辗转相除法

DNA图谱 / 问答 / 标签

辗转相除法、更相减损法和秦九韶算法的历史?

辗转相除法,又名欧几里德算法(Euclideanalgorithm),是已知最古老的算法,其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第VII卷,命题i和ii)中更相减损术,又称"等值算法",<九章算术>中介绍了这个方法,叫做”更相减损术”,数学家刘徽对此法进行了明确的注解和说明,成书时间在汉朝,先秦就开始编纂。秦九韶是南宋数学家,所以是南宋。

辗转相除法,秦九韶算法高考考吗

辗转相除法,又名欧几里德算法(euclideanalgorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法,其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第vii卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。更相减损术,又称"等值算法"编纂于秦,书成于汉代。“关于约分问题,实质是如何求分子,分母最大公约数的问题.<九章算术>中介绍了这个方法,叫做”更相减损术”,数学家刘徽对此法进行了明确的注解和说明,是一个实用的数学方法,中学生应该掌握它.例1.今有九十一分之四十九,问约之得几何?我们用(91,49)表示91和49的最大公约数.按刘徽所说,分别列出分子,分母,”以少减多,更相减损,求其等也,以等数约之,等数约之,即除也,其所以相减者皆等数之重叠,故以等数约之.”列式如下:91491494214275357这里得到的7就叫做”等数”,91和49都是这等数的重叠(即倍数),故7为其公约数.而7和7的最大公约数就是7,(7,7)=7,所以(91,49)=(42,7)=(7,7)=7更相减损术在现代仍有理论意义和实用价值.吴文俊教授说:”在我国,求两数最大公约数即等数,用更相减损之术,将两数以小减大累减以得之,如求24与15的等数,其逐步减损如下表所示:(24,15)->(9,15)->(9,6)->(3,6)->(3,3)每次所得两数与前两数有相同的等数,两数之值逐步减少,因而到有限步后必然获得相同的两数,也即所求的等数,其理由不证自明.这个寓理于算不证自明的方法,是完全构造性与机械化的尽可以据此编成程序上机实施”.吴先生的话不仅说明了此法的理论价值,而且指明学习和研究的方向.更相减损法很有研究价值,它奠定了我国渐近分数,不定分析,同余式论和大衍求一术的理论基础.望能仔细品味秦九韶是南宋数学家,关于秦九韶算法,直到今天,这种算法仍是多项式求值比较先进的算法