丢番 图 逼近理论建基于刘维尔关于代数数逼近的定理,该定理简述如下:定理 . 设无理数 α 是个整系数 n 次多项式的根,则存在常数 A > 0,使得对任意两整数 p,q > 0 恒有如右上角图刘维尔定理可用以直接构造超越数。在这之前,数学家们已藉连分数导出关于平方根与其它二次无理数的许多逼近性质。这个结果后来由 Axel Thue 等人改进,并导致 Roth 定理:将刘维尔定理中的指数 n 由代数数的次数缩减到任意的 2+ε(其中 ε>0);之后 Schmidt 将此推广到同步逼近。这些证明颇困难,而且不能得到明确的上界,这在应用上是一大缺憾。 在 Ro th 定理以后,丢番图逼近的主要进展与超越理论相关。均匀分布关乎分布的不规则性,因而带有组合学的本性。丢番图逼近中仍有陈述简单却悬而未解的问题,例如勒特伍德猜想。