密码子

DNA图谱 / 问答 / 标签

密码子与反密码子的定义

密码子定义:指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。反密码子定义:RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对。构成RNA的碱基有四种,每三个碱基的开始两个决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。分析20种氨基酸的密码子表,同一种氨基酸可以由几个不同的密码子来决定,起始密码子为AUG(甲硫氨酸) , 另外还有UAA、UAG、UGA三个密码子不能决定任何氨基酸,是蛋白质合成的终止密码子。扩展资料:密码子与反密码子的特点:1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。3、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。4、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。参考资料来源:百度百科-反密码子参考资料来源:百度百科-密码子

密码子的作用是什么啊?

1、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。2、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。3、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。4、密码子阅读与翻译具有一定的方向性:从5"端到3"端。密码子的作用:密码子表不是生物的事实。而是基于已有的20个必需氨基酸首字母缩写,添加缺如的6个字母后得到的。依次根据氨基酸三字母缩写,中文译名拼音首字母寻找相关,再以其中密码子简并性(即重复性)最强的氨基酸为首选进行替代。可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏爱性来提高异源基因的表达。以上内容参考:百度百科- 密码子

密码子的特点有哪些

1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。6、密码子阅读与翻译具有一定的方向性:从5"端到3"端。7、有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸,一种是缬氨酸,而终止密码子没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来实现翻译的终止。扩展资料:遗传信息、密码子、反密码子的区别与联系,遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基)配对。参考资料来源:百度百科-密码子

名词解释密码子

密码子(codon)是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而在信使RNA分子上的三个碱基能决定一个氨基酸。密码子的应用1、提高基因的异源表达;可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。2、翻译起始效应;mRNA浓度是翻译起始速率的主要影响因素之一,密码子直接影响转录效率,决定mRNA浓度。3、影响蛋白质的结构与功能;基因的密码子偏性与所编码蛋白质结构域的连接区和二级结构单元的连接区有关、翻译速率在连接区会降低。4、基因定位功能;密码子的使用模式在细胞核和细胞质遗传物质之间也存在差异,如核基因中的起始密码子只有ATG,而线粒体基因中的起始密码子为ATN;核基因中的终止密码子TGA在线粒体基因中用来编码色氨酸等。5、预测进化规律;类似的密码子使用模式,预示着物种相近的亲缘关系或生存环境。

密码子是干什么?

我们知道信使rna分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而信使rna分子上的三个碱基能决定一个氨基酸。科学家把信使rna链上决定一个氨基酸的相邻的三个碱基叫做一个“密码子”,也叫三联体密码。特点:①.密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。②.密码子不重叠:两个密码子见没有标点符号,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。③.密码子具有简并性:大多数的氨基酸都可以具有几组不同的密码子④.密码子具有一定的方向性a代表腺嘌呤,g代表鸟嘌呤,c代表胞嘧啶,u代表尿嘧啶

密码子的特点有哪些?

密码子的特点有:简并性,普遍性与特殊性,连续性,摆动性。1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。扩展资料:遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基)配对。提高基因的异源表达:可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏性来提高异源基因的表达。密码子的使用模式在细胞核和细胞质遗传物质之间也存在差异,如核基因中的起始密码子只有ATG,而线粒体基因中的起始密码子为ATN;核基因中的终止密码子TGA在线粒体基因中用来编码色氨酸等。反密码子第一位为A或C时只能识别1种密码子,为G或U时可以识别2种密码子,为I 时可识别三种密码子。如果有几个密码子同时编码一个氨基酸,凡是第一和第二位碱基不同的密码子都对应于各自独立的tRNA。参考资料来源:百度百科——密码子

密码子的性质

密码子的性质1. 通用性:高等生物和低等生物在很大程度上共用一套密码子,体现了生命的同一性。正因为生物共用一套遗传密码子,所以人们才能通过基因工程手段获得所需要的基因工程产物或培育出有新性状的生物体。如将人的胰岛素基因通过基因工程手段转移到大肠杆菌细胞内,正因为大肠杆菌和人在密码子上的通用性,所以才能利用大肠杆菌的快速繁殖来大量合成人的胰岛素。2. 简并性:除色氨酸和甲硫氨酸外,其他氨基酸的密码子均多于1个(2~6个)。简并性并不意味着密码不完善,每个密码子只对应1种氨基酸。简并性可使突变的有害影响减到最小。3. 连续阅读无标点:两个密码之间没有任何标点符号相分隔。因此,阅读密码时从一个正确的起点开始,一个不漏地接着读,直至碰到终止信号为止。若从某处插入或删去一个碱基,就会使该部位以后的密码发生连锁变化。增减非3倍数量碱基对的基因突变常常是致死的。4. 不重叠:任何两个相邻的密码子没有共用的核苷酸。后来虽在某些噬菌体中发现核酸的同一碱基序列可以编码不同的蛋白质,但因其长碱基序列分割成三联体的方式,即可译框架不同,就每种读码方式而言,密码子彼此仍没有共用的核苷酸。如CATCATCATCAT因可译框架不同可以读成CAT CAT CAT CAT,C ATC ATC ATC AT或CA TCA TCA TCA T。5. 专一性:氨基酸似乎主要由密码子的前2个碱基决定,第3个碱基的改变,一般不引起氨基酸的改变。

什么是密码子简并?

分子生物学中,同一种氨基酸具有两个或更多个密码子的现象称为密码子的简并性(degeneracy)。对应于同一种氨基酸的不同密码子称为同义密码子(synonymous codon),只有色氨酸与甲硫氨酸仅有1个密码子。同义密码子通常只在第3位碱基上不同,这样可减少有害突变。扩展资料:生物体共有密码子64个,其中有61个为氨基酸的密码子,另外有3个为无意义密码子。在RNA分子中含有腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和尿嘧啶(U)这样4种碱基,任意选取其中的三个可形成一共64种的密码子。除UAA、UAG和UGA三种作为终止密码子,AUG和GUG作为起始的密码子外,其余的每一种密码子可分别决定一种氨基酸在蛋白质多肽链中的位置,也存在有两种以上的密码子决定同一种氨基酸在多肽链上的排列顺序的现象。

密码子到底有哪些特性

  ①遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。  ② 密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。  ③ 遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。  ④ 遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。  ⑤ 密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。  ⑥ 密码子阅读与翻译具有一定的方向性:从5"端到3"端。  ⑦有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来实现翻译的终止。

密码子是谁发现的?

1 密码子的发现和破译 最早提出遗传密码这一名词的是量子力学奠基人之一,奥地利物理学家施勒丁格(E.Schrodinger,1944)。第一个提出遗传密码具体设想的是美国物理学家G.Gamov,他通过推算提出了三联体密码子的概念,并且进一步推论一种氨基酸可能不止有一个密码子。克里克(Crick)、布伦纳(S.Brenner)等人以T4噬菌体作为主要研究材料,证实了三联体密码子决定20种不同的氨基酸。 第一个用实验破译密码子的是马太(Matthaei)和尼伦伯格(Nirenberg),1961年,他们在实验室内把大量的大肠杆菌磨碎制成无细胞提取液,其中含有蛋白质合成所必须的各种酶和氨基酸,然后装入试管,加入少量ATP和人工合成的聚尿嘧啶核苷酸,结果合成的肽链完全是由Phe连接起来的。这一实验说明,Phe的密码子一定是UUU。用同样的方法,得知Pro的密码子是CCC、Lys的密码子是AAA等。 随着技术的改进,以后又人工合成了6种不同的mRNA多聚体,每个多聚体只含有2个碱基,用它们作模板进行蛋白质合成实验。结果表明,在合成的肽链中一种氨基酸和另一种氨基酸的比例决定于上述的碱基比例。例如,用70%的U和30%的A合成RNA,U和A是自由排列的,UUU顺序的三联体的机率是0.7×0.7×0.7≈0.34,即有34%的三联体是UUU。而三联体UUA的机率是0.7×0.7×0.3≈0.15,即15%的三联体是UUA。用上述比例合成的RNA作模板,进行蛋白质的合成。结果发现了30%的聚Phe链和15%的聚Leu链。证明UUU是Phe密码子,而UUA则是Leu的密码子。

生物密码子有哪些特征?

①.密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。②.密码子不重叠:两个密码子见没有标点符号,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。③.密码子具有简并性:大多数的氨基酸都可以具有几组不同的密码子④.密码子阅读与翻译具有一定的方向性:从5"端到3"端.A代表腺嘌呤,G代表鸟嘌呤,C代表胞嘧啶,U代表尿嘧啶,T代表胸腺嘧啶

密码子的种类有多少种?

密码子的种类共有64种。

什么是起始密码子?

起始密码子是AUG、GUG、UUG。真核生物的起始密码子均为AUG(编码甲硫氨酸);而原核生物的起始密码子有三种:AUG、GUG和UUG,绝大多数情况下是AUG(编码甲酰甲硫氨酸),少数情况下GUG也可以是起始密码子。但作为起始密码子, GUG也编码甲酰甲硫氨酸。也就是说,GUG作为肽链中间的密码子,编码缬氨酸,只在原核生物中作为起始密码子时,才编码甲酰甲硫氨酸。选择识别原核生物的翻译要靠核糖体30S亚基识别mRNA上的起始密码子AUG,以此决定它的可译框架,AUG的识别由fMet-tRNA中含有的碱基配对信息(3"-UAC-5")来完成。原核生物中还存在其他可选择的起始密码子,14%的大肠杆菌基因起始密码子为GUG,3%为UUG,另有2个基因使用AUU。这些不常见的起始密码子与fMet-tRNA的配对能力较AUG弱,从而导致翻译效率的降低。以上内容参考 百度百科--起始密码子

遗传密码子有哪些特点,请列举出来并进行简要解释

方向性,密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5"端至3"端;连续性,mRNA的读码方向从5"端至3"端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成框移突变;简并性,指一个氨基酸具有两个或两个以上的密码子。密码子的第三位碱基改变往往不影响氨基酸翻译;摆动性,mRNA上的密码子与转移RNA(tRNA)J上的反密码子配对辨认时,大多数情况遵守碱基互补配对原则,但也可出现不严格配对,尤其是密码子的第三位碱基与反密码子的第一位碱基配对时常出现不严格碱基互补,这种现象称为摆动配对;通用性,蛋白质生物合成的整套密码,从原核生物到人类都通用。但已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。扩展资料在蛋白质合成的过程中,基因先被从DNA转录为对应的RNA模板,即信使RNA(mRNA)。接下来在核糖体和转移RNA(tRNA)以及一些酶的作用下,由该RNA模板转译成为氨基酸组成的链(多肽),然后经过翻译后修饰形成蛋白质。因为密码子由三个核苷酸组成,故一共有43=64种密码子。例如,RNA序列UAGCAAUCC包含了三个密码子:UAG,CAA和UCC。这段RNA编码了代表了长度为3个氨基酸的一段蛋白质序列。(DNA也有类似的序列,但是以T代替了U)。参考资料来源:百度百科——遗传密码

哪是密码子,哪是反密码子

是这样的,密码子和反密码子不是颠倒就行的,是需要互补。密码子ugc实际是5“ugc3”反密码子是gca是3”acg5“等于gca(5gca3)你看上面的a跟u互补,第二位g跟c互补,第三位c跟g互补。这叫反密码子。不明白的再说。不是反密码子与密码子前后两个字母要换过来哦。再举个例子。gac的反密码子是gtc。是需要把密码子先反过来得到cag,然后换成互补的。c换成g,a换成t,g换成c,就得到反密码子gtc。

遗传密码与密码子有什么区别联系?

区别:遗传密码是指信使RNA上核苷酸序列,密码子是指信使RNA上决定一个氨基酸的三个相邻的核苷酸序列。联系:“遗传密码”由“密码子”组成。

密码子是什么

密码子(codon)是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而在信使RNA分子上的三个碱基能决定一个氨基酸。密码子(codon):mRNA(或DNA)上的三联体核苷酸残基序列,该序列编码着一个特定的氨基酸,tRNA的反密码子与mRNA的密码子互补。起始密码子(iniationcodon):指定蛋白质合成起始位点的密码子。最常见的起始密码子是甲硫氨酸或缬氨酸密码。终止密码子(terminationcodon):任何tRNA分子都不能正常识别的,但可被特殊的蛋白质结合并引起新合成的肽链从翻译机器上释放的密码子。存在三个终止密码子:UAG,UAA和UGA。

什么是密码子?

密码子(codon)是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而在信使RNA分子上的三个碱基能决定一个氨基酸。​密码子(condon):mRNA(或DNA)上的三联体核苷酸残基序列,该序列编码着一个指定的氨基酸 ,tRNA 的反密码子与mRNA的密码子互补。起始密码子(iniation codon):指定蛋白质合成起始位点的密码子。最常见的起始密码子是甲硫氨酸或缬氨酸密码。终止密码子(termination codon):任何tRNA分子都不能正常识别的,但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。存在三个终止密码子:UAG ,UAA和UGA

密码子的概念

密码子是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而在信使RNA分子上的三个碱基能决定一个氨基酸。密码子:除了少数的不同之外,地球上已知生物的遗传密码均非常接近;因此根据演化论,遗传密码应在生命历史中很早期就出现。现有的证据表明遗传密码的设定并非是随机的结果,有一种解释是,一些氨基酸和它们相对应的密码子有选择性的化学结合力,这就显示现在复杂的蛋白质制造过程可能并不是一早就存在,而最初的蛋白质很可能是在核酸上直接形成。

密码子的特点有哪些?

密码子的特点有:简并性,普遍性与特殊性,连续性,摆动性。1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。扩展资料:遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基)配对。提高基因的异源表达:可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏性来提高异源基因的表达。密码子的使用模式在细胞核和细胞质遗传物质之间也存在差异,如核基因中的起始密码子只有ATG,而线粒体基因中的起始密码子为ATN;核基因中的终止密码子TGA在线粒体基因中用来编码色氨酸等。反密码子第一位为A或C时只能识别1种密码子,为G或U时可以识别2种密码子,为I 时可识别三种密码子。如果有几个密码子同时编码一个氨基酸,凡是第一和第二位碱基不同的密码子都对应于各自独立的tRNA。参考资料来源:百度百科——密码子

密码子是什么

问题一:什么是密码子 而信使RNA分子上的三个碱基能决定一个氨基酸。科学家把信使RNA链上决定一个氨基酸的相邻的三个碱基叫做一个“密码子”,也叫三联体密码。特点:①. 密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。②. 密码子不重叠:两个密码子见没有标点符号,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。③. 密码子具有简并性:大多数的氨基酸都可以具有几组不同的密码子④. 密码子具有一定的方向性 问题二:密码子是什么 CTG选择A答案 问题三:密码子是什么? mRNA上3个相邻的碱基决定一个氨基埂。每3个这样的碱基称作1个密码子。密码子共有64个,其中3个为终止密码子,不编码氨基酸。 问题四:什么是密码子?它是在DNA上还是在RNA上? 密码子   密码子 定义:mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸,称为密码子。 科学家已经发现,信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。也就是说,信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。碱基数目与氨基酸种类、数目的对应关系是怎样的呢?为了确定这种关系,研究人员在试管中加入一个有120个碱基的信使RNA分子和合成蛋白质所需的一切物质,结果产生出一个含40个氨基酸的多肽分子。可见,信使RNA分子上的三个碱基能决定一个氨基酸。科学家把信使RNA链上决定一个氨基酸的相邻的三个碱基叫做一个“密码子”,亦称三联体密码。 构成RNA的碱基有四种,每三个碱基决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。怎样决定20种氨基酸呢?仔细分析20种氨基酸的密码子表,就可以发现,同一种氨基酸可以由几个不同的密码子来决定,启始密码子为AUG(甲硫氨酸) GUG(缬氨酸), 另外还有UAA、UAG、UGA三个密码子不能决定任何氨基酸,是蛋白质合成的终止密码子 baike.baidu/view/84003?fr=ala0_1加油 问题五:密码子的简并性是什么 同一种氨基酸攻有两个或更多个密码子的现象称为密码子的简并性。(也就是多个密码子可以编码同一个氨基酸) 编码同一种氨基酸的不同密码子可以称为同义密码子。 问题六:密码子与反密码子在组成上的区别是什么? 密码子决定氨基酸序列,反密码子决定哪一种氨基酸在哪一个位置

密码子有多少种

密码子有64种,其中有61种氨基酸密码子(包括起始密码子)及3个终止密码子,终止密码子不能编码蛋白质。密码子是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。 密码子有64种,其中有61种氨基酸密码子(包括起始密码子)及3个终止密码子,终止密码子不能编码蛋白质。密码子是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。

操纵子、增强子、复制子、沉默子、密码子、顺反子、外显子、内含子各是什么概念?

1)复制子是独立完成DNA复制的功能单位,习惯上把两个相邻起始点之间的距离定为一个复制子,真核生物是多复制子的复制。2)操纵子,转录是不连续、分区段进行的,每一转录区段可视为一个转录单位,称为操纵子。它包括若干个结构基因及其上游的一个调控序列。3)顺反子,遗传学上将编码一个多肽的遗传单位称为顺反子。原核生物中数个结构基因常串联为一个转录单位,转录生成的mR-NA可编码几种功能相关的蛋白质,为多顺反子。真核生物mRNA比原核生物种类更多,一个mRNA只编码一种蛋白质,为单顺反子。4)密码子,在mRNA信息区内,相邻3个核苷酸组成1个三联体的遗传密码,编码一种氨基酸,称为密码子。5)增强子是远离转录起始点、决定的基因的时间空间特异性表达、增强启动子转录活性的DNA序列,其发挥作用的方式通常与方向、距离无关。6)沉默子,某些基因含有负性调节元件—沉默子,当其结合特异蛋白质因子时,对基因转录起阻遏作用。7)外显子和内含子,分别代表真核生物基因的编码和非编码序列。外显子,在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。内含子,是隔断基因的线性表达而在剪接过程上被除去的核酸序列。

转录起始位点和起始密码子之间是不是UTR区???

是的是UTR的

转录起始位点和起始密码子是一个意思吗?怎么查找转录起始位点?

不是转录起始位点又叫启动子,它是RNA聚合酶识别和结合位点。它的作用是启动DNA转录为RNA。而起始密码子是的作用是启动RNA的翻译过程。前者位于基因(DNA)的非编码区(新教材已删节),而后者位于mRNA的前端。

转录起始位点和起始密码子是一个意思吗?怎么查找转录起始位点?

不是转录起始位点又叫启动子,它是RNA聚合酶识别和结合位点。它的作用是启动DNA转录为RNA。而起始密码子是的作用是启动RNA的翻译过程。前者位于基因(DNA)的非编码区(新教材已删节),而后者位于mRNA的前端。

在一个典型的基因内部,转录起始位点(TSS)、转录终止位点(TTS)、起始密码子编码序列(ATG)、终止密

已知基因的结构包括编码区和非编码区,编码区分上游和下游,真核生物基因的编码区还分外显子和内含子.即基因的结构是非编码区上游、编码区、非编码区的下游.在编码区的上游有启动子,其上含有转录起始位点(TSS)、在编码区先有起始密码子编码序列(ATG),最后有终止密码子编码序列(TGA)、在非编码区的下游有终止子,其上含有转录终止位点(TTS),所以在一个典型的基因内部,以上四种序列的排列顺序是TSS-ATG-TGA-TTS.故选:B.

编码区、非编码区、外显子、内含子、起始密码子、终止密码子的区别?

无论真核细胞还是原核细胞其基因均有编码区(能转录mRNA,进而编码蛋白质)与非编码区(不能转录mRNA,不能编码蛋白质),真核细胞基因的编码区可分为外显子(可编码蛋白质)、内含子(不能编码蛋白质)。而密码子位于mRNA上,起始密码子有AUG(决定甲硫氨酸)和GUG(决定缬氨酸),而终止密码子则有UAA、UAG、UGA,不决定氨基酸

mRNA上所有的密码子均来自编码区的转录么?有可能来自非编码区的转录么?

是的,均来自编码区的转录。不可能来自非编码区。————————基因分为:编码区,非编码区。编码区是指能够转录信使RNA的部分,它能够合成相应的蛋白质;而非编码区是不能够转录信使RNA的DNA结构,但是它能够调控遗传信息的表达。 真核生物的基因组成是编码区和非编码区,其中编码区是由外显子和内含子组成的,但是其中内含子又是非编码序列,所以说真核细胞基因结构中,非编码区和内含子是非编码序列 。 内含子属于编码区。含有内含子的基因能转录出前体RNA,再由内含子转录出来的部分进行自我切割,才得到成熟的mRNA,没有内含子也就没有自我切割。原核细胞只有编码区和非编码区!没有内含子和外显子之分。真核生物才有内含子和外显子。

编码区、非编码区、外显子、内含子、起始密码子、终止密码子的区别?

无论真核细胞还是原核细胞其基因均有编码区(能转录mRNA,进而编码蛋白质)与非编码区(不能转录mRNA,不能编码蛋白质),真核细胞基因的编码区可分为外显子(可编码蛋白质)、内含子(不能编码蛋白质)。而密码子位于mRNA上,起始密码子有AUG(决定甲硫氨酸)和GUG(决定缬氨酸),而终止密码子则有UAA、UAG、UGA,不决定氨基酸

密码子有特异性吗 密码子有物种特异性,所以不同生物合成的蛋白质不同 为什么不对

密码子没有特异性,密码子具有通用性,不同生物共用一套遗传密码子,这从另一侧面也验证了不同生物具有亲缘关系。不同生物合成的蛋白质不同,归根到底是因为他们的DNA不同,因此转录形成了不同的mRNA,mRNA上具有了不同的密码子(注意密码子所代表的含义是一致的,即密码子具有通用性,但有64种密码子,不同生物转录形成的密码子可能是64种中的不同类别或不同的排列顺序),最终导致合成的蛋白质不同。也就是说,不同蛋白质合成的根本原因是DNA的不同,而不是密码子具有什么特异性。

胞嘧啶对应的密码子是啥

碱基互补配对原则,即腺嘌呤(A)只与胸腺嘧啶(T) 或尿嘧啶(U)相连,鸟嘌呤(G)只与胞嘧啶(C)相连,A、T间A、U间形成两个氢键相连,G、C间形成三个氢键相连。

启动子和起始密码子在信使RNA中是怎样的?

起始密码子是信使RNA上的三个碱基。启动子和信使RNA没有直接关系是DNA上的一段序列。

信使RNA上相邻的三个碱基就是一个密码子是对的还是错的?原因是?

错!信使RNA上初始碱基往往要与翻译过程所需的某些成分结合在一起。要从AUG或GUG开始算起,每相邻三个碱基构成一个密码子的。AUG或GUG充当了起始密码子,同时本身也能决定相应的氨基酸。

终止密码子是哪三个?

分别是UAA , UAG , UGA。UAA也称为赭石型( ochre),UAG称为琥珀型( amber),UGA称为乳白型(opal)密码子。所有这3个密码子均是作为肽链终止的密码子,它们在蛋白质合成中起着终止肽链延长的作用。有两个释放因子RF1和RF2,它们分别识别2个终止密码子:RF1识别UAA和UAG,RF2识别UAA和UGA。RF1和RF2均是蛋白质,这便表明,多核苷酸不仅可以和另一种多核苷酸相互作用,也可以和蛋白质起相互作用;也即是说,不仅碱基与碱基之间可以生成氢键而互相识别,也可以和蛋白质中的氨基酸生成氢键而被识别 。起始密码子:信使RNA(mRNA)的开放阅读框架区中,每3个相邻的核苷酸为一组,代表一种氨基酸,这种存在于mRNA开放阅读框架区的三联体形式的核苷酸序列称为密码子(codon)。由A、U、C、G四种核苷酸可组成64个密码子,其中有61个密码子可编码氨基酸。AUG既编码甲硫氨酸,又作为多肽链合成的起始信号,作为起始信号的密码子称为起始密码子。绝大多数生物的起始密码子 (initiation codon)都是AUG,作为多肽链合成的起始信号,同时编码一种氨基酸,原核生物的起始密码子AUG翻译对应的是甲酰甲硫氨酸(fMet),真核生物的起始密码子AUG翻译对应的是甲硫氨酸(Met)。某些原核生物也以GUG和UUG为起始密码子。

(基因表达)为什么转录翻译后胸腺嘧啶就消失了,在之后就没出现过了,为什么密码子表只有AUGC没有T?

这是转录,不是DNA的复制。基因转录是以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。转录出来的是mRNA,是信使RNA,它的作用就是为蛋白质的合成提供模板的。T是胸腺嘧啶,只存在于DNA中,在RNA中是U,尿嘧啶。因为基因是通过不同的蛋白质来表达的,而蛋白质又是以mRNA为模板合成出来的,所以遗传密码就以mRNA中的碱基序列来表示了。就是说,在遗传密码表中,只有U,没有T了。遗传密码表

DNA序列、氨基酸、碱基、密码子,非密码子你知道多少?(急)

DNA序列就是ATCUG一个排列顺序,三个密码子决定一个氨基酸密码子就是信使RNA上三个连续的碱基.非密码子就好似与密码子互补配对的移动RNA
 首页 上一页  1 2