嘌呤碱

DNA图谱 / 问答 / 标签

氨甲酰磷酸可以合成尿素和嘌呤碱基吗?

可以。氨基甲酰磷酸在尿素循环的中间产物,由NH3,CO2,H2O合成。在嘌呤碱基合成过程中,氨基甲酰磷酸由谷氨酰胺和碳酸氢根合成

为什么嘌呤碱从头合成不产生自由的嘌呤碱

嘌呤核苷酸从头合成是直接在磷酸核糖上逐步添加的,一开始就是一体,不能游离嘧啶核苷酸是分别合成最后再组装

参与嘌呤碱碱基环形成的物质有哪些

嘌呤由嘧啶环与咪唑环合并而成。核酸中的嘌呤衍生物主要由两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。由于腺嘌呤没有羟基或酮基,所以不存在酮-烯醇式互变异构现象。在它的第6碳原子上由一个氨基。鸟嘌呤在第6位碳原子上有一个酮基,而在第2位上由一个氨基。凡含有酮基的嘧啶或嘌呤碱,在溶液中可以发生酮式或烯醇式的互变异构现象,但在生物细胞内一般以酮式存在为主。

第三行的那个嘌呤碱以第九的N与……第九个N在哪?我看那个嘌呤图没有啊!只有四个N

它说的是第九位是指的这个分子的第九位,你看图上每个位置它标明了数字的就是它的排序

鉴定嘌呤碱时沉淀较少的原因

在用碱酸法进行提取纯化时,应当注意所用碱液浓度不宜过高,以免在强碱性下,尤其加热时破坏黄酮母核。在加酸酸化时,酸性也不宜过强,以免生成钅羊盐,致使析出的黄酮类化合物又重新溶解,降低产品收率。当药材中含有大量果胶、黏液等水溶性杂质时,如花、果类药材,宜用石灰乳或石灰水代替其他碱性水溶液进行提取,以使上述含羧基的杂质生成钙盐沉淀,不被溶出。

嘌呤碱与硫酸银生成什么物质,且产生什么现象

硫酸银是微溶,只要溶液中的Ag+和SO4 2-的离子积超过溶度积,就会沉淀,即发生化学反应,既然产生沉淀物,就符合了复分解反应。复分解反应的产生条件,并不是看该物质是难容还是微溶,而是看是否有沉淀。沉淀不一定就是难容物质,也可以是微溶物质。比如0.000000001g的石灰石就能溶解在10000g水中,虽然他是难容物质,但这还是均一稳定地溶液。

核苷酸分子中嘌呤碱的哪一位原子与核糖之间以糖苷键连接

核糖的C-1原子和嘌呤的N-9或嘧啶的N-1通过缩合反应形成β-N糖苷键。

鉴定嘌呤碱先加硝酸银还是先加 浓氨水好

先加硝酸银好,再加浓氨水,这样可以观察沉淀的生成和变化。

二乙酰鸟嘌呤碱解后生成什么

二乙酰阿昔洛韦。二乙酰鸟嘌呤与侧链缩合生成二乙酰阿昔洛韦,二乙酰阿昔洛韦碱解生成阿昔洛韦。二乙酰鸟嘌呤与侧链缩合生成二乙酰阿昔洛韦的过程使用甲苯做溶剂。

嘌呤碱与嘧啶碱具有共轭双键,使碱基、核苷、核苷酸和核酸在240—290nm的紫外波段有一强烈的吸收峰,

最大吸收值在( 280nm )附近。不同核苷酸可以用( 紫外分光光度计 )加以定量及定性测定 氨基酸的紫外吸收能力 参与蛋白质组成的20种氨基酸,在可见光区都没有光吸收,但在远紫外光区(<220nm)均有光吸收。在近紫外光区(220-300nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。因为它们的R基含有苯环共轭双键系统。酪氨酸的最大光吸收波长为275nm(苯酚基)、苯丙氨酸为257nm(苯基)、色氨酸为280nm(吲哚基)。 蛋白质由于含有这些氨基酸,所以也有紫外吸收能力,一般最大光吸收在280nm波长处,可利用蛋白质的这个特点方便地测定蛋白质的含量。

嘌呤碱在碱性溶液下与硝酸银反应, 得到的现象是甚麼?为甚麼会有这个现象?求助

嘌呤碱在碱性溶液下与硝酸银反应,会有絮状沉淀产生,这是嘌呤碱的银化合物。我正在做有关这个的实验,但反应式我也没弄清楚,在找呢!唯一确定的是,这个不是银镜反应,是络合反应。  刚找到了资料,在中国知网上的:因为嘌呤是含氮特别丰富的有机化合物,嘌呤环上的氮原子带有孤电子对,银离子有空的S轨道,可以接受氮原子的孤对电子形成嘌呤银配离子,若溶液中有氢氧根,它与氢氧根结合,由嘌呤银配离子变成嘌呤银化合物,该化合物在碱性条件下易形成白色絮状沉淀

为什么嘌呤碱的鉴定中氨水不能加的过多

为什么嘌呤碱的鉴定中氨水不能加的过多原因:水溶性不好。根据查询相关资料信息显示,嘌呤碱在中性水中水溶性不太好,溶于碱液中,磷酸和氨水应该为缓冲液。氨水加的多溶液会显碱性,导致Ca沉淀不好,加NH4Cl就是用来中和的.氢氧化钙溶解度随温度升高而降低,六十摄氏度下比常温沉淀更彻底。

嘧啶碱和嘌呤碱

的确有碱性,N原子孤对电子可以吸引H+ 就有OH-生成了,显碱性 嘧啶碱简称碱基这样杂环化合物都有碱性,衍生物也有的

嘌呤碱合成的元素来源不包括

络氨酸甘氨酸、天冬氨酸、谷氨酰胺、CO2、一碳单位等。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程。漂呤多肽链从头合成指的是在肝脏和结肠黏膜等人体器官中,以硫酸铵核糖和甘氨酸等物质为原材料开展生成的全过程。漂呤多肽链的关键作用是参加植物体内的微生物化学变化,而且对身体的功能一切正常运行具有尤为重要的功效,另外漂呤多肽链对人体生物学具备一定的缓冲作用。关键反映流程分成两个阶段:最先生成次黄嘌呤多肽链(IMP),随后IMP再转化成腺嘌呤多肽链(AMP)与鸟嘌呤多肽链(GMP)。手绘嘌呤碱和嘧啶环的元素的来源是谷氨酰胺和天冬氨酸。嘌呤环各原子的来源:谷氨酰胺→咪唑环N9。嘧啶环N3。甘氨酸→咪唑环C4、C5。天冬氨酸→嘧啶环N1。N5,N10-甲炔四氢叶酸→咪唑环C8。N10-甲酰四氢叶酸→嘧啶环C2。→嘧啶环C6。嘧啶环各原子的来源:天冬氨酸→嘧啶环N1、C4、C5、C6。谷氨酰胺→嘧啶环N3。CO2→嘧啶环C2。

用agno3鉴定嘌呤碱时加入浓氨水目的是什么

用agno3鉴定嘌呤碱时加入浓氨水目的是了解核酸的组分,并掌握鉴定核酸组分的方法。核糖核酸含有核糖、嘌呤碱、嘧啶碱和磷酸各组分。嘌呤碱在弱碱性环境中能与硝酸银作用形成嘌呤银化合物,初为乳白色,稍放久为浅灰褐色絮状物。在浓氨水中可与硝酸银反应生成絮状的嘌呤银化合物沉淀。

鉴定磷酸和嘌呤碱组合时,加入VC和氨水的作用分别是什么

嘌呤碱在中性水中水溶性不太好,一般溶于碱液中,磷酸和氨水应该为缓冲液

嘧啶合成过程会产生自由嘌呤碱么

会。嘧啶合成过程会产生自由嘌呤碱。嘌呤碱通常是指嘌呤而形成的碱类化合物,嘌呤是人体遗传不可缺少的碱基部分,这种嘌呤碱通常各种区别和区分。

人体内嘌呤碱分解的中产物最主要是

尿素。在人体内中的嘌呤碱物质进行分解的中产物最主要是尿素,尿素是一种白色晶体。最简单的有机化合物之一,是哺乳动物和某些鱼类体内蛋白质代谢分解的主要含氮终产物。

嘌呤与嘌呤碱一样吗?在核苷酸代谢中的嘌呤核苷酸的从头合成途径那一会嘌呤,嘌呤环,一会儿嘌呤碱的

在化学上是有区别的,那种一个六圆环加一个五元环的结构,就是嘌呤环。嘌呤环上可以有各种不同的取代基,构成各种嘌呤,如腺嘌呤、鸟嘌呤,黄嘌呤等。在生化里就基本上是一个意思,因为我们就接触那么几种,都是碱基,多数场合不仔细分辨。合成的时候当然先合成嘌呤环,再调整取代基了。

嘌呤碱的2位碳和8位碳分别是什么一碳单位提供?

嘌呤环中的第2位及第8位碳来自甲酸盐(或者说是甲酰基);第1位氮来自天冬氨酸的氨基;第3位及第9位氮来自谷氨酰胺的酰胺基;第6位碳来自二氧化碳;第4位碳,第5位碳及第7位氮来自甘氨酸。

为什么嘌呤碱鉴定时要静置

嘌呤碱鉴定时要静置是因为此类鉴定中,需要确认检测物是否有沉淀,是其中一项很重要的指标,所以需要静置环境条件,如果不静置,会导致检测结果不准确。嘌呤碱:嘌呤由嘧啶环与咪唑环合并而成。核酸中的嘌呤衍生物主要由两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。由于腺嘌呤没有羟基或酮基,所以不存在酮-烯醇式互变异构现象。在它的第6碳原子上由一个氨基。鸟嘌呤在第6位碳原子上有一个酮基,而在第2位上由一个氨基。凡含有酮基的嘧啶或嘌呤碱,在溶液中可以发生酮式或烯醇式的互变异构现象,但在生物细胞内一般以酮式存在为主。嘌呤碱分子式图:

为什么嘌呤碱鉴定时要静置,当针状晶体不明显时,可采取什么方法解决

加浓氨水可以观察沉淀的生成和变化。用硝酸银鉴定嘌呤碱基属于核酸的定性分析:掌握测定核酸的组成从而定性分析DNA或RNA的方法。熟悉测定核酸的组成从而定性分析DNA或RNA的原理。嘌呤碱鉴定时要静置是因为此类鉴定中,需要确认检测物是否有沉淀,是其中一项很重要的指标,所以需要静置环境条件,如果不静置,会导致检测结果不准确。扩展资料:嘌呤由嘧啶环与咪唑环合并而成。核酸中的嘌呤衍生物主要由两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。由于腺嘌呤没有羟基或酮基,所以不存在酮-烯醇式互变异构现象。在它的第6碳原子上由一个氨基。鸟嘌呤在第6位碳原子上有一个酮基,而在第2位上由一个氨基。凡含有酮基的嘧啶或嘌呤碱,在溶液中可以发生酮式或烯醇式的互变异构现象,但在生物细胞内一般以酮式存在为主。参考资料来源:百度百科-嘌呤碱

嘧啶碱嘌呤碱全称

全称为碱基。嘌呤碱含四种碱基,分别是腺嘌呤,鸟嘌呤。且他们的化学结构与嘌呤相似。而嘧啶碱包含胸腺嘧啶,胞嘧啶,尿嘧啶。

组成核酸的嘌呤碱主要有哪三种

组成核酸的嘌呤碱主要有两种,分别是腺嘌呤和鸟嘌呤。 这两种嘌呤碱都以核糖核苷酸的形式参与核糖核酸和脱氧核糖核酸的组成,分别是腺嘌呤核苷酸与鸟嘌呤核苷酸。 此外,参与核糖核苷酸组成的嘌呤碱还有一种,是次黄嘌呤。但次黄嘌呤只参与核糖核苷酸和某些核糖核酸的组成,不参与脱氧核糖核酸的组成。

组成核酸的嘌呤碱主要有哪三种

构成核苷酸的五种碱基只有两种嘌呤碱,鸟嘌呤G与腺嘌呤A。

嘌呤碱是什么 茶叶中的嘌呤碱有哪些

茶叶中的嘌呤碱分析   茶叶中的嘌呤碱:(1)主要有2%-5%咖啡碱、少量可可碱和茶碱。毛叶茶中嘌呤碱主要是可可豆碱,含量为4.4%.(2)嘌呤碱是一种中枢神经的兴奋剂。(3)嘌呤碱能使血管中平滑肌松弛,增大血管有效直径,增强心血管壁的弹性和促进血液循环。(4)嘌呤碱有明显的利尿和刺激胃液分泌的作用。(5)和游离态的咖啡碱在生理功能上有所不同。(6)嘌呤碱的安全性评价:在人类的正常饮用剂量下,咖啡碱对人无致畸、致癌和致突变作用;在人体的半衰期2.5-4.5h。FDA规定咖啡碱的剂量为40mg/kg.d。   核酸中的嘌呤衍生物主要由两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。 动物内脏,骨髓,海味等含嘌呤最丰富鱼虾类,肉类,豌豆,菠菜等亦含有一定嘌呤;水果,蔬菜,牛奶,鸡蛋等则不含嘌呤。

嘌呤碱是什么 茶叶中的嘌呤碱有哪些

茶叶中的嘌呤碱分析   茶叶中的嘌呤碱:(1)主要有2%-5%咖啡碱、少量可可碱和茶碱。毛叶茶中嘌呤碱主要是可可豆碱,含量为4.4%.(2)嘌呤碱是一种中枢神经的兴奋剂。(3)嘌呤碱能使血管中平滑肌松弛,增大血管有效直径,增强心血管壁的弹性和促进血液循环。(4)嘌呤碱有明显的利尿和刺激胃液分泌的作用。(5)和游离态的咖啡碱在生理功能上有所不同。(6)嘌呤碱的安全性评价:在人类的正常饮用剂量下,咖啡碱对人无致畸、致癌和致突变作用;在人体的半衰期2.5-4.5h。FDA规定咖啡碱的剂量为40mg/kg.d。   核酸中的嘌呤衍生物主要由两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。 动物内脏,骨髓,海味等含嘌呤最丰富鱼虾类,肉类,豌豆,菠菜等亦含有一定嘌呤;水果,蔬菜,牛奶,鸡蛋等则不含嘌呤。

细胞中组成一个基因的嘌呤碱基与嘧啶碱基数量相等

A、真核生物的DNA主要位于染色体上,染色体是DNA和基因的主要载体,A正确; B、由于嘌呤和嘧啶进行碱基互补配对,故DNA分子上嘌呤与嘧啶的数量相等,B正确; C、一个DNA分子由基因片段和非基因片段组成,C错误; D、DNA复制后每条染色体含有2个DNA分子,故一条染色体上含1或2个DNA分子,D正确. 故选:C.

某生物的碱基组成是:嘌呤碱基60%,嘧啶碱基40%。它不可能是 [  

C

经测定某种生物发现嘌呤碱基和嘧啶碱基的含量比相等,则这种生物一定不是

币岛弟搞错了吧。这个题应该选AG,鸟嘌呤A,腺嘌呤、C,胞嘧啶、T,胸腺嘧啶、U,尿嘧啶A-T(U) G-C 所以在双链DNA中,嘌呤碱基和嘧啶碱基的含量比相等,反过来说,如果嘌呤碱基和嘧啶碱基的含量比相等,则这种生物中一定不会只含有单链的碱基。所以只能选A

某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是( )a.噬

B 解析: 在DNA中,由于碱基互补配对,故嘌呤碱基等于嘧啶碱基,而在RNA内,各碱基数量不定。某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,说明该生物一定含有RNA,而噬菌体是DNA病毒,核酸只含有DNA。

高一生物 某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占45%,此生物一定不是

A以DNA为遗传物质的生物,嘌吟碱碱基加嘧啶碱基之和为1。题中,嘌吟碱碱基加嘧啶碱基之和小于1,以RNA遗传物质。 因此该生物一定不是真核生物。另外,真核生物中是有RNA的,只是不以遗传物质的形式存在 希望你能采纳

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合 1、基因突变 2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG) 3、单链DNA分子 还有很多情况,上面句子的“所有”二字太绝对.

dna与rna中所含的嘌呤碱基完全相同

A、DNA和RNA都能携带遗传信息,A正确; B、DNA所含的碱基为A、C、G、T,而RNA所含的碱基为A、C、G、U,两者所含碱基类型不完全相同,B错误; C、DNA与RNA在细胞中的主要分布位置不同,DNA主要分布在细胞核中,RNA主要分布在细胞质中,C错误; D、DNA和RNA所含五碳糖不同,前者所含五碳糖是脱氧核糖,后者所含五碳糖是核糖,D错误. 故选:A.

某生物核酸的碱基组成,嘌呤碱基占52%,嘧啶碱基占48%,此生物一定不是(  )A.噬菌体B.大肠杆菌C.

A、噬菌体是DNA病毒,只含有DNA一种核酸,且DNA为双链结构,遵循碱基互补配对原则,因此其嘌呤碱基数目和嘧啶碱基数目相等,这与题干内容不符,A错误;B、大肠杆菌是原核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,B正确;C、烟草是真核生物,含有DNA和RNA两种核酸,且DNA中的嘌呤碱基数目和嘧啶碱基数目相等,而RNA中的嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,C正确;D、烟草花叶病毒是RNA病毒,只含有RNA一种核酸,RNA为单链结构,其中嘌呤碱基数目和嘧啶碱基数目一般不相等,因此可能会出现题中比例,D正确.故选:A.

嘌呤碱基 和 嘧啶碱基 分别以什么方式和 戊糖连接

戊糖的第一位C与嘧啶碱的第一位N或与嘌呤碱的第九位N相连接

某种生物碱基组成中嘧啶碱基与嘌呤碱基组成比例不同说明

嘌呤数目和嘧啶数目不等,说明这种核酸是RNA. 一定不是噬菌体,因为噬菌体只有DNA,而其他三种生物都既有DNA,又有RNA.

在DNA、RNA中,嘌呤碱基含量是否等于嘧啶碱基含量?

DNA是,RNA不是DNA中相等因为是两条链A=T C=GRNA中没关系因为就一条链(A:腺嘌呤,G:鸟嘌呤,C:胞嘧啶,T:胸腺嘧啶,另外RNA没有T,而是U尿嘧啶)

嘌呤碱基和芳香族氨基酸侧链生物降解的共同点

①都有脱氨基作用。②都有氧气和水参与反应。③不同的嘌呤生成同一中间物,然后共用一条代谢途径生成相同的代谢产物,不同的芳香族氨基酸也生成同意一中间物,然后共用一条代谢途径,最终生成相同的代谢产物。

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。 呵呵

用硝酸银鉴定嘌呤碱基时加浓氨水的目的

加浓氨水可以观察沉淀的生成和变化。用硝酸银鉴定嘌呤碱基属于核酸的定性分析【目的】1 .掌握测定核酸 的组成从而 定性分析 DNA 或 RNA 的方法。 2 .熟悉测定核酸的组成从而定性分析 DNA 或 RNA 的 原理。【原理】RNA 和 DNA 均可被硫酸水解生成含氮碱(嘌呤碱与嘧啶碱)、戊糖( RNA 中的核糖与 DNA 中的脱氧核糖)和磷酸。水解产物可用下列方法鉴定。 1 .嘌呤碱的鉴定原理嘌呤碱在弱碱性环境中能与硝酸银作用形成嘌呤银化合物。初为乳白色,稍放久为浅灰褐色絮状物。2 .核糖的鉴定原理核糖经浓盐酸或浓硫酸作用,脱水生成糠醛,后者能与 3 , 5- 二羟甲苯缩合形成鲜绿色化合物。该反应需三氯化铁作为催化剂。3 .脱氧核糖的鉴定原理脱氧核糖在浓酸中脱水生成 ω- 羟基 γ- 酮基戊醛,后者与二苯胺作用生成蓝色化合物。4 .磷酸的鉴定原理定磷试剂中的钼酸铵在酸性环境中以钼酸形式与样品中的磷酸反应生成磷钼酸。后者在还原剂氨基萘酚磺酸作用下形成蓝色的钼蓝。【器材】1 . 试管与滴管2 . PH 试纸3 . 沸水浴4 . 带有长玻璃管的胶塞【试剂】1 . 5% 硫酸2 . 5% 硝酸银溶液3 .浓氨水4 . 3,5- 二羟甲苯试剂取 FeCl 3 ·6H 2 O 1.0g 溶于 6ml 水中,加浓盐酸 100ml ,混匀,此为 A 液。另配制 6%3,5- 二羟甲苯乙醇溶液为 B 液。临用时用 A 液 100ml 加 B 液3.5ml 混合即可。5 .二苯胺试剂取二苯胺 1.0g 溶于 100ml 冰乙酸中,加浓硫酸 2.75ml 。此二苯胺试剂遇光易变绿色,故临用前配制,贮于棕色瓶中,置冰箱保存。6 .钼酸试剂取钼酸铵 2.5g 溶于 20ml 水中,加浓硫酸( A·R ) 8.5ml, 冷却后再加水至 100ml ,放冷处可保存 4 周左右。7 .氨基萘酚磺酸溶液取 15% 亚硫酸氢钠溶液 195ml 与 20% 亚硫酸钠溶液 5ml 混合,加氨基萘酚磺酸 0.5g ,在热水浴中搅拌使固体溶解(如不全溶,可滴加 20% 亚硫酸钠数滴,至多不超过 1ml 即可)。此溶液置冷处可保存 2-3 周,如颜色变黄需重新配置,临用前将上述溶液以蒸馏水稀释 10 倍应用。8 .核酸样品称取粗制核酸样品 10mg/ 每组。或者,取本教材实验九从动物组织中提取出的核酸作为本次实验的样品。【操作】1 .核酸的水解向加入 10mg 核酸样品的试管(或者,向有核酸沉淀的离心管)中加入 5% 硫酸 4ml ,用玻璃棒搅匀,再用带长玻璃管的塞子塞紧管口,于沸水浴中加热 15min ,既得核酸的水解液。2 .核酸的鉴定( 1 )嘌呤碱的鉴定:取小试管 2 支,分别标明测定与对照,按下表依次加入试剂,混匀,放置 15min ,观察嘌呤银沉淀的生成,并记录颜色。注:加氨水(约 2 ~ 3 滴)以中和酸,呈碱性即可,需用 PH 试纸测试。若加氨水过多,则生成银氨络离子 [ Ag(NH 3 ) 4 ] + ,使银离子减少,嘌呤银沉淀减少。( 2 )核糖的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:将两管同时放入沸水浴加热 15min ,观察颜色变化并记录。(煮 3 ~ 5min ,即可先观察)( 3 )脱氧核糖的鉴定:取试管 2 支。分别标明测定与对照。按下表操作 :将两管同时放入沸水浴中加热 10min ,观察颜色变化并记录。( 4 )磷酸的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:于室温放置 10min 后,观察颜色变化并记录。【注意事项】1 .为了安全,核酸水解时,避免将 长玻璃管的管口对准人 。2 .嘌呤碱的鉴定中氨水不能加的过多。

在人体中嘌呤碱基代谢的终产物是尿酸么

对,氧化产物

为什么嘌呤碱基占58%,嘧啶碱基占42%的生物不可能是T4噬菌体?

因为噬菌体内只有DNA,嘌呤碱基占50%。嘧啶碱基占50%,这是肯定的。如果存在RNA或是DNA与RNA都有的生物,才可能嘌呤碱基占58%,嘧啶碱基占42%

RNA和DNA共有的两种嘌呤碱基是()

RNA和DNA共有的两种嘌呤碱基是() A.A/dAB.C/dCC.U/dUD.G/dG正确答案:A/dA;G/dG

腺嘌呤脱氧核苷酸只含这一种腺嘌呤碱基吗?

碱基不同,携带不同的碱基就是不同的脱氧核苷酸,一种脱氧核苷酸里只有一种碱基。

RNA组分鉴定中,为什么鉴定的是嘌呤碱而不是嘧啶碱

因为DNA中有 A T 和G C而RNA中有A U 和G C所以鉴定RNA不能用 GC ,而应用腺嘌呤A和尿嘌呤UDNA与RNA的结构和组分的异同点.⑴组分:同:①DNA与RNA都是由磷酸、戊糖和含氮碱基组成.②DNA与RNA均含有四种常规碱基,包括两种嘌呤碱基和两种嘧啶碱基.嘌呤碱基均为腺嘌呤和鸟嘌呤;两种嘧啶碱基之一均为胞嘧啶.异:①DNA中的戊糖是核糖,而RNA中的戊糖是脱氧核糖.②DNA中的另一种嘧啶是胸腺嘧啶,而RNA中的另一种嘧啶是尿嘧啶.⑵结构:同:①DNA与RNA都含有一级结构和二级结构.②DNA与RNA的一级结构都是通过3ˊ,5ˊ-磷酸二酯键连接而成的.异:①DNA的一级结构是多聚脱氧核苷酸链,也指脱氧核苷酸的排列顺序.而RNA的一级结构是多核苷酸链.②DNA的二级结构是由两股链反向互补构成,并进一步形成的右手双螺旋结构.而RNA的二级结构是通过单股链自身回折配对局部形成双螺旋区(通过链内互补构成局部双螺旋),不配对部分形成环状.③DNA含有三级结构,而RNA没有.

提取细胞核中全部核酸进行碱基分析可知嘌呤碱基数等于嘧啶碱基数 为啥错了

细胞核中全部核酸包括DNA和RNA两种,DNA是双链的,它的嘌呤碱基数等于嘧啶碱基数 ,RNA是单链,它的嘌呤碱基数不一定等于嘧啶碱基数 。希望我的回答对你能有所帮助。

嘌呤碱基从头合成的第一位来源于

嘌呤化合物合成并不是先形成游离的嘌呤,然后生成核苷酸,而是直接形成次黄嘌呤核苷酸(IMP),再由其合成AMP和GMP.

简述嘌呤碱基的最终代谢产物是什么?嘧啶碱基的最终代谢产物是什么?

9 煮熟的鸡蛋 温度,酸碱度等

嘌呤碱基与嘧啶碱基的结合保证了什么物质

嘌呤碱基与嘧啶碱基的结合保证了DNA分子空间结构的相对稳定。嘌呤碱基与嘧啶碱基的特性因素,结合起来会使结构稳定,结构稳定就会保证DNA分子空间结构的相对稳定。

真核生物体内嘌呤碱基和嘧啶碱基比1:1

嘌呤碱基和嘧啶碱基比1:1,对于双链DNA而言,是一定的,因为有碱基的互补配对。但是对于RNA而言,因为它是单链结构,无碱基互补配对原则,所以比例为1:1的情况很少,但在一定程度上有这种可能性。在真核生物体内既有DNA又有RNA,包括腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶。因此真核生物体内嘌呤碱基和嘧啶碱基比1:1,是不对的。呵呵

嘌呤碱基占总数的百分之50有哪些生物

哺乳动物、植物等双链DNA生物因为双链DNA碱基对是嘧啶对嘌呤,各占一半。

"所有DNA分子中的嘌呤碱基总数都等于嘧啶碱基总数"这句话为什么不对

以下情况都不符合1、基因突变2、DNA上含有少量特殊嘌呤或嘧啶(非ATCG)3、单链DNA分子还有很多情况,上面句子的“所有”二字太绝对。

在人体中,嘌呤碱基代谢的终产物是()

在人体中,嘌呤碱基代谢的终产物是() A. B.尿素 C.氨 D.尿酸 正确答案:D

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。

嘌呤碱基和嘧啶碱基的结构

腺嘌呤(adenine,简写:A) 鸟嘌呤(guanine,简写:G) 尿嘧啶(uracil,简写:U) 胞嘧啶(cytosine,简写:C) 胸腺嘧啶(thymine,简写:T)

不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是什么?

你好!不同生物双链DNA分子中嘌呤碱基总数与嘧啶碱基总数的比值是1。因为在双链DNA分子中,按照碱基互补原则,一个嘌呤碱基与一个嘧啶碱基互不配对,所以嘌呤碱基总数等于嘧啶碱基总数,比值是1。打字不易,采纳哦!

为什么细菌转化后嘌呤碱基总比例不变,如图?

因为A(腺嘌呤)和T(胸腺嘧啶配对),A的总数等于T,C(胞嘧啶)和G(鸟嘌呤)配对,C的总数等于G,因此嘌呤之和等于嘧啶之和,即A+G=C+T,因此A+G/C+T=1,无论如何转化,只要DNA还保持双链状态,这个式子就成立。

细胞中嘌呤碱基与嘧啶碱基数目一定相等吗?

A、表现型=基因型+外界环境,因此基因型相同的生物体表现型不一定相同,A错误; B、细胞类生物的遗传物质都是DNA,病毒的遗传物质是DNA或RNA,因此以RNA为遗传物质的生物一定是病毒,B正确; C、细胞含有DNA和RNA两种核酸,其中DNA中嘌呤碱基与嘧啶碱基数目一定相等,但RNA中嘌呤碱基与嘧啶碱基数目不一定相等,因此细胞中嘌呤碱基与嘧啶碱基数目也不一定相等,C错误; D、真核生物染色体上的基因不都是成对存在的,如性染色体非同源区段的基因不是成对存在的,D错误. 故选:B.

组成RNA的嘧啶碱和嘌呤碱分别有哪些?

因为DNA中有 A T 和G C而RNA中有A U 和G C所以鉴定RNA不能用 GC ,而应用腺嘌呤A和尿嘌呤UDNA与RNA的结构和组分的异同点.⑴组分:同:①DNA与RNA都是由磷酸、戊糖和含氮碱基组成.②DNA与RNA均含有四种常规碱基,包括两种嘌呤碱基和两种嘧啶碱基.嘌呤碱基均为腺嘌呤和鸟嘌呤;两种嘧啶碱基之一均为胞嘧啶.异:①DNA中的戊糖是核糖,而RNA中的戊糖是脱氧核糖.②DNA中的另一种嘧啶是胸腺嘧啶,而RNA中的另一种嘧啶是尿嘧啶.⑵结构:同:①DNA与RNA都含有一级结构和二级结构.②DNA与RNA的一级结构都是通过3ˊ,5ˊ-磷酸二酯键连接而成的.异:①DNA的一级结构是多聚脱氧核苷酸链,也指脱氧核苷酸的排列顺序.而RNA的一级结构是多核苷酸链.②DNA的二级结构是由两股链反向互补构成,并进一步形成的右手双螺旋结构.而RNA的二级结构是通过单股链自身回折配对局部形成双螺旋区(通过链内互补构成局部双螺旋),不配对部分形成环状.③DNA含有三级结构,而RNA没有.

嘌呤碱基在体内的最终降解产物是?。

对于不同生物而言,由于含嘌呤碱基的代谢酶类不同,因而代谢产物也有所不同。鸟类、部分爬行动物、人类。猿等生物产生的嘌呤代谢最终产物是尿酸,大部分哺乳类动物以及部分昆虫产生尿囊素,两栖类及部分鱼类产生尿素,海洋无脊椎动物、植物等生物产生二氧化碳和氨气,硬骨鱼类产生尿囊酸。

为什么嘌呤碱基和嘧啶碱基总数各占全部碱基总数的50%

碱基互补配对原则 the principle of complementary base pairing   在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。   腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。   规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。   规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)   规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)   规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。   规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。

嘌呤碱基第六位碳原子上的取代基是

氨基。根据查询嘌呤碱基的简介得知,第六位碳原子上的取代基是氨基,嘌呤碱是构成核苷酸的五种碱基,嘌呤分为鸟嘌呤与腺嘌呤,由嘧啶环与咪唑环合并而成。

核酸分子中的嘌呤碱基主要有

核酸(nucleic acid)与蛋白质是最重要的生物大分子。核酸有两类,即脱氧核糖核酸(Deoxyribonucleic acid,DNA)和核糖核酸(Ribonucleic acid,RNA)。核酸是遗传信息的载体,遗传信息位于DNA上,可通过DNA复制将遗传信息传给子代;还可通过转录形成RNA,再通过翻译产生蛋白质,表达相关性状。此外,有部分核酸可作为或参与构成具有生物活性的酶分子或其他分子机器。核酸一、核酸的化学结构核酸是多聚核苷酸,由戊糖、磷酸基团及碱基构成。其中含氮碱基总是连在戊糖的1"碳上,磷酸基团连接在5"碳和相邻戊糖的3"碳上,核苷酸通过磷酸二酯键相连接。核糖连接磷酸的碳的位置体现了核苷酸的3"-5"还是5"-3"走向。戊糖2"上是否脱氧决定了其为核糖核酸还是脱氧核糖核酸。核酸的结构碱基不同,产生的核酸也不同。核酸包含两类,一类是嘧啶(pyrimidine),一类是嘌呤(purine)。嘧啶有C、U、T三种;嘌呤有A、G两种。嘧啶和嘌呤环都很接近平面,但稍有绕折,嘧啶碱以单环结构为特征,嘌呤碱以双环结构为特征。通过不同位点的氨基化、脱氨基、甲基化形成不同的嘧啶和嘌呤。碱基之间的关系二、DNA高级结构B型DNA是DNA的最常见结构。配对碱基间氢键和堆积力是双螺旋结构维持稳定的原因。值得一提的是DNA双螺旋结构是反向平行互补的,而不是交叉缠绕成麻花状。DNA双螺旋结构(在生物体内DNA的形态如左侧所示,右侧是错误的形态)DNA在磷酸骨架距离较近的一侧形成小沟,而对侧形成大沟。大、小沟中分别有很多功能基团暴露在侧,在引发甲基化作用、结合转录因子等DNA与蛋白质相互作用中起到了关键作用。DNA的大沟和小沟由于-OH攻击磷酸基团,在5"端由于镁离子把磷酸的电子往外拉,导致电子分布极化,使得亲核反应更容易进行;在3"端,P被原有的O紧密包围,电子分布均匀,亲核反应难以进行。故DNA复制只能从5"到3"。从5"到3"的DNA复制,出处@吴思涵真核生物在DNA复制过程中在复制远点处氢键迅速断裂与再生,导致两条DNA链不断解链与聚合,形成瞬间的单泡状结构的过程称为DNA的呼吸作用。呼吸作用令在启动子中的TATAbox中发生的碱基对氢键的熔断,使得RNA聚合酶得以进入双螺旋链中打开DNA链形成开放式转录起始复合物。

核酸中嘌呤碱主要有哪两种

核酸分子中的嘌呤碱基主要有两种,分别是腺嘌呤和鸟嘌呤。这两种嘌呤碱都以核糖核苷酸的形式参与核糖核酸和脱氧核糖核酸的组成,分别是腺嘌呤核苷酸与鸟嘌呤核苷酸。此外,参与核糖核苷酸组成的嘌呤碱还有一种,是次黄嘌呤。但次黄嘌呤只参与核糖核苷酸和某些核糖核酸的组成,不参与脱氧核糖核酸的组成。核酸分子中的嘌呤碱基主要有几种核酸是脱氧核糖核酸(DNA)和核糖核酸(RNA)的总称,是由许多核苷酸单体聚合成的生物大分子化合物,为生命的最基本物质之一。核酸是一类生物聚合物,是所有已知生命形式必不可少的组成物质,是所有生物分子中最重要的物质,广泛存在于所有动植物细胞、微生物体内。核酸分子中的嘌呤碱基主要有几种核酸由核苷酸组成,而核苷酸单体由五碳糖、磷酸基和含氮碱基组成。如果五碳糖是核糖,则形成的聚合物是RNA;如果五碳糖是脱氧核糖,则形成的聚合物是DNA。

嘌呤碱基的介绍

嘌呤碱基是一种碱基化合物。是生物体中核酸(DNA,RNA)和一些小分子的核苷酸重要组成部分。在生物学中常见的有:鸟嘌呤(G),腺嘌呤(A)。

嘌呤碱基和嘧啶碱基代谢过程有何区别与联系

嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳性嘧啶与核酸形成D N A和R N A的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(C y t o s i n e),胸腺嘧啶(T h y m i n e),尿嘧啶(U r a c i l)。l m a g e:C y T o s i n e c h e m i c a l s t r u c t u r e.p n g|胞嘧啶l m a g e:T h y m i n e c h e m i c a l s t r u c t u r e.p n g|胸脲嘧啶l m a g e: U r a c i l c h e m i c a l s t r u c t u r e.p n g|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结会。杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。

手绘嘌呤碱和嘧啶环的元素的来源

手绘嘌呤碱和嘧啶环的元素的来源是谷氨酰胺和天冬氨酸。嘌呤环各原子的来源:谷氨酰胺→咪唑环N9。嘧啶环N3。甘氨酸→咪唑环C4、C5。天冬氨酸→嘧啶环N1。N5,N10-甲炔四氢叶酸→咪唑环C8。N10-甲酰四氢叶酸→嘧啶环C2。→嘧啶环C6。嘧啶环各原子的来源:天冬氨酸→嘧啶环N1、C4、C5、C6。谷氨酰胺→嘧啶环N3。CO2→嘧啶环C2。

嘌呤碱在体内分解的终产物是

【答案】:A腺嘌呤、鸟嘌呤可能转变为黄嘌呤,黄嘌呤再经黄嘌呤氧化酶催化生成尿酸,是嘌呤的终产物。

嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

核苷,核苷酸,核酸三者在分子结构上的关系是“核苷酸是核苷的磷酸酯,是组成核酸的基本单元”,核酸也叫多聚核苷酸,核糖体的核糖核酸,简称rRNA。核苷酸Nucleotide是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸

嘌呤碱对尿酸

我查到的资料:仅供参考. ※不同种类的生物分解嘌呤的能力不同,终产物也不同  排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类  排尿囊素动物:哺乳动物(灵长类除外)、腹足类  排尿囊酸动物:硬骨鱼类  排尿素动物:大多数鱼类、两栖类 ※某些低等动物能将尿素进一步分解成NH3和CO2排出. ※植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3). ※微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲 酸、乙酸、乳酸、等). 嘌呤碱的分解 嘌呤碱包括:A-腺嘌呤、G-鸟嘌呤 v A-腺嘌呤的分解  不同种类动物将尿酸直排或进行不同程度的继续降解排出体外.H2O2在SOD(超氧化物歧化酶)或过氧化氢酶作用下分解为H2O.  在人体中嘌呤碱基的分解是不开环,而不断在环外不断加氧氧化的过程. v G-鸟嘌呤分解与A类似 共同分解中产物为黄嘌呤,产物也是尿酸. 结论:我认为代谢终产物应该不能简单的一言概之,而要具体问题具体分析.

嘌呤碱的代谢产物

1、腺嘌呤、鸟嘌呤可能转变为黄嘌呤,黄嘌呤再经黄嘌呤氧化酶催化生成尿酸。嘌呤的代谢最终产物是尿酸2、所以含嘌呤高的物质,产生的尿酸多3、尿酸高易导致痛风,痛风患者要注意减少高嘌呤食物的摄入

4.嘌呤碱基、嘧啶碱基、核苷、核苷酸和多聚核苷酸链在分子结构上的关系怎样?

搜索登录首页教育/科学理工学科化学生物化学嘌呤和嘧啶的结构关系如何2***全部答案2***2013-04-04 14:40:28 嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。嘧啶与核酸形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 chemicalg|胞嘧啶chemicalg|胸腺嘧啶chemicalg|尿嘧啶其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。 嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面:1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。3、重要的信使分子环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。5、参与组成某些辅酶腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。 嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。 鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。 研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。

细胞核中的嘌呤碱基和嘧啶碱基是否相同

碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。