略,在混合策略博弈的均衡中,由于每个策略都是随机的,当达到一定的概率时,就可以得到最优支付。由于概率是连续的,即使策略集是有限的,也会有无限的混合策略。当然,严格地说,每个纯策略都是一个“退化”混合策略,一个特定纯策略的概率为1,另一个为0。因此,“纯战略纳什均衡”是指所有参与者都玩纯战略,而相应的“混合战略纳什均衡”则是指至少有一个参与者玩混合战略。并不是每一个博弈都会有纯战略纳什均衡,比如“硬币问题”只有混合战略纳什均衡,而不是纯战略纳什均衡。然而,仍有许多博弈具有纯战略纳什均衡(如协调博弈、囚徒困境博弈和鹿博弈)。甚至,有些游戏可以同时拥有纯策略和混合策略平衡。参考资料来源;百度百科——纳什平衡
什么是纳什均衡?
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
什么是纳什均衡
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
什么是纳什均衡?
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
什么是纳什均衡
纳什平衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
纳什均衡是什么?
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
博弈论的纳什均衡
纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*) ≤ 偶对(a*,b*) ≥偶对(a*,b)。对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。有了上述定义,就立即得到纳什定理:任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。 纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。 囚徒困境在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoner"s dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果两个犯罪嫌疑人都坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪,各被判刑8年;如果只有一个犯罪嫌疑人坦白,另一个人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵。 囚徒困境博弈 [Prisoner"s dilemma]A╲B 坦白 抵赖 坦白 8,8 0,10 抵赖 10,0 1,1 对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。但是,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡,即纳什均衡。不难看出,此处纳什均衡与帕累托存在冲突。单从数学角度讲,这个理论是合理的,也就是选择都坦白。但在这样多维信息共同作用的社会学领域显然是不合适的。正如中国古代将官员之间的行贿受贿称为“陋规”而不是想方设法清查,这是因为社会体系给人行为的束缚作用迫使人的策发生改变。比如,从心理学角度讲,选择坦白的成本会更大,一方坦白害得另一方加罪,那么事后的报复行为以及从而不会轻易在周围知情人当中的“出卖”角色将会使他损失更多。而8年到10年间的增加比例会被淡化,人的尊严会使人产生复仇情绪,略打破“行规”。我们正处于大数据时代,向更接近事实的处理一件事就要尽可能多地掌握相关资料并合理加权分析,人的活动动影像动因复杂,所以囚徒困境只能作为简化模型参考,具体决策还得具体分析。 智猪博弈 一、经济学中的“智猪博弈”(Pigs"payoffs) 这个例子讲的是:假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是6∶4。那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。智猪博弈由纳什于1950年提出。实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择: 小猪 行动 等待 大猪 行动 5,1 4,4 等待 9,-1 0,0 从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。在智猪博弈中,虽然小猪的“捡现成”的行为从道义上来讲令人不齿,但是博弈策略的主要目的不正是使用谋略最大化自己的利益吗? 美女的硬币 一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”听起来不错的提议。如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗? 绅士/美女 女正面 女反面 正面 3,-3 -2,+2 反面 -2,+2 1,-1 假设我们出正面的概率是x,反面的概率是1-x。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,不然对手总是可以改变正反面出现的概率让我们的总收入减少,由此列出方程就是3x+(-2)*(1-x)=(-2)*x+1*(1-x)这个方程通俗的说就是在对手一直出正面你得到的利益,和你对手一直出反面得到利益是一样的且最大。解方程得x=3/8,也就是说平均每八次出示3次正面,5次反面是我们的最优策略。而将x=3/8代入到收益表达式3*x+(-2)*(1-x)中就可得到每次的期望收入,计算结果是-1/8元。同样,设美女出正面的概率是y,反面的概率是1-y,列方程-3y+2(1-y)=2y+(-1)*(1-y)解得y也等于3/8,而美女每次的期望收益则是2(1-y)-3y=1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是(3+3+3-2-2-2-2-2)/8=-1/8元如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。看起来这个博弈模型似乎没有什么用处,但是其实这可能牵涉了金融市场定价中最重要的一个模型:定价权重模型了。总的来说“博弈论”其本质是将日常生活中的竞争矛盾以游戏的形式表现出来,并使用数学和逻辑学的方法来分析事物的运作规律。既然有游戏的参与者那么也必然存在游戏规则的制定者。深入的了解竞争行为的本质,有助于我们分析和掌握竞争中事物之间的关系,更方便我们对规则进行制定和调整,使其最终按照我们所预期的目的进行运作。
什么是纳什均衡?
纳什均衡也就是纳什平衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。扩展资料:纳什均衡的由来:纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。参考资料来源:百度百科-纳什平衡
怎么求纯策略纳什均衡和混合纳什策略
纯战略纳什均衡最简单的方法是划线法,先固定一个然后另一收益大就在下面划线,再固定另一个收益对另外一个量划线,最后两个都有线的就是纯战略纳什均衡,混合战略纳什均衡要计算,但是一个有限博弈的纯战略纳什均衡和混合战略纳什均衡个数之和一定是奇数,如果你求出的纯战略纳什均衡有偶数个,那么一定有另外一个混合战略纳什均衡。混合策略纳什均衡:在n个参与人的博弈G={S1,...Sn;u1,...un}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
怎么求纯策略纳什均衡和混合纳什策略
纯战略纳什均衡最简单的方法是划线法,先固定一个然后另一收益大就在下面划线,再固定另一个收益对另外一个量划线,最后两个都有线的就是纯战略纳什均衡,混合战略纳什均衡要计算,但是一个有限博弈的纯战略纳什均衡和混合战略纳什均衡个数之和一定是奇数,如果你求出的纯战略纳什均衡有偶数个,那么一定有另外一个混合战略纳什均衡。混合策略纳什均衡:在n个参与人的博弈G={S1,...Sn;u1,...un}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
怎么求纯策略纳什均衡和混合纳什策略?
纯战略纳什均衡最简单的方法是划线法,先固定一个然后另一收益大就在下面划线,再固定另一个收益对另外一个量划线,最后两个都有线的就是纯战略纳什均衡,混合战略纳什均衡要计算,但是一个有限博弈的纯战略纳什均衡和混合战略纳什均衡个数之和一定是奇数,如果你求出的纯战略纳什均衡有偶数个,那么一定有另外一个混合战略纳什均衡。混合策略纳什均衡:在n个参与人的博弈G={S1,...Sn;u1,...un}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
什么是纳什均衡理论?
算来算去算自己。★ 穷尽算计,自私自利,傲慢自我,只能导致自他个体和整体都受害。★ 照见空性,放下自我,用心利他,则会导致自他个体和整体都受益。★ 自他一切生命体,内心都是趋利避害的核心诉求。★ 纳什均衡理论是在说起心动念与命运的因果关系。★ 善恶必报,报通三世。这是真理,不是鸡汤,不是伦理,不是工具,不是阴谋。★ 诸恶莫作,众善奉行,自净其意,是诸佛教。
什么是纳什均衡,有何作用?
纳什均衡又称非合作博弈均衡,是博弈论中的一个重要术语,以约翰·纳什的名字命名。在博弈过程中,无论对方的战略选择是什么,一方都会选择一定的战略,这就叫主导战略。如果两个博弈者的战略组合构成各自的主导战略,则该组合被定义为纳什均衡。当每个球员的平衡策略是达到其预期收益的最大值时,一个策略组合被称为纳什均衡,同时,所有其他球员遵循这一策略。扩展资料;纳什均衡可分为两类:纯战略纳什均衡和混合战略纳什均衡。要解释纯策略纳什均衡和混合策略纳什均衡,首先要解释纯策略和混合策略。所谓纯策略,就是为玩家提供一个完整的游戏定义。特别是,纯粹的策略决定了在任何情况下都要进行的运动,策略集合是玩家可以执行的纯策略集合。混合策略是通过给每一个纯策略分配一个概率而形成的策略,混合策略允许玩家随机选择纯策略,在混合策略博弈的均衡中,由于每个策略都是随机的,当达到一定的概率时,就可以得到最优支付。由于概率是连续的,即使策略集是有限的,也会有无限的混合策略。当然,严格地说,每个纯策略都是一个“退化”混合策略,一个特定纯策略的概率为1,另一个为0。因此,“纯战略纳什均衡”是指所有参与者都玩纯战略,而相应的“混合战略纳什均衡”则是指至少有一个参与者玩混合战略。并不是每一个博弈都会有纯战略纳什均衡,比如“硬币问题”只有混合战略纳什均衡,而不是纯战略纳什均衡。然而,仍有许多博弈具有纯战略纳什均衡(如协调博弈、囚徒困境博弈和鹿博弈)。甚至,有些游戏可以同时拥有纯策略和混合策略平衡。参考资料来源;百度百科——纳什平衡
什么是纳什均衡?
纳什均衡又称非合作博弈均衡,是博弈论中的一个重要术语,以约翰·纳什的名字命名。在博弈过程中,无论对方的战略选择是什么,一方都会选择一定的战略,这就叫主导战略。如果两个博弈者的战略组合构成各自的主导战略,则该组合被定义为纳什均衡。当每个球员的平衡策略是达到其预期收益的最大值时,一个策略组合被称为纳什均衡,同时,所有其他球员遵循这一策略。扩展资料;纳什均衡可分为两类:纯战略纳什均衡和混合战略纳什均衡。要解释纯策略纳什均衡和混合策略纳什均衡,首先要解释纯策略和混合策略。所谓纯策略,就是为玩家提供一个完整的游戏定义。特别是,纯粹的策略决定了在任何情况下都要进行的运动,策略集合是玩家可以执行的纯策略集合。混合策略是通过给每一个纯策略分配一个概率而形成的策略,混合策略允许玩家随机选择纯策略,在混合策略博弈的均衡中,由于每个策略都是随机的,当达到一定的概率时,就可以得到最优支付。由于概率是连续的,即使策略集是有限的,也会有无限的混合策略。当然,严格地说,每个纯策略都是一个“退化”混合策略,一个特定纯策略的概率为1,另一个为0。因此,“纯战略纳什均衡”是指所有参与者都玩纯战略,而相应的“混合战略纳什均衡”则是指至少有一个参与者玩混合战略。并不是每一个博弈都会有纯战略纳什均衡,比如“硬币问题”只有混合战略纳什均衡,而不是纯战略纳什均衡。然而,仍有许多博弈具有纯战略纳什均衡(如协调博弈、囚徒困境博弈和鹿博弈)。甚至,有些游戏可以同时拥有纯策略和混合策略平衡。参考资料来源;百度百科——纳什平衡
什么是纳什均衡?
纳什均衡又称非合作博弈均衡,是博弈论中的一个重要术语,以约翰·纳什的名字命名。在博弈过程中,无论对方的战略选择是什么,一方都会选择一定的战略,这就叫主导战略。如果两个博弈者的战略组合构成各自的主导战略,则该组合被定义为纳什均衡。当每个球员的平衡策略是达到其预期收益的最大值时,一个策略组合被称为纳什均衡,同时,所有其他球员遵循这一策略。扩展资料;纳什均衡可分为两类:纯战略纳什均衡和混合战略纳什均衡。要解释纯策略纳什均衡和混合策略纳什均衡,首先要解释纯策略和混合策略。所谓纯策略,就是为玩家提供一个完整的游戏定义。特别是,纯粹的策略决定了在任何情况下都要进行的运动,策略集合是玩家可以执行的纯策略集合。混合策略是通过给每一个纯策略分配一个概率而形成的策略,混合策略允许玩家随机选择纯策略,在混合策略博弈的均衡中,由于每个策略都是随机的,当达到一定的概率时,就可以得到最优支付。由于概率是连续的,即使策略集是有限的,也会有无限的混合策略。当然,严格地说,每个纯策略都是一个“退化”混合策略,一个特定纯策略的概率为1,另一个为0。因此,“纯战略纳什均衡”是指所有参与者都玩纯战略,而相应的“混合战略纳什均衡”则是指至少有一个参与者玩混合战略。并不是每一个博弈都会有纯战略纳什均衡,比如“硬币问题”只有混合战略纳什均衡,而不是纯战略纳什均衡。然而,仍有许多博弈具有纯战略纳什均衡(如协调博弈、囚徒困境博弈和鹿博弈)。甚至,有些游戏可以同时拥有纯策略和混合策略平衡。参考资料来源;百度百科——纳什平衡
为什么纳什均衡不一定是占优策略?
简单来说,占优策略是不管对方有什么策略,"我"都有唯一最优的策略,不会随着情况不同改变。而纳什均衡则是,根据对方的选择来决定自己的最优策略,会根据情况而变。所以,占优策略均衡一定是纳什均衡,而纳什均衡却不一定是占优策略均衡。扩展资料:案例硬币正反你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?每一种游戏依具其规则的不同会存在两种纳什平衡,一种是纯策略纳什平衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什平衡,而在这个游戏中,便应该采用混合策略纳什平衡。参考资料来源:百度百科-纳什均衡
设某个纯策略博弈的纳什均衡是有限的一试问:相应的混合策略博弈的纳什均衡会是无限的吗?试举一例说明:
【答案】:会存在,如表10-8所示。
管理经济学两家竞争企业a b,请问该博弈的纳什均衡策略是什么
纳什均衡可以分成两类:“纯战略纳什均衡”和“混合战略纳什均衡”。 要说明纯战略纳什均衡和混合战略纳什均衡,要先说明纯战略和混合战略。 所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。 当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为 1,其他的则为 0。 故“纯战略纳什均衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什均衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什均衡,例如“钱币问题"就只有混合战略纳什均衡,而没有纯战略纳什均衡。不过,还是有许多赛局有纯战略纳什均衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略均衡。
一个静态博弈中,纯策略纳什均衡一定存在对吗
纳什均衡就是一种静态均衡啊,静态博弈指的是所有博弈方同时或可看做同时选择策略的博弈。动态博弈指得是有先后次序的选择且后选择的一方可以看到之前博弈方选择的结果,比如下棋。
什么是纳什均衡法则?
阿蒋和小姬是一对正泡在蜜月中的小两口,周六到了,安排什么节目好呢?周六晚上,中国足球队要在世界杯小组赛中和巴西队比赛。阿蒋天生就是个超级球迷,国内的甲级联赛他从不肯放过,何况是国家队和心目中的偶像巴西队的比赛?无巧不成书,也正好是这个周六的晚上,俄罗斯一个著名芭蕾舞剧团莅临该市演出芭蕾舞剧《胡桃夹子》。而小姬非常喜欢钢琴、芭蕾这样的高雅艺术,对俄罗斯的歌剧和芭蕾更是崇拜得五体投地,她怎么肯放过正宗俄罗斯的芭蕾舞剧呢?怎么办?其实这事也不难解决:一个在自己家里看电视转播的足球赛,一个去剧院看芭蕾舞演出。但是,问题在于他们是热恋中的情侣,分开度过难得的周六,是他们最不乐意的事情。这样一来,他们真是面临了一场“博弈”。我们不妨这样给阿蒋和小姬的“满意程度”赋值:如果阿蒋看球,让小姬一个人去看芭蕾,双方的满意度都为0;若是两个人一起去看足球,阿蒋的满意度为2,小姬的满意度1;两个人一起去看芭蕾,阿蒋的满意程度为1;小姬的满意程度为2;应该不会有小姬独自看球而阿蒋独自去看芭蕾的可能,不过,人们还是把这写出来,设想双方的满意程度都是-1。在这个博弈中,双方之间不存在“囚徒困境”中那样的最佳策略,但是他们总会做出一个较好的选择,因他们是蜜月中的夫妻。因此面对的是一种策略优势不那么明显的博弈,而这种博弈的结局,恰恰是纳什均衡研究的对象。策略优势不明显,指的是双方都没有“不论对方采取什么策略,我采取这个策略总比采取任何别的策略更好”的严格优势策略,因此,他们只需寻找一种双方“相对优势策略”的组合。双方都去看足球,或者双方都去看芭蕾。就是我们所说的相对优势策略的组合,一旦处于这样的位置,双方都不想单独改变策略,因为单独改变没有好处。比方说两人一起看足球,阿蒋得2,小姬得1。如果阿蒋改变主意单独去看足球,变成双方都得0,没有好处;如果小姬改变主意单独去看芭蕾,也变成双方都是0,也没有好处,所以两人一起去看足球是稳定的结局。同样,两人去看芭蕾也是稳定的结局。这种稳定的结局就是“纳什均衡”,在情侣博弈中,双方都去看足球,或者双方都去看芭蕾,是博弈的两个纳什均衡。形象地说,纳什均衡实际上就是一种“僵局”,给定别人不改变策略的情况下,没有人有兴趣单独改变策略,而且,这种单独改变不会给他们带来好处。在这种博弈中,如果一方知道了对方的策略以后,就可以做出对自己最有利的选择。因此,保证策略的随机性是十分必要的。这个概念是由普林斯顿大学数学家约翰·纳什于1950年建立的。由于对博弈论做出奠基性的贡献,他在1984年荣获诺贝尔经济学奖。如果用科学的语言来描述纳什均衡,指的是在一策略组合中,所有的参与者面临这样的一种情况:当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略,他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。听起来很拗口,而且难以理解,但却是不折不扣的科学,而且备受经济学家们的青睐。诺贝尔经济学奖获得者萨缪尔森有一句幽默的话:你可以将一只鹦鹉训练成经济学家,因为它所需要学习的只有两个词:供给与需求。博弈论专家坎多瑞引申说:要成为现代经济学家,这只鹦鹉必须再多学一个词,这个词就是“纳什均衡”。由此可见纳什均衡在现代经济学中的重要性。某个小镇上只有一名警察,他要负责整个镇的治安。现在我们假定,小镇的一头有一家酒馆,另一头有一家银行。再假定该地有一个小偷,要实施偷盗。因为分身乏术,警察一次只能在一个地方巡逻;而小偷也只能去一个地方。假定银行需要保护的财产价格为2万元,酒馆的财产价格为1万元。若警察在某地进行巡逻,而小偷也选择了去该地,就会被警察抓住;若警察没有巡逻的地方而小偷去了,则小偷偷盗成功。那么,警察怎么巡逻才能使效果最好?一个明显可取的做法是,警察权衡轻重,只对银行进行巡逻。这样,警察可以保住2万元的财产不被偷窃。可是如此,假如小偷去了酒馆,偷窃一定成功。这种做法是警察的最好做法吗?有没有对这种策略改进的措施?在纳什均衡被发现之前,也许没有别的答案。但是纳什均衡为我们开辟一个观察问题的新视角。对于这个例子,虽然没有纯策略纳什均衡点,也就是参与者在他的策略空间中选取唯一确定的策略。但是却存在混合策略均衡点,在这个混合策略均衡点下,参与者的策略选择是他们的最优(混合)策略选择。这样,对于警察的一个最好的做法是,警察抽签决定去银行还是酒馆。因为银行的价值是酒馆的两倍,所以用两个签代表银行,比如抽到1、2号签去银行,抽到3号签去酒馆。这样警察有2/3的机会去银行进行巡逻,1/3的机会去酒馆。而小偷的最优选择是:以同样抽签的办法决定去银行还是去酒馆偷盗,只是抽到1、2号签去酒馆,抽到3号签去银行,那么,小偷有1/3的机会去银行,2/3的机会去酒馆。而且,他们的策略都应当是随机的,不能让对方知道自己的策略,哪怕是“倾向性”的策略。如果一方知道对方其中一个策略的“可能性”大,那么就能做出对自己最有利的决定,赢的可能性就会大。就单次情侣博弈而言,存在着两个“纳什均衡”:或者一起看球,或者一起看芭蕾。但是,最后结局究竟落实到哪一种情形,却是博弈论本身尚未解决的问题。我们可以根据经验来分析,在更多情况下,结果还会体现先动优势,虽然双方都会得好处,但是先行动的一方得益多一些。我国古代已有“先下手为强”的说法。大量例子说明,在有多个“纳什均衡”的情况下,常常是先动手的一方会占一些优势。在这里,由于决策或行动有了先后次序,所以叫做“动态博弈”。比方说。两人还没商量,小姬就打电话告诉阿蒋:我已经买了票,周六一起去看芭蕾,好吗?况且他们是恋人,小姬已经开口说了,阿蒋还会驳她的面子吗?如果我们觉得没经过商量就先买了票有点过分,那么就可以把情况改为小姬打电话给阿蒋,建议一起去看芭蕾,得到同意才去买票。我们可以设想,阿蒋接到小姬的电话,也不会驳她的面子。而使双方最终得到满意的结局。
为什么说猜硬币博弈中不存在纳什均衡?
不是不存在纳什均衡,是不存在纯策略的纳什均衡。纳什均衡的定义是双方都选择最优反应策略,因此分析建立于假设对方选择某一策略时自己的最有反应是什么。而猜硬币的博弈中并不存在针对对方所有策略的统一最有反应,因此没有纯策略的纳什均衡。但是存在混合策略的纳什均衡,即双方皆以二分之一的几率选择任意策略,此时双方的期望收获都是0。拓展资料:纳什平衡是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什平衡。纳什均衡可分为“纯战略纳什均衡”和“混合战略纳什均衡”两大类。 所谓纯策略就是为玩家提供一个完整的游戏玩法定义。特别是,纯粹的策略决定了在任何情况下要完成的动作。 策略集是玩家可以实施的一组纯策略。 混合策略是通过为每个纯策略分配一个概率而形成的策略。混合策略允许玩家随机选择一个纯策略。 在混合策略博弈均衡中应该使用概率计算,因为每个策略都是随机的。 当达到一定的概率时,就可以实现最优支付。 因为概率是连续的,即使策略集是有限的,也会有无穷多的混合策略。纳什均衡的定义:在博弈G={S1,,Sn:u1,,un}中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,,sn*)中,任一博弈方i的策论si*,都是对其余博弈方策略的组合(s1*,s*i-1,s*i+1,,sn*)的最佳对策,也即ui(s1*,s*i-1, si*,s*i+1,,sn*)≥ui(s1*,s*i-1, sij*,s*i+1,,sn*)对任意sij∈Si都成立,则称(s1*,,sn*)为G的一个纳什均衡。
夫妻之争主要针对的多重纯策略纳什均衡,及多重策略纳什均衡求混合策略
纯策略纳什均衡:无论妻子如何选择,丈夫坚持自己的选择; 无论丈夫如何选择,妻子坚持自己的选择;混合策略纳什均衡:夫妻二人一同欣赏歌剧; 夫妻二人一同去看球赛。
求一篇关于博弈论的演讲稿 3分钟左右 主要阐述一下纳什均衡。
纳什均衡是一种策略组合,使得每个参与人的策略是对其他参与人策略的最优反应。假设有n个局中人参与博弈,如果某情况下无一参与者可以独自行动而增加收益(即为了自身利益的最大化,没有任何单独的一方愿意改变其策略的[1] ),则此策略组合被称为纳什均衡。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡,从实质上说,是一种非合作博弈状态。纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,需要注意的是,只有最优策略才可以达成纳什均衡,严格劣势策略不可能成为最佳对策,而弱优势和弱劣势策略是有可能达成纳什均衡的。在一个博弈中可能有一个以上的纳什均衡,而囚徒困境中有且只有一个纳什均衡。纳什的主要学术贡献体现在1950年和1951年的两篇论文,1950年他才把自己的研究成果写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低,嘲笑几天之后,他遇到盖尔,像说梦话似的告诉他自己已经将冯·诺依曼的“最小最大原理找到了普遍化的方法和均衡点。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从没想到学术欺骗的后果。结果还是戴维·盖尔充当了他的“经纪人”,起草致科学院的短信,系主任列夫谢茨则利用方便的人脉关系亲自将文稿递交给科学院。纳什写的文章不多,他辩解说:少了才是精品。1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。Nash平衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。Nash在证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,Nash平衡一定存在。以两家公司的价格大战为例,Nash平衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash平衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。纳什均衡可以分成两类:“纯战略纳什均衡”和“混合战略纳什均衡”。要说明纯战略纳什均衡和混合战略纳什均衡,要先说明纯战略和混合战略。所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为 1,其他的则为 0。故“纯战略纳什均衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什均衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什均衡,例如“钱币问题"就只有混合战略纳什均衡,而没有纯战略纳什均衡。不过,还是有许多赛局有纯战略纳什均衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略均衡。最后几自己讲一个类似于囚徒困境的例子好了。
怎么求混合策略纳什均衡
混合策略均衡求解的一个原则是混合策略均衡赋予正概率的所有纯策略的期望收益相等。假设这是个两个玩家的游戏。玩家a有2种纯策略a和b,不能相互支配。玩家b有2种纯策略c和d,不能相互支配。设a选a的几率是p,则选b的几率为1-p;设b选c的几率是q,则选d的几率为1-q当a取某一个p=p0,b获得的总效用不为自己q的取值而改变;b取某一个q=q0,a获得的总效用不为自己p的取值而改变,此时我们说(p0,1-p0)和(q0,1-q0)是一对混合策略下的纳什均衡。拓展资料:混合策略纳什均衡:在n个参与人的博弈G={S1,...Sn;u1,...un}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。严格占优策略均衡、重复剔除的占优策略均衡、纯策略纳什均衡和混合策略纳什均衡。一般将上述四种均衡统称为纳什均衡。在博弈G={S1,S2Sn;U1,U2Un}中第i个博弈方策略空间为Si={Si1Sik}则博弈方以概率分布Pi=(PiPik)随机在k个可选策略中选的的策略称为一个混合策略纳什均衡。在这四种均衡概念中每种均衡依次是前一种均衡的扩展。前一种均衡是后一种均衡的特例。严格占优策略均衡是重复剔除的占优策略均衡的特例;重复剔除的占优策略均衡是纯策略纳什均衡的特例;纯策略纳什均衡是混合策略纳什均衡的特例。如果将完全信息静态博弈中存在某种均衡的所有博弈定义为一个集合,那么就存在前一种均衡的博弈集合是后一种均衡的博弈集合的子集。实现1、最大化收益法:即最大化各个参与人的效用函数。2、收益相等法:根据前面分析的猜硬币博弈中参与人的策略的思路,每个参与人的混合策略都使其余参与人的任何纯策略的期望收益相等,因此,解混合策略纳什均衡可以令参与人的各个纯策略收益相等,构成方程组求解。
博弈会不会出现同时存在纯策略纳什均衡和混合策略纳什均衡?
会出现的,根据四个均衡可以推出纯策略纳什均衡和混合策略纳什均衡会同时存在。 严格占优策略均衡、重复剔除的占优策略均衡、纯策略纳什均衡和混合策略纳什均衡。一般将上述四种均衡统称为纳什均衡。 在这四种均衡概念中每种均衡依次是前一种均衡的扩展。前一种均衡是后一种均衡的特例。严格占优策略均衡是重复剔除的占优策略均衡的特例;重复剔除的占优策略均衡是纯策略纳什均衡的特例;纯策略纳什均衡是混合策略纳什均衡的特例。 如果将完全信息静态博弈中存在某种均衡的所有博弈定义为一个集合,那么就存在前一种均衡的博弈集合是后一种均衡的博弈集合的子集。完全信息静态博弈四种均衡概念之间的关系可以用图表示。 纯策略纳什均衡是指在一个纯策略组合中,如果给定其他的策略不变,该节点不会单方面改变自己的策略,否则不会使节点访问代价变小。 混合策略纳什均衡:在n个参与人的博弈G={S<sub>1</sub> ,... S<sub>n</sub> ; u<sub>1</sub> ,...u<sub>n</sub>}中,混合策略组合构成一个纳什均衡,如果对于所有的i=1,2...,n下式成立: 也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。 混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。