悬链线

DNA图谱 / 问答 / 标签

抛物线是什么?可以说“抛物线就是一条弧”吗?悬链线又是什么?

抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹叫做抛物线。定点叫做抛物线的焦点,定直线叫做抛物线的准线。抛物线不可以说成是一条弧。因为抛物线的线长是无限的。而弧是一个有限的量。因为弧的概念是:圆周或曲线上任意的一段。悬链线:是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为: y = a*cosh(x/a) 其中 a 是一个常数。这个悬链线高中以前似乎都没有要求的。如果LZ是高中生或还要小。就没必要知道了

悬链线的等高悬链线

其中 a是常数。 如右图,设最低点A处受水平向左的拉力H,右悬挂点处表示为C点,在AC弧线区段任意取一段设为B点,则B受一个斜向上的拉力T,设T和水平方向夹角为θ,AB段绳子的质量为m,显然B点受力平衡,进行受力分析有: ……(1)m=σs ,其中s是右段AB绳子的长度,σ是绳子线密度,即单位长度绳子的质量。代入得微分方程 ……(2)再利用勾股定理得到: ……(3)将(3)式代入(2)式得: ……(4)不妨做一次变量替换,令: ,得到如下方程: 为了将积分符号去掉,对上式两边对x求导:接下来变量分离并两端进行积分:由于 ,所以上面的积分的解为: ……(5)(注意,指数-1表示的是反函数,而不是倒数。)下面确定C的值。显然,当x=0时,y"=0,即p=0,所以将该初值条件代入我们得到的解,因为 ,解得C=0.下面给出反双曲正弦的图像以加强直观认识。然后利用反函数的性质,在(5)式的两边取双曲正弦:对上式变量分析并积分:于是得到最终的解:上式中的C一般保留,它会随着坐标系选择的不同而取不同的值。

抛物线是什么?可以说“抛物线就是一条弧”吗?悬链线又是什么?

抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹叫做抛物线.定点叫做抛物线的焦点,定直线叫做抛物线的准线. 抛物线不可以说成是一条弧.因为抛物线的线长是无限的.而弧是一个有限的量. 因为弧的概念是:圆周或曲线上任意的一段. 悬链线:是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为: y = a*cosh(x/a) 其中 a 是一个常数. 这个悬链线高中以前似乎都没有要求的.如果LZ是高中生或还要小.就没必要知道了

悬链线与抛物线的区别

悬链线 (Catenary)指的是一种曲线,指两端固定的一条(粗细与质量分布)均匀、柔软(不能伸长)的链条,在重力的作用下所具有的曲线形状,例如悬索桥等,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其标准方程为:y=a cosh(x/a),其中,a为曲线顶点到横坐标轴的距离。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。标准方程编辑定义右开口抛物线:左开口抛物线:上开口抛物线:下开口抛物线:

悬链线的曲线类型

指两端固定的一条(粗细与质量分布)均匀、柔软(不能伸长)的链条,在重力的作用下所具有的曲线形状,例如悬索桥等,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其标准方程为:y=a cosh(x/a),其中,a为曲线顶点到横坐标轴的距离。解决问题:与达芬奇的时代时隔170年,久负盛名的雅各布·伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。实际上,该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。雅各布觉得,应用奇妙的微积分新方法也许可以解决这一问题。

悬链线方程是什么?

悬链线的方程是一个双曲余弦函数,其标准方程为:y=a cosh(x/a)。悬链线 (Catenary)指的是一种曲线,指两端固定的一条(粗细与质量分布)均匀、柔软(不能伸长)的链条,在重力的作用下所具有的曲线形状。例如悬索桥等,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其标准方程为:y=a cosh(x/a),其中,a为曲线顶点到横坐标轴的距离。发展从外表上看,悬链线真的很像抛物线。荷兰物理学家惠更斯用物理方法证明了这条曲线不是抛物线,但到底是什么,他一时也求不出来。直到几十年后,雅各布·伯努利再次提出这个问题。解决问题与达芬奇的时代时隔170年,久负盛名的雅各布·伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。实际上,该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。雅各布觉得,应用奇妙的微积分新方法也许可以解决这一问题。

悬链线单位重量怎么算

拱桥的力学之前,往往引入看似有些无关的悬链线。悬链线指:一根可以弯曲但不可伸缩、单位长度质量恒定的绳索,在两端固定的情况下自然下垂所形成的曲线。最小作用量原理最小作用量原理也称哈密顿原理,是牛顿力学和拉格朗日力学的分水岭,大致可表述为:粒子所遵循的轨迹是作用量最小化的轨迹。在我们的情况中,悬链线就是在此情形中重力势能最小的曲线。最小作用量属于变分问题,可用变分法求解。假设重力加速度恒为g,则某物体重力势能可表述为 . 设绳子两端点距离为L.建立x-y坐标系,y表示高度,y(x)代表绳索形成的曲线, 绳索关于y轴对称。绳子上每个点的重力势能个表示为重力势能公式两边求导的结果: .设绳索单位长度质量为 , 则根据其定义, , 所以 代入得 作用于整条绳索上的重力势能表示为:要找到使Ug最小的y(x)属于泛函极值问题,如同任何其它极值问题,对自变量求导即可。从上文我们发现,Ug可以表示为x, y(x), y"(x)的函数,记作: 此时使Ug最小化的y(x), L(x)需满足欧拉-拉格朗日方程:欧拉-拉格朗日方程左侧为:右侧偏导数部分为 再对x求导得: 得到等式: 进行一系列暴力化简:对原式再次求导:两边积分,区间为0至x:已知此类微分方程的解为:由坐标系设定,y(x) 应为偶函数,所以c2 = 0代入初值即可得到悬链线的表达式如果将悬链线倒置,将会得到一个稳定的拱形

悬链线什么时候学

大二。悬链线与抛物线相似,是一个完美均匀且灵活的平衡链被它的两端悬挂,并只受重力的影响,形成的曲线形状,例如悬索桥悬链线方程是数学史上的难题之一,在大二会学习它的相关知识。

悬链线的MATLAB编程

你的问题不全,悬链线的MATLAB编程的内容是什么,是悬链线方程,还是悬链线图形,还是悬链线曲线弧长?请说明,这样才能针对性的帮你解决。如有不便,也可以通过其他方式解决。

已知l和f,怎么解出这条悬链线的方程 也就是怎么求a呢,这个方程怎么解

请见ssitong吧网页链接:悬链线方程的推导

悬链线方程是什么时候学的?

1690年。与达芬奇的时代时隔170年,1690年,瑞士数学家雅各布伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。

求高数高手推导悬链线方程.求助…… 设有一均匀,柔软的绳索,两端固定,绳索尽受重力的作用而下垂.

这是一个悬链线的方程式,已知这个曲线过点A(X1,Y1),点B(X2,Y2),C点(X3,Y3)等,现在怎么求常数a呀?

这样问显然有问题!这个方程里只有一个参数a, 怎么可能要求过三个任意的定点? 你给的方程固然没错,但这是过原点,且以y轴为对称轴的悬链线的方程。“过原点”和“以y轴为对称轴”已经限制了自由度,只剩下一个参数a. ------------------------------------------------我说了,现在这样没法求a. 这就好比你问:过一般的三个点的直线方程是什么…… 另外,用追问的方式方便一些~~ -----------------------------------------------抱歉,刚想了一下,三点恐怕确定不了一条一般的悬链线……悬链线和抛物线一样,一般需要由五点确定。 这样的话,这个问题本身就更奇怪了。能否说说此问题的来源?

悬链线方程中的c,h是啥意思?

有弧微分公式 ds=(√(1+y"^2))dxch是双曲余弦代号。

悬链线方程 中的c表示什么含义

分别代表二次、一次系数和常数。其中a表示抛物线的开口的大小b与a表示抛物线的对称轴c表示与y轴的交点为(0,c).

悬链线公式中的常数a如何求?最低点水平张力如何求?

a=水平张力/线密度(链子单位重力)=H/ρ 这一般在解微分方程时用.实际工程中,设计中只给出跨度和索塔处的方向角θ.就可以计算出a. y轴取跨度的中点,x轴取悬索最低点下a处. x0=跨度/2 a=x0/ar sinh(tanθ) 注意:对于任意一点的坐标x和该点的方向角都满足这个公式. 水平张力 T=aρ 其他详细的推导过程和计算,可发邮件----lx.pan@hotmail.com

什么是悬链线拱桥?(最好有图)

悬链线拱桥是利用悬链线的基础上制作的桥型。悬链线 (Catenary) 是一种曲线,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数。表达式的证明如右图,设最低点A处受水平向左的拉力H,右悬挂点处表示为C点,在AC弧线区段任意取一段设为B点,则B受一个斜向上的拉力T,设T和水平方向夹角为θ,AB段绳子的质量为m,显然B点受力平衡,进行受力分析有:注释(1)m=σs ,其中s是右段AB绳子的长度,σ是绳子线密度,即单位长度绳子的质量。代入得微分方程(2)再利用勾股定理 得到:(3)将(3)式代入(2)式得:(4)不妨做一次变量替换,令: 得到如下方程:为了将积分符号去掉,对上式两边对x求导:接下来变量分离并两端进行积分:由于 ,所以上面的积分的解为: (5)(注意,指数-1表示的是反函数,而不是倒数。)下面确定C的值。显然,当x=0时,y"=0,即p=0,所以将该初值条件代入我们得到的解,因为,解得C=0.下面给出反双曲正弦的图像以加强直观认识。反双曲正弦的部分图像然后利用反函数的性质,在(5)式的两边取双曲正弦:

抛物线是什么?可以说“抛物线就是一条弧”吗?悬链线又是什么?

抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹叫做抛物线.定点叫做抛物线的焦点,定直线叫做抛物线的准线. 抛物线不可以说成是一条弧.因为抛物线的线长是无限的.而弧是一个有限的量. 因为弧的概念是:圆周或曲线上任意的一段. 悬链线:是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为: y = a*cosh(x/a) 其中 a 是一个常数. 这个悬链线高中以前似乎都没有要求的.如果LZ是高中生或还要小.就没必要知道了

悬链线方程中的矢跨比是什么意思

:悬链线 (Catenary) 是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为: y = a*cosh(x/a) 其中 a 是一个常数

已知空间两点求悬链线方程

2014-01-03 15:36 吴淑忠 学生 来自西南科技大学 椭圆的方程是x2/4+y2/2=1吧,我就照这样做了(x2即x的平方)设PQ坐标分别为(x1,y1),(x2,y2)MF=a+ex=2+((根号2)/2)*1又因为等差数列得2MF=FP+FQ=(a+ex1)+(a+ex2)=2a+e(x1+x2)MF代入得x1+x2=2 设PQ中点为S,坐标即为(1,t),2t=y1+y2由点差法求得(y1-y2)/(x1-x2)=-1/(y1+y2)=-1/(2t)则PQ为y=(-1/2t)(x-1)+t,则PQ垂直平分线为y=2t(x-1)+t所以当x-1=-1/2时即x=1/2时恒有y=0所以定点A为(1/2,0)则B点为(-1/2,0)d=【(x1+1/2)平方+(y1)平方】开方由椭圆方程得:y平方==2-x2/2d=[x2/2+x+9/4]开方当x=-1/2时有最小值根号2即PB的最小值为根号2,点P坐标为【-1/2,(根号30)/4】

悬链线方程如何得到?

以质量均匀的细链由于重力自然下垂,建立恰当的坐标系,使悬链关于y轴对称,悬链最低点D的切向张力为N,悬链单位长度质量为p,任意一点P的切向张力为T,弧DP长为s,若D得坐标为(0,a)(其中,a=N/p) 则该悬链线方程如下:

悬索线和悬链线的数学方程一样吗

一个完美均匀且灵活的平衡链被它的两端悬挂,并只受重力的影响,这个链子形成的曲线形状被称为悬链线。1690年,荷兰物理学家、数学家、天文学家、发明家克里斯蒂安·惠更斯(Christiaan Huygens)在给德国著名博学家戈特弗里德·莱布尼茨(Gottfried Leibniz)的一封信中创造了这个名字。悬链线与抛物线相似。意大利伟大的天文学家、物理学家和工程师伽利略是第一个研究悬链线的人,并错误地将其形状认定为抛物线。1691年,莱布尼茨、惠根斯和瑞士数学家约翰·伯努利分别得出了正确的形状。他们都是为了响应瑞士数学家雅各布·伯努利(约翰的哥哥)提出的一项挑战,即得到“悬链线”方程。图1:从左到右分别是雅各布·伯努利,戈特弗里德·莱布尼茨,克里斯蒂安·惠更斯和约翰·伯努利u200b莱布尼茨和惠更斯发给雅各布·伯努利的图如下所示。他们发表在《博学学报》上,这是欧洲德语国家的第一份科学期刊。图1:莱布尼茨和惠更斯提交给雅各布·伯努利的答案。约翰·伯努利很高兴,他成功地解决了他哥哥雅各布没能解决的问题。27年后,他在一封信中写道:我哥哥的努力没有成功。就我而言,我更幸运,因为我发现了这个问题的答案。对于我当时的年龄和经验来说,这是一个巨大的成就。……我满心欢喜地跑到哥哥那里,他一直在苦苦地与这个难题作斗争,却没有任何进展,总是像伽利略一样认为这个链线是一个抛物线。我对他说,不要再折磨自己了,不要再试图用抛物线来寻求悬链的方程了,因为那是完全错误的。——约翰·伯努利求悬链线方程为求悬链线方程,作以下假设:悬链悬挂在两点之间,靠自身重量悬挂。悬链是灵活的,有一个统一的线性重量密度(等于w_0)。为了简化代数上的繁琐,我们让y轴通过曲线的最小值。从最小值到点(x, y)的线段长度用s表示。作用在线段上的三个力分别为张力T_0和T以及它自身的重力w_0s(见下图)。前两个力与悬链相切。图2:此图包含计算中使用的参数和变量。要使每一段在水平和垂直上达到平衡,必须满足以下两个条件:式1:长度为s的悬链的平衡条件。我们需要解的微分方程是:式2:我们要解的微分方程。现在我们要把这个方程写成y和x的形式。我们首先对它求导得到:式3:式2的导数。ds/dx的导数可以用dy/dx表示如下:式4图3:式4中使用的无穷小三角形则式3为:式5:悬链线微分方程。为了快速求解式5,我们引入以下变量:式6:解方程5时u的定义利用式6,式5变成:式7:用变量u表示式5。u200b这个方程可以通过变量分离和一个简单的三角代换(u = tan θ)来积分:式8:积分后的式7。u200b因为y轴经过曲线的最小值:式9:变量u在曲线的最小值处为零。u200b将式9代入式8得到:式10:用式9求出式8中的c。u200b将c=0代入式8,求解u,得到:式11:方程5的解,得出了悬链线方程。

悬链线是什么

悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:或者简单地表示为其中cosh是双曲余弦函数,是一个由绳子本身性质和悬挂方式决定的常数,轴为其准线。具体来说,,其中是重力加速度,是线密度(假设绳子密度均匀),而是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了其中L是绳子总长的一半,d是端点距离的一半。悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。在工程中有一种应用,称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:File:Catenary02.png还有以下几个公式,可能也有用:其中是曲线中某点到0点的链索长度,是该点的正切角,是0点处的水平张力,是链索的单位重量。利用上述公式即能计算出任意点的张力。

悬链线随温度变化公式

用应力弧垂表,上面有对应不同代表距下的不同气温(每隔5摄氏度给出一个)的弧垂系数,利用公式可能换算出70度时的弧垂。还有一种办法是直接利用悬链线状态方程,需要利用计算机进行迭代计算,也可以用手工进行简化计算(花时间较长),状态方程式可查阅李博之编著的《高压架空输电线路施工技术手册》。悬链线本质就是双曲余弦函数:y=acoshu2061xay=acosh axu200b 或者写作y=a2(exa+eu2212xa)y= 2au200b (e axu200b +e u2212 axu200b )a=1a=1 时,曲线这个样:改变参数aa 值从 1 变到 5 时,悬链曲线逐渐向上,而且通过(0,a)(0,a)这个点回到原点改变公式,可以将曲线的底端从放回到原点:y=acoshu2061xau2212ay=acosh axu200b u2212a渐屈线悬链线 是 曳物线 的渐屈线(即所有法线所组成的包络线)圣路易斯的拱门悬链线:L=(2T/Pg)*sinh(aPg/2T)其中T为水平拉力,P为绳的线质量密度,a为悬点距离,g为重力加速度。 悬链线(catenary)在物理上是指一条粗细不计的、质量均匀分布的柔软绳子两端悬挂在相同高度的两个点后,当绳子在重力作用下达到平衡后形成的曲线悬链线 (Catenary) 是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为:  y = a*cosh(x/a)   其中 a 是一个常数.悬链线就是把一根绝对柔软,没有任何刚性的绳子,两端挂在垂直的墙上,任其自然悬垂所形成的曲线,其方程为:y=a[e^(x/a)+e^(-x/a)]/2.或简写为y=ach(x/a)(这叫做双曲余弦.)x∈R,x=0时y=a.即a是悬链线在Y轴上的截距.