下列不属于世界人类基因组与人权宣言的基本原则是?
【单选题】关于新陈代谢的说法,下面哪一项是错误的( )。A、新陈代谢包括同化和异化作用B、同化作用就是合成自己的身体C、同化作用和异化作用不会同时进行D、异化作用就是消耗身体的部分答案:C【单选题】生命的最基本特征不包括()。A、新陈代谢B、应激性和运动C、兴奋性D、适应性答案:C【判断题】虽然生命科学的研究领域涉及面广,但其发展是朝微观方向和宏观方向两个方向进行的。答案:√【单选题】下列哪个不属于生命伦理学的研究层面()。A、理论层面B、实践层面C、研究层面D、政策层面答案:B【单选题】Ethic的基本词义是()。A、道德哲学B、行为哲学C、道德准则D、道德准则与行为哲学答案:A【判断题】生命伦理学中影响最为深远的是文化层面。答案:√【单选题】生命伦理学产生于()。A、20世纪60-70年代B、20世纪50-60年代C、20世纪70-80年代D、20世纪40-50年代答案:A【单选题】伦理学问题的产生主要体现在哪些方面()。A、医院角色的变化B、科学技术的主导性C、医学专家化的发展D、以上都是答案:D【判断题】与生命伦理学产生相关的三大事件是:广岛原子弹爆炸、德国纽伦堡对纳粹战犯的审判、克隆人之争。答案:X【单选题】医学治疗中,“弃卒保车”是遵循了()。A、行善原则B、自主原则C、不伤害原则D、公正原则答案:A【单选题】病人在有关治疗方案上签字同意属于()。A、自主权B、知情同意权C、保密、隐私权D、生命权答案:B【判断题】生命伦理学的基本原则是:行善原则、自主原则、不伤害原则、公正原则。答案:√【单选题】基因是什么()。A、RNAB、DNAC、有遗传效应的DNA片段D、特定的DNA片段答案:C【单选题】转基因技术流程的第三步为()。A、基因表达载体的构建B、目的基因的获取C、目的基因的检测和表达D、将目的基因导入受体细胞答案:D【判断题】按受体可将转基因技术分为:人工转基因、动物转基因、植物转基因。答案:X【单选题】下列关于转基因微生物的说法,哪个是错误的()。A、转基因的微生物就是重组基因技术为核心B、转基因微生物还用于商业化的食品、医药、饲料这些方面C、转基因微生物包括生物技术改造的微生物及其产品D、转基因微生物制造的微生物杀虫剂并不能很好的增强杀虫效果答案:D【单选题】用转基因作物生产的转基因食品有哪些优点?A、高产B、抗病C、品质优良D、以上都对答案:D【判断题】转基因动物可通过遗传物质转移、细胞融合、原生质体融合等技术获得。答案:X【单选题】转基因技术的发展始于()。A、20世纪70年代B、20世纪80年代C、20世纪90年代初期D、20世纪90年代后期答案:A【单选题】转基因技术的应用领域包括()。A、农业生产与工业发展B、医药领域C、环保、能源、新材料领域D、以上都对答案:D【判断题】20世纪90年代初期--中后期,转基因技术处于产业化的发展阶段。答案:√【单选题】转基因生物涉及哪些安全问题()。A、毒性、过敏性与公共安全问题B、抗药性和有益成分问题C、生态环境和生物多样性破坏问题D、以上都对答案:D【单选题】巴西豆事件涉及了转基因生物的何种安全问题()。A、过敏性问题B、抗药性问题C、有益成分问题D、毒性问题答案:A【判断题】广义的“生物安全”包括:外来生物入侵、重大生物灾害、转基因生物、生物武器。答案:√【单选题】如何理性看待转基因技术()。A、以科学的态度对待B、加大转基因科普的宣传C、加强转基因生物安全管理D、以上都是答案:D【单选题】在转基因的研究中,首先应进行()。A、生产性实验阶段B、环境评估阶段C、实验研究阶段D、中间实验阶段答案:C【判断题】近年来,在科学界、伦理学界和宗教界,人兽嵌合存在很大的争议。答案:√【单选题】我国的转基因生物安全法规、技术规程和管理体系有何特点()。A、制度设计严格规范B、评价体系科学健全C、技术支撑保障有力D、以上都是答案:D【单选题】2001年我国农业部发布的规范转基因技术应用的条例为()。A、《农业转基因生物安全管理条例》B、《农业转基因生物安全评价管理办法》C、《农业转基因生物进口安全管理办法》D、《农业转基因生物标识管理办法》答案:A【判断题】欧盟对转基因技术采取的原则是谨慎预防原则与可靠安全原则。答案:X【单选题】控制生物性状的基本遗传单位是( )。A、DNA片段B、RNAC、DNAD、核苷酸答案:A【单选题】人类基因组计划正式启动的时间是( )。A、1945B、1985C、1986D、1990答案:D【判断题】人类基因组计划预计完成整个人类基因组23亿对核苷酸的测序。答案:X【单选题】我国在( )年加入人类基因组计划,并承担()的任务。A、1999;11%B、1994;1%C、1999;1%D、1994;11%答案:C【单选题】HGP于()完成了包含基因序列中的98%测定,精确度达到99.9%。A、1999年B、2000年C、2003年D、2004年答案:C【单选题】HGP完成的四张图谱是遗传图谱、物理图谱、序列图谱和()。A、DNA图谱B、转录图谱C、密码子图谱D、核苷酸图谱答案:B【判断题】人类基因组计划测序工作的第一步是绘制遗传图谱。答案:X【判断题】DNA物理图谱是指DNA链的限制性酶切片段的排列顺序。答案:√【单选题】下列哪项不是基因诊断技术的特点。A、针对直接病因诊断B、适应性强,针对个别案例进行检测C、特异性强,灵敏度高D、在感染性疾病的诊断中,可检测正在生长的病原体或潜伏病原体答案:B【单选题】基因诊断和研究试剂产业不包括。A、基因和抗体试剂盒B、诊断和研究用生物芯片C、基因改造芯片制作和移植D、疾病和筛药模型答案:C【单选题】人类基因组计划的研究的几个主要应用方面不包括( )。A、对人类基因缺陷研究贡献B、对于生物技术的贡献C、对于细胞、胚胎、组织工程的推动D、对制药工程的贡献答案:A【判断题】基因诊断的样本可以是任何细胞,并且具有特异性强、灵敏度高、适应性强等特点。()答案:X【判断题】人和灵长类的大猩猩之间基因组比较的差异小于1%答案:√【单选题】在对患者进行治疗时,研究人员为了得到研究材料,而不告知患者,这损害了患者的()。A、隐私权B、知情权C、人身自由权D、生存权答案:B【单选题】基因测试是在什么水平上进行的?A、组织生物学B、细胞生物学C、分子生物学D、遗传学答案:C【单选题】以下哪个选项不是基因测试的应用?A、亲子鉴定B、癌症治疗C、刑侦D、疾病诊断答案:B【判断题】基因测试是以探测基因的存在,分析基因的类型和缺陷及表达功能是否正常,从而达到诊断疾病的一种方法。( )答案:√【判断题】基因歧视会对携带“缺陷基因”者的生活造成影响。( )答案:√【单选题】以下哪个选项不是基因治疗的作用?A、预防B、治疗C、治愈D、防止传染答案:D【单选题】以下哪个选项不是基因治疗引发的伦理问题A、无法进行生殖治疗B、改变了人的遗传信息C、可能导致优生主义D、如何处理出现遗传缺陷的实验人群答案:A【判断题】根据治疗的对象将基因治疗分为体细胞治疗和生殖细胞治疗答案:√【单选题】美国最高法院对自然状态人类基因的基因专利的态度是( )A、允许申请B、不能申请C、态度还不明确D、正在审核答案:B【单选题】基因专利有特殊性,和其他专利的不同之处不包括( )A、基因专利关系到国家战争B、基因专利研究投入高C、基因专利关系到每个人的切身利益D、基因专利申请通过率低答案:C【判断题】作为发展中国家的中国,我国很有必要去保护基因资源( )答案:√【单选题】以下不属于基因武器的类别的是?A、微生物基因武器B、毒素基因武器C、克隆性基因武器D、种族基因武器答案:C【单选题】基因武器的威力不包括()。A、精确的分辩能力B、杀伤力大C、无法防治D、有强烈的心理威慑作用答案:C【判断题】基因武器通过基因重组技术制造成生物武器,它能改变非治病微生物的遗传物质,使其产生显著抗药性的致病菌。答案:√【单选题】《世界人类基因组与人权宣言》是哪个国家(组织)发布的?A、美国B、联合国教科文组织C、瑞士D、世界卫生组织答案:B【单选题】《关于人胚胎干细胞研究的伦理原则》是中国在哪一年颁布的?A、1997B、1998C、2000D、2003答案:D【判断题】联合国教科文组织、世界卫生组织等国际权威组织在1997年至2005年共颁布有关人类基因组研究的伦理准则的文件共10个。答案:X【单选题】下列不属于干细胞特性的是()。A、干细胞能无限增殖分裂B、干细胞本身不是终末分化细胞(即干细胞不是处于分化途径的终端)C、干细胞在特定的环境下培养,经过分裂分化后可以形成一个完整的生物个体。D、干细胞可连续分裂几代,也可在较长时间内处于静止状态答案:C【单选题】干细胞的形态特征不包括( )A、有明显的细胞界限B、细胞核较大C、有明显的核仁D、有一个或者多个核仁答案:A【判断题】干细胞(Stem Cell)是一种充分分化且成熟的细胞,具有再生各种组织
scATAC:人类基因组的染色质可及性图谱-3
scATAC:人类基因组的染色质可及性图谱 scATAC:人类基因组的染色质可及性图谱-1 scATAC:人类基因组的染色质可及性图谱-2 results3: An atlas of cCREs in adult human cell types 成年人类的细胞类型cCRES图谱 为了识别 111 种细胞类型中的每一种中的可接近染色质区域,我们汇总了来自每个细胞簇的所有细胞核的染色质可接近性概况,并应用了针对单细胞数据优化的峰值调用程序。然后,我们合并了这些可访问的染色质区域,以获得 890,130 个non-overlapping cCRE 的列表(图 2A)。 这些 cCRE 涵盖了 ENCODE 联盟发布的 cCRE 注册表中 58.9% 的元件,还包括 420,152 个以前未注释的元素。为了对这些 cCRE 进行基准测试(benchmark),我们接下来比较了在当前研究中由批量 DNase-seq 分析的生物样本和由 sci-ATAC-seq 识别的细胞类型之间的染色质可及性概况。总的来说,sci-ATAC-seq 细胞类型比bulk tissue或永生化细胞系生物样品更接近原代细胞类型生物样品,并且由 sci-ATAC-seq 定义的具有较高组织丰度的流行细胞类型与bulk tissue更相似,与DNase-seq 生物样本相比,具有更多稀有细胞类型。在当前研究中描述的 111 种细胞类型中,44 种(40%)与 ENCODE 联盟描述的任何大量生物样本没有显示出统计学上显着的相关性。这些细胞类型中有许多是罕见的:它们的最大组织丰度中位数仅为 3.2%,其中 36 个(81.8%)占任何组织中所有细胞的不到 10%。总之,这些研究结果表明,我们的数据集将以前代表性不足的 cCRE 从体内人类细胞类型贡献到现有目录中,特别是来自bulk tissue中丰度低的细胞类型。 为了评估这些 cCRE 的潜在功能,我们接下来将它们与转基因报告基因验证的哺乳动物增强子目录进行比较,发现经过验证的组织特异性增强子在占很大比例的细胞类型中,并且在对应组织中鉴定出的细胞核表现出更高的染色质可及性 (图 2B)。 例如,与其他细胞类型相比,心脏中经过验证的增强子在心房心肌细胞(Z 评分:1.41)和心室心肌细胞(Z 评分:1.43)中显示出更高的平均染色质可及性(图 2B),这表明细胞类型特异性之间存在良好的相关性染色质可及性和组织特异性增强子活性。我们进一步发现,来自 49 种成人组织类型(GTEx Consortium,2020)的表达数量性状基因座 (eQTL) 在流行的细胞类型中最常见,例如内皮细胞和平滑肌细胞。此外,来自同质组织(如肝脏和甲状腺)的 eQTL 在相应的细胞类型中显示出最强的可及性,这些细胞类型包含组织中鉴定的大部分细胞核。这些结果表明, bulk tissue eQTL 最能代表与丰富细胞类型和同质组织中的基因表达相关的序列变异,并且对于同质组织中的稀有细胞类型或异质组织中的独特细胞类型可能不太具有代表性。 接下来,我们根据到最近的 TSS 的距离对每个 cCRE 进行分类,如图 2A 所示。当前目录中的大多数 (80.94%) cCRE 与带注释的 TSS 相距超过 2,000 bp。直接位于 TSS 上方或启动子区域附近的 cCRE 显示出更高水平的序列保守性和更高的染色质可及性(图 2C 和 2D)。 相比之下,基因远端 cCRE 的可访问性较低,并且相对于其可访问性显示出更大的差异(图 2D),表明存在高度可访问的启动子近端 cCRE 的共享程序以及跨细胞类型和物种的基因远端 cCRE 的可变程序。为了进一步剖析细胞类型特异性染色质特征和调控程序,我们应用基于熵的策略揭示了 435,142 个 cCRE,这些 cCRE 在一种或几种细胞类型中表现出受限的可及性(图 2E)。 接下来,我们对细胞类型受限的 cCRE 应用了 GREAT GO富集分析和基序富集分析,以揭示每种细胞类型的推定生物学过程和 TF,这在很大程度上与预期的细胞类型特异性功能相关( [FDR] <0.01) .例如,仅限于肝细胞的 cCRE 产生了生物过程GO Term,例如类固醇代谢过程(图 2F), 并且富含肝细胞核因子 TF 家族成员 HNF1A/B、HNF4A/G 和 ONECUT1/2 的结合位点(图 2G) 。
关于人类基因组计划的背景
人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。 2001年2月12日,美国Celera公司与人类基因组计划分别在《科学》和《自然》杂志上公布了人类基因组精细图谱及其初步分析结果。其中,政府资助的人类基因组计划采取基因图策略,而Celera公司采取了“鸟枪策略”。至此,两个不同的组织使用不同的方法都实现了他们共同的目标:完成对整个人类基因组的测序的工作完成测序不等于明确都有什么基因,这需要很长时间研究的。有一本书,很厚很大,可以去找找
人类基因组计划的主要实例
人类基因组研究的一个关键应用是通过位置克隆寻找未知生物化学功能的疾病基因。这个方法包括通过患病家族连锁分析来绘制包含这些基因的染色体区域图,然后检查该区域来寻找基因。位置克隆是很有用的,但是也是非常乏味的。当在1980s早期该方法第一次提出时,希望实现位置克隆的研究者们不得不产生遗传标记来跟踪遗传,进行染色体行走得到覆盖该区域的基因组DNA,通过直接测序或间接基因识别方法分析大约1Mb大小的区域。最早的两个障碍在1990s中期在人类基因组项目的支持下随着人类染色体的遗传和物理图谱的发展而清除。然而,剩余的障碍仍然是艰难的。所有这些将随着人类基因组序列草图的实用性而改变。在公共数据库中的人类基因组序列使得候选基因的计算机快速识别成为可能,随之进行相关候选基因的突变检测,需要在基因结构信息的帮助。对于孟德尔遗传疾病,一个基因的搜索在一个适当大小的研究小组经常在几个月实现。至少30个疾病基因直接依赖公共提供的基因组序列已经定位克隆到。因为大多数人类序列只是在过去的12个月内得到,可能许多类似的发现还没有出版。另外,有许多案例中,基因组序列发挥着支持作用,例如提供候选微卫星标识用于很好的遗传连锁分析。(2001年中国上海和北京科学家发现遗传性乳光牙本质Ⅱ型基因)基因组序列对于揭示导致许多普通的染色体删除综合症的机制同样有帮助。在几个实例中,再发生的删除被发现,由同源体重组合在大的几乎同一的染色体内复制的不等交叉产生。例子包括在第22条染色体上的DiGeorge/ velocardiofacial综合症区和在第7条染色体上的Williams-Beuren综合症的重复删除。基因组序列的可用性同样允许疾病基因的旁系同源性的快速识别,对于两个理由是有价值的。首先,旁系同源基因的突变可以引起相关遗传疾病。通过基因组序列使用发现的一个很好的例子是色盲(完全色盲)。CNGA3基因,编码视锥体光感受器环GMP门控通道的a亚单位,显示在一些色盲家系中存在突变体。基因组序列的计算机检索揭示了旁系同源基因编码相应的b亚单位,CNGB3(在EST数据库中没有出现)。CNGB3基因被快速认定为是其他家系的色盲的原因。另一个例子是由早衰1和早衰2基因提供的,它们的突变可能导致Alzheimer疾病的的早期发生。第二个理由是旁系同源体可以提供治疗敢于的机会,例子是在镰刀状细胞疾病或β地中海贫血的个体中试图再次激活胚胎表达的血红蛋白基因,它是由于β-球蛋白基因突变引起的。我们在在线人类孟德尔遗传数据库(OMIM)和SwissProt 或TrEMBL蛋白质数据库中进行了971个已知的人类疾病基因的旁系同源体的系统检索。我们识别了286个潜在的旁系同源体(要求是至少50个氨基酸的匹配,在相同的染色体上一致性大于70%但小于90%,在不同的染色体上小于95%)。尽管这种分析也许识别一些假基因,89%的匹配显示在新靶序列一个外显子以上的同源性,意味着许多是有功能的。这种分析显示了在计算机中快速识别疾病基因的潜能。 在过去的世纪里,制药产业很大程度上依赖于有限的药物靶来开发新的治疗手段。最近的纲要列举了483个药物靶被看作是解决了市场上的所有药物。知道了人类的全部基因和蛋白质将极大的扩展合适药物靶的寻找。虽然,仅仅人类的小部分基因可以作为药物靶,可以预测这个数目将在几千之上,这个前景将导致基因组研究在药物研究和开发中的大规模开展。一些例子可以说明这一点:⑴神经递质(5-HT)通过化学门控通道介导快速兴奋响应。以前识别的5-HT3A受体基因产生功能受体,但是比在活体内有小得多的电导。交叉杂交实验和EST分析在揭示已知受体的其他同源体上都失败了。然而,通过对人类基因组序列草图的低要求检索,一个推定的同源体被识别,在一个PAC克隆中第11号染色体长臂上。同源体显示在纹状体、尾状核、海马中表达,全长cDNA随后得到。这个编码胺受体地基因,被命名为5-HT3B。当与5-HT3A组合成异二聚体中,它显示负责大电导神经胺通道。假定胺途径在精神疾病和精神分裂症的中心作用,一个主要的新的治疗靶的发现是相当有兴趣的。⑵半胱氨酰基白三烯的收缩和炎症作用,先前认为是过敏反应的慢反映物质(SRS-A),通过特定的受体介导。第二个类似的受体,CysLT2,使用老鼠EST和人类基因组序列的重组得到识别。这导致了与先前识别的唯一的其它受体有38%氨基酸一致性的基因的克隆。这个新的受体,显示高的亲和力和几个白三烯的结合,映射在与过敏性哮喘有关的第13号染色体区域上。这个基因在气道平滑肌和心脏中表达。作为白三烯途径中抗哮喘药物开发中一个重要的靶,新受体的发现有明显的重要的作用。⑶ Alzheimer疾病在老年斑中有丰富的β-淀粉样物沉积。β-淀粉样物由前体蛋白(APP)蛋白水解生成。有一个酶是β位 APP裂开酶,是跨膜天冬氨酸蛋白酶。公共的人类基因组草图序列计算机搜索最近识别了BACE的一个新的同源序列,编码一个蛋白,命名为BACE2,它与BACE有52%的氨基酸序列一致性。包含两个激活蛋白酶位点和象APP一样,映射到第21条染色体的必须Down综合症区域。它提出了问题,BACE2和APP过多的拷贝是否有功于加速Down综合症病人的脑部β-淀粉样物沉积。给出了这些例子,我们在基因组序列中进行系统的识别传统药靶蛋白质的旁系同源体。使用的靶列表在SwissPrott数据库中识别了603个入口,有唯一的访问码。 一个例子是:解决了困扰研究者几十年的一个神秘课题:苦味的分子学基础。人类和其他动物对于某一种苦味有不同的响应(响应的多态性)。最近,研究者将这个特征映射到人类和老鼠中,然后检索了G蛋白偶合受体的人类基因组序列草图上的相关区域。这些研究很快导致了该类蛋白的新家族的发现,证明了它们几乎都在味蕾表达,实验证实了在培养细胞中的受体响应特定的苦基质。人体基因组图谱是全人类的财产,这一研究成果理应为全人类所分享、造福全人类,这是参与人类基因组工程计划的各国科学家的共识。值得关注的是,目前在人类基因组研究领域,出现了一些私营公司争相为其成果申请专利的现象。美国塞莱拉基因公司曾表示,想把一部分研究成果申请专利,有偿提供给制药公司。找到了一批主宰人体疾病的重要基因如:肥胖基因、支气管哮喘基因。这类基因的新发现每年都有新报道。这些基因的发现,增进了人们对许多重要疾病机理的理解,并且推动整个医学思想更快的从重治疗转向重预防。例如:湖南医科大学夏家辉教授组于1998.5.28发表克隆了人类神经性高频性耳聋的致病基因(GJB3),这是第一次在中国克隆的基因。在人类基因组计划的推动下,涌现了几门崭新的学科。如:基因组学(genomics)和生物信息学(bioinformatics)生物技术的产业化。一批世界级的大公司纷纷把它们的重心转向生命科学研究和生物技术产品。这种趋势或潮流也不能不说和人类基因组计划密切相关。
人类基因组计划?对人类社会有什么影
人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约20,000--25,000个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人20,000--25,000个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的"登月计划"。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。基因图谱的意义在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。人类基因组是一个国际合作项目:表征人类基因组,选择的模式生物的DNA测序和作图,发展基因组研究的新技术,完善人类基因组研究涉及的伦理、法律和社会问题,培训能利用HGP发展起来的这些技术和资源进行生物学研究的科学家,促进人类健康。折叠编辑本段其他资料折叠对人类疾病基因研究的贡献人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿氏舞蹈症、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。折叠对医学的贡献基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。折叠对生物技术的贡献基因工程药物分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。⑵诊断和研究试剂产业基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。对细胞、胚胎、组织工程的推动胚胎和成年期干细胞、克隆技术、器官再造。折叠对制药工业的贡献筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。个体化的药物治疗:药物基因组学。折叠对社会经济的重要影响生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药)折叠对生物进化研究的影响生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”?折叠带来的负面作用侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。折叠编辑本段应用实例折叠疾病基因人类基因组研究的一个关键应用是通过位置克隆寻找未知生物化学功能的疾病基因。这个方法包括通过患病家族连锁分析来绘制包含这些基因的染色体区域图,然后检查该区域来寻找基因。位置克隆是很有用的,但是也是非常乏味的。当在1980s早期该方法第一次提出时,希望实现位置克隆的研究者们不得不产生遗传标记来跟踪遗传,进行染色体行走得到覆盖该区域的基因组DNA,通过直接测序或间接基因识别方法分析大约1Mb大小的区域。最早的两个障碍在1990s中期在人类基因组项目的支持下随着人类染色体的遗传和物理图谱的发展而清除。然而,剩余的障碍仍然是艰难的。所有这些将随着人类基因组序列草图的实用性而改变。在公共数据库中的人类基因组序列使得候选基因的计算机快速识别成为可能,随之进行相关候选基因的突变检测,需要在基因结构信息的帮助。现在,对于孟德尔遗传疾病,一个基因的搜索在一个适当大小的研究小组经常在几个月实现。至少30个疾病基因直接依赖公共提供的基因组序列已经定位克隆到。因为大多数人类序列只是在过去的12个月内得到,可能许多类似的发现还没有出版。另外,有许多案例中,基因组序列发挥着支持作用,例如提供候选微卫星标识用于很好的遗传连锁分析。(2001年中国上海和北京科学家发现遗传性乳光牙本质Ⅱ型基因)基因组序列对于揭示导致许多普通的染色体删除综合症的机制同样有帮助。在几个实例中,再发生的删除被发现,由同源体重组合在大的几乎同一的染色体内复制的不等交叉产生。例子包括在第22条染色体上的DiGeorge/ velocardiofacial综合症区和在第7条染色体上的Williams-Beuren综合症的重复删除。基因组序列的可用性同样允许疾病基因的旁系同源性的快速识别,对于两个理由是有价值的。首先,旁系同源基因的突变可以引起相关遗传疾病。通过基因组序列使用发现的一个很好的例子是色盲(完全色盲)。CNGA3基因,编码视锥体光感受器环GMP门控通道的a亚单位,显示在一些色盲家系中存在突变体。基因组序列的计算机检索揭示了旁系同源基因编码相应的b亚单位,CNGB3(在EST数据库中没有出现)。CNGB3基因被快速认定为是其他家系的色盲的原因。另一个例子是由早衰1和早衰2基因提供的,它们的突变可能导致Alzheimer疾病的的早期发生。第二个理由是旁系同源体可以提供治疗敢于的机会,例子是在镰刀状细胞疾病或β地中海贫血的个体中试图再次激活胚胎表达的血红蛋白基因,它是由于β-球蛋白基因突变引起的。我们在在线人类孟德尔遗传数据库(OMIM)和SwissProt 或TrEMBL蛋白质数据库中进行了971个已知的人类疾病基因的旁系同源体的系统检索。我们识别了286个潜在的旁系同源体(要求是至少50个氨基酸的匹配,在相同的染色体上一致性大于70%但小于90%,在不同的染色体上小于95%)。尽管这种分析也许识别一些假基因,89%的匹配显示在新靶序列一个外显子以上的同源性,意味着许多是有功能的。这种分析显示了在计算机中快速识别疾病基因的潜能。折叠药物靶在过去的世纪里,制药产业很大程度上依赖于有限的药物靶来开发新的治疗手段。最近的纲要列举了483个药物靶被看作是解决了市场上的所有药物。知道了人类的全部基因和蛋白质将极大的扩展合适药物靶的寻找。虽然,仅仅人类的小部分基因可以作为药物靶,可以预测这个数目将在几千之上,这个前景将导致基因组研究在药物研究和开发中的大规模开展。一些例子可以说明这一点:⑴神经递质(5-HT)通过化学门控通道介导快速兴奋响应。以前识别的5-HT3A受体基因产生功能受体,但是比在活体内有小得多的电导。交叉杂交实验和EST分析在揭示已知受体的其他同源体上都失败了。然而,最近,通过对人类基因组序列草图的低要求检索,一个推定的同源体被识别,在一个PAC克隆中第11号染色体长臂上。同源体显示在纹状体、尾状核、海马中表达,全长cDNA随后得到。这个编码胺受体地基因,被命名为5-HT3B。当与5-HT3A组合成异二聚体中,它显示负责大电导神经胺通道。假定胺途径在精神疾病和精神分裂症的中心作用,一个主要的新的治疗靶的发现是相当有兴趣的。⑵半胱氨酰基白三烯的收缩和炎症作用,先前认为是过敏反应的慢反映物质(SRS-A),通过特定的受体介导。第二个类似的受体,CysLT2,使用老鼠EST和人类基因组序列的重组得到识别。这导致了与先前识别的唯一的其它受体有38%氨基酸一致性的基因的克隆。这个新的受体,显示高的亲和力和几个白三烯的结合,映射在与过敏性哮喘有关的第13号染色体区域上。这个基因在气道平滑肌和心脏中表达。作为白三烯途径中抗哮喘药物开发中一个重要的靶,新受体的发现有明显的重要的作用。⑶ Alzheimer疾病在老年斑中有丰富的β-淀粉样物沉积。β-淀粉样物由前体蛋白(APP)蛋白水解生成。有一个酶是β位 APP裂开酶,是跨膜天冬氨酸蛋白酶。公共的人类基因组草图序列计算机搜索最近识别了BACE的一个新的同源序列,编码一个蛋白,命名为BACE2,它与BACE有52%的氨基酸序列一致性。包含两个激活蛋白酶位点和象APP一样,映射到第21条染色体的必须Down综合症区域。它提出了问题,BACE2和APP过多的拷贝是否有功于加速Down综合症病人的脑部β-淀粉样物沉积。给出了这些例子,我们在基因组序列中进行系统的识别传统药靶蛋白质的旁系同源体。使用的靶列表在SwissPrott数据库中识别了603个入口,有唯一的访问码。基础生物学一个例子是:解决了困扰研究者几十年的一个神秘课题:苦味的分子学基础。人类和其他动物对于某一种苦味有不同的响应(响应的多态性)。最近,研究者将这个特征映射到人类和老鼠中,然后检索了G蛋白偶合受体的人类基因组序列草图上的相关区域。这些研究很快导致了该类蛋白的新家族的发现,证明了它们几乎都在味蕾表达,实验证实了在培养细胞中的受体响应特定的苦基质。人体基因组图谱是全人类的财产,这一研究成果理应为全人类所分享、造福全人类,这是参与人类基因组工程计划的各国科学家的共识。值得关注的是,目前在人类基因组研究领域,出现了一些私营公司争相为其成果申请专利的现象。美国塞莱拉基因公司曾表示,想把一部分研究成果申请专利,有偿提供给制药公司。找到了一批主宰人体疾病的重要基因如:肥胖基因、支气管哮喘基因。这类基因的新发现每年都有新报道。这些基因的发现,增进了人们对许多重要疾病机理的理解,并且推动整个医学思想更快的从重治疗转向重预防。例如:湖南医科大学夏家辉教授组于1998.5.28发表克隆了人类神经性高频性耳聋的致病基因(GJB3),这是第一次在中国克隆的基因。在人类基因组计划的推动下,涌现了几门崭新的学科。如:基因组学(genomics)和生物信息学(bioinformatics)生物技术的产业化。一批世界级的大公司纷纷把它们的重心转向生命科学研究和生物技术产品。这种趋势或潮流也不能不说和人类基因组计划密切相关。进展与未来2000年6月26日,参加人类基因组工程项目的美国、英国、法兰西共和国、德意志联邦共和国、日本和中国的6国科学家共同宣布,人类基因组草图的绘制工作已经完成。最终完成图要求测序所用的克隆能忠实地代表常染色体的基因组结构,序列错误率低于万分之一。95%常染色质区域被测序,每个Gap小于150kb。完成图将于2003年完成,比预计提前2年。完成人类基因组序列完成图⑴ 从当前物理图谱生成的克隆产生完成的序列,覆盖基因组的常染色质区域大于96%。大约1Gb的完成序列已经实现。剩下的也已经形成草图,所有的克隆期望达到8~10倍的覆盖率,大约2001年中期(99.99%的正确率),使用已经建立的和日益自动化的协议。⑵ 检测另外的库来关闭gaps。使用FISH技术或其他方法来分析没有闭合的Gaps大小。22,21条染色体用这种方式。2003年已经完成。⑶ 开发新的技术来关闭难度较大的gaps,大约几百个。基因组序列工作框架图(Working draft):通过对染色体位置明确的BAC连续克隆系4-5倍覆盖率的测序(在BAC克隆水平的覆盖率不应低于3倍),获得基因组90%以上的序列,其错误率应低于1%。工作框架图可用于基因组结构的认识、基因的识别和解析、疾病基因的定位克隆,SNP的发现等。草图的作用1、草图,许多疾病相关的基因被识别2、SNP(人与人之间的区别),草图提供了一个理解遗传基础和人类特征进化的框架。3、草图后,研究人员有了新的工具来研究调节区和基因网络。4、比较其它基因组可以揭示共同的调控元件,和其他物种共享的基因的环境也许提供在个体水平之上的关于功能和调节的信息。5、草图同样是研究基因组三维压缩到细胞核中的一个起点。这样的压缩可能影响到基因调控6、在应用上,草图信息可以开发新的技术,如DNA芯片、蛋白质芯片,作为传统方法的补充,目前,这样的芯片可以包含蛋白质家族中所有的成员,从而在特定的疾病组织中可以找到那些是活跃的。2001年2月12日,美国Celera公司与人类基因组计划分别在《科学》和《自然》杂志上公布了人类基因组精细图谱及其初步分析结果。其中,政府资助的人类基因组计划采取基因图策略,而Celera公司采取了“鸟枪策略”。至此,两个不同的组织使用不同的方法都实现了他们共同的目标:完成对整个人类基因组的测序的工作;并且,两者的结果惊人的相似。整个人类基因组测序工作的基本完成,为人类生命科学开辟了一个新纪元,它对生命本质、人类进化、生物遗传、个体差异、发病机制、疾病防治、新药开发、健康长寿等领域,以及对整个生物学都具有深远的影响和重大意义,标志着人类生命科学一个新时代的来临。众多的发现1、分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp;其中G+C含量偏低,仅占38%,而2号染色体中G+C的含量最多;到目前仍有9%的碱基对序列未被确定,19号染色体是含基因最丰富的染色体,而13号染色体含基因量最少等等(具体信息可参见cmbi 特别报道:生命科学的重大进展)。2、目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。3、基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。这将对我们目前的许多观念产生重大的挑战,它为后基因组时代中生物医学的发展提供新的非凡的机遇。但由于基因剪切,EST数据库的重复以及一些技术和方法上的误差,将来亦可能人类的基因数会多于4万。4、人类单核苷酸多态性的比例约为1/1250bp,不同人群仅有140万个核苷酸差异,人与人之间99.99%的基因密码是相同的。并且发现,来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一,从而说明人类不同“种属”之间并没有本质上的区别。5、人类基因组中存在“热点”和大片"荒漠"。在染色体上有基因成簇密集分布的区域,也有大片的区域只有“无用DNA” ——不包含或含有极少基因的成分。基因组上大约有1/4的区域没有基因的片段。在所有的DNA中,只有1%-1.5%DNA能编码蛋白,在人类基因组中98%以上序列都是所谓的“无用DNA”,分布着300多万个长片断重复序列。这些重复的“无用”序列,决不是无用的,它一定蕴含着人类基因的新功能和奥秘,包含着人类演化和差异的信息。经典分子生物学认为一个基因只能表达一种蛋白质,而人体中存在着非常复杂繁多的蛋白质,提示一个基因可以编码多种蛋白质,蛋白质比基因具有更为重要的意义6、男性的基因突变率是女性的两倍,而且大部分人类遗传疾病是在Y染色体上进行的。所以,可能男性在人类的遗传中起着更重要的作用。7、人类基因组中大约有200多个基因是来自于插入人类祖先基因组的细菌基因。这种插入基因在无脊椎动物是很罕见的,说明是在人类进化晚期才插入我们基因组的。可能是在我们人类的免疫防御系统建立起来前,寄生于机体中的细菌在共生过程中发生了与人类基因组的基因交换。8、发现了大约一百四十万个单核苷酸多态性,并进行了精确的定位,初步确定了30多种致病基因。随着进一步分析,我们不仅可以确定遗传病、肿瘤、心血管病、糖尿病等危害人类生命健康最严重疾病的致病基因,寻找出个体化的防治药物和方法,同时对进一步了解人类的进化产生重大的作用。9、人类基因组编码的全套蛋白质(蛋白质组)比无脊椎动物编码的蛋白质组更复杂。人类和其他脊椎动物重排了已有蛋白质的结构域,形成了新的结构。也就是说人类的进化和特征不仅靠产生全新的蛋白质,更重要的是要靠重排和扩展已有的蛋白质,以实现蛋白质种类和功能的多样性。有人推测一个基因平均可以编码2-10种蛋白质,以适应人类复杂的功能。模式生物:酵母(yeast)、大肠杆菌(Escherichia coli)、果蝇(Drosophila melanogaster)、线虫(Caenorhabditis elegans)、小鼠(Mus musculus)、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。目前基因组学的研究出现了几个重心的转移:一是将已知基因的序列与功能联系在一起的功能基因组学研究;二是从作图为基础的基因分离转向以序列为基础的基因分离;三是从研究疾病的起因转向探索发病机理;四是从疾病诊断转向疾病易感性研究。在后基因组时代,如果在已完成基因组测序的物种之间进行整体的比较、分析,希望在整个基因组的规模上了解基因组和蛋白质组的功能意义,包括基因组的表达与调控、基因组的多样化和进化规律以及基因及其产物在生物体生长、发育、分化、行为、老化和治病过程中的作用机制都必须发展新的算法以充分利用超级计算机的超级计算能力。美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。2、疾病基因的定位克隆人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。3、多基因病的研究目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。展望1、生命科学工业的形成由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。2、功能基因组学人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。2)蛋白质组学研究蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。3)生物信息学的应用目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。⑵基因组多样性的研究人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。1)对人类DNA的再测序可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。该计划在人类科学史上又竖起了一座新的里程碑!这是一项改变世界,影响人类生活的壮举,随着时间的推移,它的伟大意义将愈显昭彰。叠编辑本
人类基因组计划(Human Genome Project,HGP)对生命科学的研究和生物产业的发展具有非常重要的意义,它
人类基因组计划是由由美国科学家于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行的人体基因计划,测定时选择了22条常染色体和2条性染色体,共24条染色体,包括了全部的DNA序列,于2000年完成了人类基因组“工作框架图”.2001年公布了人类基因组图谱及初步分析结果.其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息.对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的.故答案为:24;22条常染色体和2条性染色体
什么是人类基因组计划 进展如何?现已达到什么水平
您好:2000年6月26日,参与国际人类基因组计划的美、英、德、日、法、中六国联合宣布,人类基因组工作框架图已经绘制完成,这是人类历史上“值得载入史册的一天”。2001年8月26日,国际“人类基因组计划”中国部分“完成图”提前两年高质量地绘制完成。1%人类基因组测序是我国基因组学研究的新起点。此后,中国科学家承担了国际“人类单体型图计划”10%的任务。2007年10月11日,深圳华大基因研究院又完成了全球第一个中国人的基因组测序,绘制了第一张亚洲人的基因组图,成为用新一代测序技术独立完成的中国人全基因组图谱,实现了跨越发展。 中科院北京基因组研究所暨华大基因研究中心执行主任汪建2009年10月19日在杭州宣布,人类基因组计划目前已完成了一份人类的医学遗传图。http://news.xinhuanet.com/tech/2006-10/20/content_5229116.htm希望对您的学习有帮助【满意请采纳】O(∩_∩)O谢谢欢迎追问O(∩_∩)O~ 祝学习进步~
超2亿个缺失的人类基因组首次破译,这意味着什么?
这样的话对于人类基因检测取得了重大的突破,对未来的科学起到了重要的作用,对于遗传疾病的贡献很大,而且还会推动与癌症出生缺陷和衰老相关的研究和科学发展。
和记录组成人类基因组的全部dna序列哪一年确立
人类基因组计划于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”.2001年公布了人类基因组图谱及初步分析结果. 故选:C
完整人类基因组序列被破译公布
完整人类基因组序列被破译公布 完整人类基因组序列被破译公布,科学家31日公布了首个完整的人类基因组序列,填补了此前研究留下的空白,一个科学家团队在《科学》周刊上发表的研究中解决了这个问题。完整人类基因组序列被破译公布。 完整人类基因组序列被破译公布1 美国研究人员领衔的科研团队3月31日公布了首个完整、无间隙的人类基因组序列。与这项重大成果相关的6篇论文当天发表在美国《科学》杂志上。 由美国国家人类基因组研究所、加利福尼亚大学圣克鲁斯分校、华盛顿大学等机构研究人员领衔的国际科研团队“端粒到端粒联盟”完成这项研究。 美国国家人类基因组研究所在一份公报中表示,人类基因组含有约30亿个DNA(脱氧核糖核酸)碱基对,完成这些碱基对的完整、无间隙测序对于了解人类基因组变异全谱、掌握基因对某些疾病的影响至关重要。 公报说,对完整人类基因组序列的分析将显著增加科学家对人类染色体的认识,从而开辟新的研究方向。这有助于解答关于染色体如何分离、分裂等生物学基本问题。研究团队还利用完整的人类基因组序列发现了超过200万个额外的基因变异,这些研究为622个与医学相关的基因提供了更准确的基因变异信息。 美国国家人类基因组研究所所长埃里克·格林表示,完成完整的人类基因组测序是一项重要科学成就,为了解人类DNA提供了首个全面视角。这些最基本的信息将增进对人类基因组所有细微功能差别的了解,促进对人类疾病的基因研究。 人类基因组测序项目的重要意义被视为与阿波罗登月计划相当。人类基因组蕴藏人类遗传信息,破译它能够为疾病诊断、新药研发、新疗法探索等带来革命性进步。 2001年,由包括中国在内的6国科学家共同参与的国际“人类基因组计划”,在英国《自然》杂志上发布了人类基因组草图及初步分析。由于当时的测序技术所限,这份人类基因组草图中留有许多空白。 完整人类基因组序列被破译公布2 据路透社3月31日报道,科学家31日公布了首个完整的人类基因组序列,填补了此前研究留下的空白,同时为在全球79亿人口中寻找致病突变和遗传变异的线索带来了新的`希望。 2003年,研究人员公布了当时被称为完整的人类基因组序列,但其中有大约8%尚未完全破译,主要是因为它包含的高度重复的DNA的片段难以与其他部分啮合。 报道说,一个科学家团队在《科学》周刊上发表的研究中解决了这个问题。这项研究成果在经过正式的同行评议程序之前曾于去年首次公布。 隶属于美国国家卫生研究院的国家人类基因组研究所(NHGRI)所长埃里克·格林在一份声明中说:“生成一个真正完整的人类基因组序列是一项了不起的科学成就,为我们的DNA草图提供了第一个完整的视角。” 这个研究团队被称为“端粒到端粒”联盟(T2T)。 作为T2T领导人之一的NHGRI高级调查员亚当·菲利皮在一份声明中说:“真正完成人类基因组序列就像是戴上了一副新的眼镜。现在我们可以清楚地看到一切,我们朝着理解它的全部含义又迈进了一步。” 完整人类基因组序列被破译公布3 一支国际研究团队3月31日正式发布人类基因组完整图谱,补全先前相关研究缺失部分,有助科学家进一步解开人类生命密码。 据美国《科学》杂志网站报道,这个名为“端粒到端粒联盟”的研究团队当天在《科学》杂志发表论文,宣布上述研究成果。美国国家卫生研究院国家人类基因组研究所主任埃里克·格林在声明中说,“真正、完整地”完成人类基因组测序是一项了不起的科学成就,令人“首次”一览人类“DNA蓝图”全貌。 科学家30多年前开始尝试绘制人类基因组图谱,为人体23对染色体上脱氧核糖核酸(DNA)的基因测序,并在2003年发布人类基因组图谱。然而,这份图谱只完成人类92%的基因组测序,剩下8%因为含有重复DNA的片段,难以测序。10年来,随着基因测序技术提高,研究人员得以对最后8%测序,绘制出人类基因组完整图谱。 为补全人类基因组图谱缺失的8%,研究人员为人体染色体和基因基本化学结构约2亿碱基对测序。最后的完整图谱包括逾30亿碱基对序列和近2万个蛋白质编码基因。这些基因中,有约2000个基因为这次研究新发现。研究人员还新发现了200万个基因变异,其中622处存在于与医学相关的基因中。 研究人员希望,这份图谱能进一步揭示人类基因之谜,并随着基因测序技术提高而得以应用于医学领域。
人类基因组的四张图谱不包括()。
人类基因组的四张图谱不包括()。 A.序列图谱B.基因图谱C.生物图谱D.遗传图谱正确答案:C
中国在人类基因组测序充当什么角色
1999年9月,中国获准加入人类基因组计划,负责测定全部序列的1%;2000年6月26日下午6时,国际人类基因计划协作组宣布,人类生命的蓝图———人类基因组的“工作框架图”完成。“1%”,为21世纪的中国生物产业带来了光明和希望。 6月29日,记者来到了承担“1%”主要测序任务的中科院遗传所人类基因组中心采访 跟我找茬想都别想 今天你升级了吗 占星奇缘 爱情解析 跟我找茬想都别想,并独家专访了中国人类基因组执行主席杨焕明教授和“中心”执行主任汪健。他们向记者详细介绍了中国承担人类基因组计划1%测序的前前后后的故事。 “1%”,是一场世纪之争。 瞄上人类基因组计划 在北京顺义空港工业园B区,有一座并不显眼的四层楼,中科院遗传所人类基因组中心就在这幢楼里。这个中心是在中科院支持下,由四位留学生创办的,主任杨焕明,是国家自然基金委人类基因组重大项目秘书长,联合国教科文组织国际生物伦理委员会委员;执行主任汪健,曾在美国得州大学做博士后研究;于军,是美国人类基因计划主流研究领域里的主要研究者;刘思奇,在美国路易维尔大学担任助理教授。于军和刘思奇现仍在海外,从事人类基因组研究。四位留学生,是为了中国能参与人类基因组计划而走到一起来的。此前,他们或是老同学,或是老相识,相互深交已多年。 1994年初,先后在法国、美国做博士后研究的杨焕明回国,任中国协和医科大学教授、博士生导师。此时,在吴昊、陈竺等院士的呼吁下,国内科学界关于中国积极介入人类基因研究的呼声日高。不久,杨焕明的朋友汪健回国创办实业。1996年,汪健在美国相识的朋友于军回国“探亲”。于军从1991年起,便参加了美国的人类基因组研究,此次“探亲”,他是在寻找把基因研究的思路和技术带回国内的可能性。几经周折,他联系上了汪健和杨焕明。他们开始酝酿介入人类基因组计划。 1997年11月,中国遗传学会青年委员会第一次会议在张家界召开。在这次会议上,杨焕明、汪健、于军相聚在一起探讨人类基因组计划。于军说,中国如不抓紧时间加入到这一竞争中去,有可能失去最后的机会。 “干”,他们决定联手推动这一事业。 然而,干起来太难了,因为当时中国知道人类基因组计划的人实在太少,他们未能得到实实在在的支持。1998年3月,中科院遗传所所长陈受宜教授找到了汪健,双方一拍即合。杨焕明、汪健决定将这一事业“扎根”于中科院。1998年8月,在中科院领导的支持和帮助下,中科院遗传所基因组中心成立,杨焕明出任主任。 中国争到了“1%” 1999年的日历翻开了。杨焕明说,要干就要干大,再难也要干大。于是,杨焕明、汪健、于军凑出了自己积蓄的200多万元。他们用这笔钱,购买了一台“377”型测序仪和一台美国产的毛细管测序仪。在不到半年的时间里,他们递交了人类基因组序列70万个碱基的测序结果,并做了热泉菌测序。这些成果,引来了国际同行的瞩目。 在此期间,国际上有关基因序列能否申请专利的争论开始激烈。1998年5月成立的美国塞里拉公司,与公众资助进行基因序列测序背道而驰,依靠财团的支持和先进的设备,希望率先测出数据,进而赢得专利。假如基因序列被允许“专利”,就意味着捷足先登的大公司可以垄断将来以这些基因所开发出来的相关产品的权利。身为联合国教科文组织国际生物伦理委员会委员的杨焕明到处游说:“人类只有一个基因组,它代表了全人类的一致性信息,数据公开,免费分享,这应是研究的前提。” 主持正义的科学家意识到,与私营企业争夺基因专利,必须加快测序速度。 1999年6月23日,杨焕明与汪健收到了于军的电子邮件,于军在电子邮件中说明了目前国际人类基因计划的竞争态势。当日,他们进行了一次认真的交流。 “要做,就做个1%,怕什么,我们有实力,我们前期的工作表明我们能做1%。”杨焕明说。 “好,就是砸锅卖铁,也要圈个1%。”汪健握了握拳。 他们的意见得到了中科院领导和国家南、北方基因组中心同行的支持,进而得到了国际主流科学家的支持。中科院遗传所人类基因组中心向美国国立卫生院提出了申请。7月8日,人类基因组计划网址公布了中国“1%”申请成功的消息。继美、英、法、德、日之后,中国成了人类基因组计划的第6个参与国。 中国赢得了机遇 中国的“1%”任务位于3号染色体上,中国南方鼻咽癌发病率高,而与此相关的基因正在3号染色体上。 遗传所人类基因组中心找到了位于空港开发区的一座空厂房。要将厂房改造成实验室,并添置设备,困难重重。 中科院送来了支持,杨焕明的家乡温州市送来了帮助……一个多月时间,实验室建成了,14台测序仪购进了。9月1日,在伦敦举行的第五次人类基因组测序战略会议上,杨焕明代表“中心”宣布:保证2000年春末完成“包干”区域任务,并保证一半以上的序列达到“
什么是人类基因组计划和人类表观基因组计划
20世纪90年代开始的“人类基因组计划”由美国科学家提出,后来成为一项国际合作研究,这其中也有我国科学家的参与。人类基因线计划是对人体的30亿对核苷酸全序列进行作图、基因定位并对主要基因功能进行分析,为全面认识和了解人类基因组的结构和功能提供详尽的基础资料。这一计划的完成标志着后基因组学时代的到来。如果说基因组学时代的任务主要是进行各种基因图谱的构建,并最终获得完整的序列信息,那么后基因组时代则是去分析这些序列的功能。对于人类表观基因功能的研究已经成为生物学研究中的一个热点。在众多的后基因组时代的研究中,表观遗传学研究是一个值得关注的领域,而表观基因组学也是人类基因组计划之后,科学家们经常谈论到的几个“组学”之一。那么,什么是表观遗传说呢?我们知道,遗传学是研究遗传和变异的科学。例如,果蝇有红色和白色的眼睛,这是由其基因中特定的DNA序列所决定的。但是,并非所有的遗传现象都是这样简单。例如,遗传上相同的一卵双生的双胞胎从传统遗传学角度看,他们的DNA是完全相同的,那么是什么造成他们的不同呢?这是由于基因上存在着化学修饰。这种化学修饰并不改变DNA序列,但是会影响到基因的表达,而且更重要的是,这种修饰是可以遗传的。人们称之为表观遗传修饰,它可以影响到DNA和将DNA包装成染色质的蛋白质。这些修饰就像交通管理中的红、绿灯一样设在基因组中,告诉基因是否要有活性或处于失活状态。刚才说到的DNA序列相同的双胞胎中存在的那些差异现象就可能是由于他们之间存在着这种表观遗传修饰的改变。表观遗传学就是研究表观修饰的科学,它可定义为:表观遗传学是一门研究没有发生DNA序列变化的可遗传的基因表达改变的科学。常见的表观遗传修饰有:DNA的甲基化和组蛋白的乙酰化等,涉及的研究领域有:DNA甲基化、基因组印记、组蛋白码、RNA介导的基因沉默、癌基因等。其中,基因组印记现象的发现向“中心法则”和达尔文的进化论提出了挑战。“中心法则”说明了遗传信息的传递规律,但并未指出环境对于遗传信息传递影响的分子机制。但是,基因组印记的发现为解释环境的影响,甚至于拉马克的“获得性遗传”提供了比较合理的途径:环境的变化导致了基因的表观修饰,从而改变了基因的表达,造成表型的改变,这种变化发生在生殖细胞中时,则可以遗传给后代。这就为研究者提供了一个环境变化影响遗传基础的分子机制,是很有意义的。
问答:什么是人类基因组计划和人类表观基因组计划
什么是人类基因组计划和人类表观基因组计划20世纪90年代开始的“人类基因组计划”由美国科学家提出,后来成为一项国际合作研究,这其中也有我国科学家的参与。人类基因线计划是对人体的30亿对核苷酸全序列进行作图、基因定位并对主要基因功能进行分析,为全面认识和了解人类基因组的结构和功能提供详尽的基础资料。这一计划的完成标志着后基因组学时代的到来。如果说基因组学时代的任务主要是进行各种基因图谱的构建,并最终获得完整的序列信息,那么后基因组时代则是去分析这些序列的功能。对于人类表观基因功能的研究已经成为生物学研究中的一个热点。在众多的后基因组时代的研究中,表观遗传学研究是一个值得关注的领域,而表观基因组学也是人类基因组计划之后,科学家们经常谈论到的几个“组学”之一。那么,什么是表观遗传说呢?我们知道,遗传学是研究遗传和变异的科学。例如,果蝇有红色和白色的眼睛,这是由其基因中特定的DNA序列所决定的。但是,并非所有的遗传现象都是这样简单。例如,遗传上相同的一卵双生的双胞胎从传统遗传学角度看,他们的DNA是完全相同的,那么是什么造成他们的不同呢?这是由于基因上存在着化学修饰。这种化学修饰并不改变DNA序列,但是会影响到基因的表达,而且更重要的是,这种修饰是可以遗传的。人们称之为表观遗传修饰,它可以影响到DNA和将DNA包装成染色质的蛋白质。这些修饰就像交通管理中的红、绿灯一样设在基因组中,告诉基因是否要有活性或处于失活状态。刚才说到的DNA序列相同的双胞胎中存在的那些差异现象就可能是由于他们之间存在着这种表观遗传修饰的改变。表观遗传学就是研究表观修饰的科学,它可定义为:表观遗传学是一门研究没有发生DNA序列变化的可遗传的基因表达改变的科学。常见的表观遗传修饰有:DNA的甲基化和组蛋白的乙酰化等,涉及的研究领域有:DNA甲基化、基因组印记、组蛋白码、RNA介导的基因沉默、癌基因等。其中,基因组印记现象的发现向“中心法则”和达尔文的进化论提出了挑战。“中心法则”说明了遗传信息的传递规律,但并未指出环境对于遗传信息传递影响的分子机制。但是,基因组印记的发现为解释环境的影响,甚至于拉马克的“获得性遗传”提供了比较合理的途径:环境的变化导致了基因的表观修饰,从而改变了基因的表达,造成表型的改变,这种变化发生在生殖细胞中时,则可以遗传给后代。这就为研究者提供了一个环境变化影响遗传基础的分子机制,是很有意义的。我们不难看出,基因组中的遗传信息可以分为两类:一类是DNA序列所决定的遗传信息,另一类是不包含DNA序列改变的基因组修饰中所包含的遗传信息。表观基因组学也就是在整个基因组的水平上研究表观遗传修饰。在2003年,英国和德国的一些科学家宣布了人类表观基因组计划的实施。在为期五年的研究中,他们打算获得整个人类基因组中DNA甲基化的位点图谱。对于人类基因组计划和人类表观基因组计划的关系,一些科学家认为,人类基因组计划为生命提供了一张蓝图,而人类表观基因组计划研究的成功则可能告诉人们这张蓝图是如何去实施的,也就是说基因是在何时、何地进行表达或不表达,并最终产生一个完整的人体。从人类基因组计划到人类表观基因组计划,人类对于自身的认识不断的加深。这些研究成果不仅有深刻的理论意义,还可以为人类攻克癌症疾病提供线索,无疑也具有重要的应用价值。
人类基因组主要的表观遗传学修饰类型有哪些
表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因表达,控制细胞表型,所有这些表观遗传学因素都是维持机体内环境稳定所必需的,有助于正常生理功能的发挥。组蛋白的翻译后修饰不仅与染色体的重塑和功能紧密相关,而且在决定细胞命运、细胞生长以及致癌作用的过程中发挥着重要的作用,如组蛋白磷酸化就在有丝分裂、细胞死亡、DNA 损伤修复、DNA 复制和重组过程中发挥着直接的作用。组蛋白翻译后修饰多发生在组蛋白的 N-端尾部,包括甲基化、乙酰化、磷酸化、ADP-核糖基化、泛素化和小分子泛素化修饰,这些修饰有助于其他蛋白质与 DNA 的结合,从而产生协同或者拮抗作用来调控基因转录。例如,乙酰化使组蛋白尾部正电荷减少,从而削弱了与带负电荷 DNA 骨架的作用,而促进染色质呈开放状态, 甲基化激活或抑制基因功能主要依赖于修饰的位点,主要与赖氨酸残基的单甲基化、双甲基化或三甲基化有关。组蛋白修饰最基本的作用是调控基因表达。例如组蛋白甲基化多导致基因沉默,去甲基化则相反;乙酰化一般是转录激活,去乙酰化则相反。当然,也可在此基础上产生复杂的生物学效应。例如组蛋白去乙酰化酶 HDAC 可影响免疫系统;H3K4me3、H3K9me2 能够调控记忆的形成, 而且 H3K 甲基化与 X 染色体失活、基因组印记和异染色质形成有关;H3 乙酰化通过多种机制调控以来 ATP 的染色质重塑 ,并参与炎症反应;H2A、H2B 泛素化则与 DNA 损害反应有关;而 H3S28 磷酸化与 H3K27 乙酰化可激活转录并拮抗聚梳基因 polycomb 沉默,另外磷酸化不仅是某些信号转导通路的重要中间步骤,而且常与其他类型的修饰相互作用,共同参与细胞分裂、影响细胞周期。乙酰化是这些修饰中研究得最多的。组蛋白乙酰化与基因活化以及 DNA 复制相关,组蛋白的去乙酰化和基因的失活相关。乙酰化转移酶(HATs)主要是在组蛋白 H3、H4 的 N 端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与 DNA 损伤修复,还可作为 DNA 结合蛋白。去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡相关。组蛋白乙酰化和去乙酰化乙酰化修饰是一个在细胞核或细胞质的亚细胞器内广泛存在的翻译后修饰调控机制,参与了转录、趋化作用、新陈代谢、细胞信号转导、应激反应、蛋白质水解、细胞凋亡,以及神经元的发育等多个过程。赖氨酸乙酰化是一种典型的蛋白质翻译后修饰,最先在组蛋白中被发现。所以,起初的赖氨酸乙酰化研究一直集中于组蛋白领域 (Histone H1, H2, H3, H4),研究人员发现这种修饰能够调节很多细胞功能,例如基因表达、核染色质重构和细胞周期。直到最近十年,赖氨酸乙酰化才被证明能够发生在除了组蛋白的其他蛋白质中,而且同样能够影响许多细胞内的调控过程。自从发现第 1 个非组蛋白 p53 的赖氨酸乙酰化修饰以来,越来越多的赖氨酸乙酰化修饰被发现,其中转录因子占了相当的比重。Choudhary 等鉴定出 29 个转录因子上的 40 个乙酰化位点,这些赖氨酸乙酰化修饰的转录因子调控着细胞中不同的生物学过程。(蛋白质乙酰化修饰研究进展)目前,对于 p53 的乙酰化修饰已经研究得较为清楚,在 p300/CBP 的催化下,p53 的 C 端 DNA 结合调控区域上发生多个赖氨酸位点的乙酰化修饰,从而激活 p53 上特异 DNA 结合区域的活化。还比如 AP-1,ATF-5,BMAL1,CBP,Cytokeratin,E2F-4,EF-1,HMG-1,Hsp90,Hsp70,ku-70,stat3,Ub,NF-E4,NF-Kb-p65 P73,Nrf2,P300,PTEN,Ref-1 等,修饰后的蛋白质可以对细胞内的各类通路进行精确的调节与控制。组蛋白甲基化是指在组蛋白甲基转移酶催化下组蛋白 H3 和 H4 的 N 端赖氨酸或者精氨酸残基发生的甲基化,组蛋白赖氨酸甲基化由不同的特异性组蛋白赖氨酸甲基转移酶催化。SUV39 蛋白是第一个被发现的组蛋白甲基转移酶,能特异性地使组蛋白 H3K9 甲基化。根据每一位点甲基化程度的不同,赖氨酸残基能分别被单甲基化、双甲基化和三甲基化。组蛋白磷酸化在有丝分裂、细胞死亡、DNA 损伤修复、DNA 复制和重组过程中发挥着直接的作用。例如,组蛋白 H3N 端的磷酸化可能促进染色质在有丝分裂期间的凝集。在哺乳动物中,aurora B 是有丝分裂时 H3S10 磷酸化的激酶,但是在存在 aurora B 对 H3S10 的磷酸化是不够的。牛痘苗相关激酶 1 是哺乳动物 NHK1 的同系物,它能在体内和体外直接使组蛋白 H3T3 和 H3S10 磷酸化,而失去 VPK1 的活性,组蛋白 H3 的磷酸化也将减少。组蛋白 H1 被细胞周期蛋白依赖的磷酸化是其翻译后主要的修饰作用。组蛋白 H1 的磷酸化能够影响 DNA 二级结构的改变和染色体凝集状态的改变。另一方面,组蛋白 H1 的磷酸化需要 DNA 的复制,并且激活 DNA 复制的蛋白激酶也促进组蛋白 H1 的磷酸化。组蛋白 H4 N 端的磷酸化可能促进染色质在有丝分裂期间的凝集。组蛋白 H1 的磷酸化能够影响 DNA 二级结构的改变和染色体凝集状态的改变。此外,组蛋白 H1 的磷酸化需要 DNA 的复制,并且激活 DNA 复制的蛋白激酶也促进组蛋白 H1 的磷酸化。因此,二者存在一个协同发生的机制。
人类基因组编码基因编码了多少个蛋白质
人类基因组编码基因编码了多少个蛋白质由美国国立人类基因组研究所(nhgri)和能源部(doe)领导的ihgsc不久前宣布,人类基因组测序工作已圆满完成,其发表在2004年10月21日nature(2004,431:931)上的分析报告对2001年2月发表的初步分析报告进行了补充。这篇最新分析报告不但为世人展现了一张精度大于99%、误差小于10万分之一的精确版人类基因组图谱,而且还进一步纠正了蛋白编码基因的数量,仅为2万~2.5万个,而非原先估计的3万~3.5万个。新基因组图谱 准确率达99.999%旨在破译人类基因组常染色质遗传密码的人类基因组计划(hgp)自1990年启动至2003年结束,历时共13年, 该计划由ihgsc来完成。ihgsc是由法国、德国、日本、中国、英国和美国等6个国家20个研究所的科学家组成的开放性国际协作组织,全球2800余名科学家参加了ihgsc的工作。
人类基因组的基因数目为什么比预想的要少???
因为存在可变剪切,所以基因的总数比潜在的蛋白质数目少。人类的可变剪接程度比昆虫和线虫的大,约60%的人类基因可能存在可变剪接。因此跟其他真核生物相比,人类蛋白质组增加的程度大于基因增加的程度。从人类基因组其中的两条染色体上抽出一些基因进行可变剪接研究,发现导致蛋白质序列改变的基因可变剪接的比率高达80%,如此可使得蛋白质组的成员增加到50000~60000种。
请计算人类基因组共有多少编码蛋白质的基因
人类基因组共有多少编码蛋白质的基因由美国国立人类基因组研究所(nhgri)和能源部(doe)领导的ihgsc不久前宣布,人类基因组测序工作已圆满完成,其发表在2004年10月21日nature(2004,431:931)上的分析报告对2001年2月发表的初步分析报告进行了补充。这篇最新分析报告不但为世人展现了一张精度大于99%、误差小于10万分之一的精确版人类基因组图谱,而且还进一步纠正了蛋白编码基因的数量,仅为2万~2.5万个,而非原先估计的3万~3.5万个。新基因组图谱 准确率达99.999%旨在破译人类基因组常染色质遗传密码的人类基因组计划(hgp)自1990年启动至2003年结束,历时共13年, 该计划由ihgsc来完成。ihgsc是由法国、德国、日本、中国、英国和美国等6个国家20个研究所的科学家组成的开放性国际协作组织,全球2800余名科学家参加了ihgsc的工作。
人类基因组庞大但基因总数为何很少
人类基因组庞大是指:碱基数目,有30亿个. 但是基因是指编码蛋白质的一段有功能的序列,首先编码区也就是外显子本来就只有1%左右,另外一段基因可能有几百,几千,甚至几万个碱基. 所以基因数量就不是很多啦,只是两个概念不同.
人类基因组数目是多少?
基因是生命遗传的基本单位。由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为3.4万至3.5万个,仅比果蝇多2万个,远小于原先10万个基因的估计。
人类基因组编码蛋白质的基因数目是 A约10万 B约7.5万 C约2.5万 D约1.25万
人类基因组编码蛋白质的基因数目约2.5万。人类基因组由23对染色体组成,其中包括22对常染色体,1对性染色体。人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列。其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。扩展资料:相关意义“人类基因组计划”是由美国科学家、诺贝尔奖获得者达尔贝科提出的,其目标是测定人类23对染色体的遗传图谱、物理图谱和DNA序列,换句话说测出人体细胞中23对染色体上全部30亿个碱基(或称核苷酸)的序列,把总数约10万个的基因都明确定位在染色体上,破译人类全部遗传信息。1990年美国国会批准“人类基因组计划”,联邦政府拨款30亿美元启动了该计划,随后英国、日本、法国、德国和中国相继加入。这个计划的意义可以与征服宇宙相媲美,被称为生命科学的“登月计划”。人体细胞中有23对共46条染色体,一个染色体由一条脱氧核糖核酸,即DNA分子组成,DNA又由四种核苷酸A、G、T和C排列而成。基因是DNA分子上具有遗传效应的片段,或者说是遗传信息的结构与功能的单位,基因组指的则是一个物种遗传信息的总和。
人类基因组的测序是怎么进行的?求测序的方法及步骤
如果楼主指的是人类基因组计划,那时用的方法叫做双脱氧终止法,也叫做sanger法。它的原理是在DNA合成过程中,DNA聚合酶能够使用ddNTP(双脱氧核苷酸)来作为原料,但它的反应会在加入ddNTP的时候终止。具体实验是通过PCR来完成的,但与普通PCR不同,它只需要一个引物而不是一对。在4个相同的反应体系中分别加入普通的dNTP以及4种不同的ddNTP(比如体系1里面缺少dATP,而有ddATP,以此类推)。假设四个体系中分别加入的是ddATP, ddGTP, ddCTP和ddGTP我们就分别把这个叫做A,G,C,T体系,然后每个体系中,会在遇到相应碱基的时候停止反应,这样就产生了一系列长度不一并且分别在以A,G,C,T时终止的DNA片段,比如A体系中的DNA片段,都是以A结尾的DNA 。接着我们拿着这些片段去进行一个高分辨率的电泳(能够区分出一个碱基的差别),然后根据电泳结果,我们就能读出序列了。最早的测序方法就是这样,但是这种方法极其费时间,它需要首先将DNA打断成无数合适的小片段,然后再在完成测序后将其拼接起来。这就是为什么当时人类基因组计划需要那么多国家合作并且耗费那么多时间的原因。当然,现代的第二代DNA测序技术已经普及了,它们相比第一代测序技术而言,具有低成本,高通量,短耗时等优点。如果用第二代DNA测序技术去完成人类基因组测序的话,现在最多也就耗时一个月左右。
人类基因组计划中的基因测序工作是指测定什么
人类基因组计划中的基因测序工作是指测定:DNA的碱基对排序。人类基因组计划:1、概念:人类基因的测序并了解其组成、结构、功能和相互关系。英文简称HGP。2、人类基因组计划的目的:测定人类基因组的全部DNA序列,解读其中包含的遗传信息。3、参加人类基因组计划的国家:美国、英国、德国、日本、法国和中国,中国承担1%的测序任务。 4、与人类基因组计划有关的几个时间(l)正式启动时间:1990年。 (2)人类基因组工作草图公开发表时间:2001年 2月。(3)人类基因组测序任务完成时间:2003年。 5、已获数据:人类基因组由大约31.6亿个碱基对组成,已发现的基因约为2.0万-2.5万个。 6、内容:绘制人类遗传信息的地图,主要包括遗传图、物理图、序列图、转录图等。7、意义:对于人类疾病的诊断和预防等具有重要意义。同时有可能导致争夺基因资源、基因歧视等负面效应的出现。
人类基因组计划利弊
现在,人们正拿起了基因测序这一先进武器,在“非典”的战场上与病魔展开较量。4月14日,人类基因组全图正式发表,从此全世界的人们都可以免费获得这份资源;50年前的这个时候,沃森和克里克共同发表了DNA分子的双螺旋结构,从此为人类认识、了解自己打开了关键的一道门。 曾几何时,当人类自身的秘密困扰着我们的时候,我们是那样迷惑;但当这秘密渐渐将大白于天下时,我们不自禁地又犹豫起来。 距离是产生美感的基础,当一切都变得如此清晰,我们还会一如从前吗?科学,是双刃剑,即使在“人类基因组计划”这样从一开始就本着全人类免费共享资源的项目,也曾遇到某些不和谐的声音。 但是,无论科学,还是人为,都要遵循自然的法则。按照中国传统的哲学思想———天之道,损有余补不足。一切的不平衡都会在宗法自然中找到自己的支点。 不知不觉间,人类已经在第21个世纪走过了两个半年头,DNA分子的双螺旋结构也已经发表了50周年。回想50年前,生命奥秘答案初现端倪之时,人们的惊喜、迷惑与期待还仿佛如刚刚掠过的那一缕清风,在我们的耳边、心里留下挥之不去的印象。 时间是最自然的,又是最人为的。自然似乎只通过时间给我们以启示,斗转星移的相应位置造成的物理变化,以及与此有关的生物的生死循环等。作为国际人类基因组计划的执行者,我相信经过我们所有正直的、负责任科学家的努力,人类基因组计划也将造福于人类。 科学是最人为的。科学之所以谓为科学,它是那些自然存在事物的新发现与自然中并不存在的新事物的新发明。科学又是最自然的。所有科学发现与发明都是基于自然界的固有规律。科学又应该是自然与人为的统一。科学是人类文明的一部分,而人类的文明依赖于其对自然的了解和与自然的和谐。 科学是人为的,它才成为我们所担心的一柄“双刃剑”。它给人类带来了繁荣幸福,又给人类带来了新的危险。自然与人为的问题,从根本上来说,是如何认识人类在自然界中位置的问题。整个人类在自然界中的位置,是自然界安排的。随着人类的意识的形成,对自然认识的拓展也随之改变。 我们人类是什么? 我们是如何来到这个世界,又如何离去?为什么你那高高的鼻子那么像你的爸爸?那漂亮的眼睛又像你的妈妈?为什么我们都一样———无疑是人类这个大家庭的一员,可我们大家又都不一样?生死、衰老、人之异同,已困扰了我们几千年,这些问题的答案现在尚可等候。可疾病对我们的危害确是每一个人、每一个家庭、每一个负责的团体与国家政府都不得不考虑的问题。 20世纪是物理学最为风光、最为辉煌、为人类文明与科学进步贡献最大的世纪。对物质原子结构的认识,使物理学进入鼎盛时期。原子弹的爆炸与人类走向太空,更使物理学登峰造极。最后,又以最简单的无机硅研制成芯片。 “不知庐山真面目,只缘身在此山中”。站在太空上,人类以前所未有的视角,重新审视我们的栖息地—地球。它与我们目前所知其他星球的主要区别之一,就是生物的存在。基因使地球郁郁葱葱,生机一片,它使我们对生命的奥秘与神奇充满新的遐想与好奇;也使我们对人类本身的了解提出新的质疑:我们已成为地球的主宰,却不能主宰自己。 世界上仍有一半以上的人,不同程度地受各种慢性病的折磨。曾肆虐一时的传染病,尽管已得到控制,可并没有像天花一样销声匿迹。抗菌素等药物发现的步子越来越慢,相反,自然界抗药的病原微生物越来越多。 肿瘤、心血管疾病等主要死因已成为人类祛除不掉的幽灵。艾滋病的出现与肆虐,使人类深感忧虑。从一战期间死于感冒美国士兵身上分离到的病毒又告诉我们:一不小心,它还可能要我们的性命,因为人类对这种致命的感冒病毒仍没有天生的免疫力。在此同时,医学研究的进展、新药的开发的步伐正在一步步减慢。近几十年没有新的抗生素问世。一种重要的药研究需要耗时12年,相当于三架波音747-400飞机的代价。 人类开始了对人类自己的最大的研究。对于自我、对于生命世界、对大自然开展了空前规模的探索,这就是六国参与的“国际人类基因组计划”。 我至此刻还不知道文明的确切定义是什么。但人类的有文字记载的文明史至少已有五六千年。 科学总是与文明、与道义相连的。人类不仅有了科学的巨大发展,也对人类符合人的自然———人性文明的重建有了新的反省。而重建文明的关键,便是重新认识人类在自然科学界中的位置。这正是人类基因组计划将要对人类做出的最大贡献。 人类基因组研究与自然 20世纪被很多人认为是物理学的世纪。我很欣赏这样的描述:这一世纪从人类认识物质的基本组成———原子结构开始。原子弹爆炸与人类登月是这一世纪最辉煌成就的一部分,而最后以最简单无机硅制造的马铃薯芯片(Chip)使人类进入了信息时代! 20世纪还孕育了另一个世纪:这是从我们重新发现生命的最基本信息———基因开始。50年代的遗传物质结构模型的提出与70年代遗传工程技术的成立使之趋于成熟,而90年代开始的国际人类基因组计划把人类带进了另一个世纪。 现在我想以人类基因组计划的发展来谈一谈人类在自然界中的位置,再谈自然与“人为”的问题。 从前,当我们讨论“科学是双刃剑”时,我们关心的仅仅是人类的敌人可能也会挥起这柄剑,如希特勒、如山本五十六。现在,我们的问题一下子复杂起来了。我们的法律一下子在克隆人类等新问题前变得无所适从,或无能为力。我们把它们归咎于道义或伦理问题。实际上,就是自然与人为的问题。 人类基因组计划在科学上的目的,是测定组成人类基因组的30亿个核苷酸的序列。从而奠定阐明人类所有基因的结构与功能,解读人类的遗传信息,揭开人类奥秘的基础。由于生命物质的一致性与生物进化的连续性,这就意味着揭开生命最终奥秘的关键,也就是人类基因组计划的所有理论、策略与技术,是在研究人类这一最为高级、最为复杂的生物系统中形成的。 规模化就是随着人类基因组计划的启动而诞生,随着人类基因组计划的进展成功而发展的“基因组学”。生物学家第一次从整个基因组的规模去认识、去研究,而不是大家分头一个一个去发现,基因研究将是基因组学区别于基因组(genetics)与所有涉及基因的学科的主要地方。基因组规模也改变了经典的实验室规模,改变了原有的实验方式,这也许是“国际人类基因组计划”只有6个正式成员国与16个中心的原因之一。 生物的序列化即生命科学以序列为基础。这是新时代的生命科学区别于以前的生物学的最主要的特点。随着人类基因组序列图的最终完成,SNP(单核苷酸多态性,即序列差异)的发现以及比较基因组学古代DNA、“食物基因组计划”、“病原与环境基因组计划”(主要是致命致病学)以及与之有关的人类易感性有关序列的推进,有科学、经济、医学意义的主要物种的基因组序列图都将问世。我们从序列中得到的信息,已经比到现在为止的所有生物研究积累的信息还要多。生物学第一次成为以数据(具体的序列数据)为根据与导向,而不是再以假说与概念为导向的科学。即使进化这一生命最实质的特征以及进化的研究,都把因多种模式及其他生物的基因组序列为基础。古代DNA的研究,也不再是因时间与过去了的环境而惟一不能在实验室重复的进化研究,从而揭示生命进化的奥秘与古今生物的联系。这就帮助人们更好地认识人类在生物世界中的关系。 生物的信息化,是借助于电子计算机的威力,也借助于把地球变小的网络。没有它们,国际人类基因组计划的协调与全世界的及时公布是不可能的。没有全部的软件与硬件,人类基因组计划一切都不可能。序列一经读出,它的质控、组装,以至于递交、分析都有赖于生物信息学,而现在开始,序列的意义完全决定于生物信息学。没有电子计算机的分析与正在爆炸的信息的比较,序列又有何用? 人类基因组计划之所以引人注目,首先源于人们对健康的需求。疾病问题是自然影响健康的首要因子,是每一个人、每一对父母、每一个家庭、每一个国家政府所不得不考虑的问题。因为人类对健康的追求,从来都不曾懈怠过。
人类基因组DNA分子量大约是多少?希望具体点啊!谢谢!
The haploid human genome occupies a total of just over 3 billion DNA base pairs.以单倍体计算,人类有23条染色体,共约30亿对DNA碱基。那么人类的双倍染色体共46条,约 60亿对DNA碱基。
人类基因组图谱的解析
参加绘制人类基因组图谱的美、英、日、法、德、中6国科学家2月12日公布了更加准确、清晰、完整的人类基因组图谱。这是在去年完成“工作框架图”的基础上,经过整理、分类和排列后得到的。明天,国际权威科学刊物《自然》将以60多页的篇幅刊登题为《人类基因组的初步测定和分析》的学术论文,对图谱绘制中的许多发现和数据进行介绍。这是人类首次全面介绍人类基因组工作框架图的“基本信息”。据悉,《自然》杂志网站已提前发布论文。同一期杂志还将发表多篇相关论文,涉及人类基因组图谱的绘制方法、染色体端粒图谱、Y染色体图谱、生殖细胞形成过程中染色体交换基因序列的方式、人体单核苷多态性数据等,公众可以在互联网上免费取阅有关原始数据。基因研究起源于孟德尔遗传规律的发现20世纪初孟德尔遗传规律的重新发现,激发了人类探索遗传信息的价值及内涵的兴趣。在过去的一百年中,这些探索极大地推动了生物学的发展。科学家将这些进步分为四个阶段:第一阶段是遗传的细胞基础——染色体的发现。 第二阶段是遗传的分子基础——DNA双螺旋结构的提出。 第三阶段是遗传的信息基础的提出。科学家发现了细胞读取基因中信息的机制,借助重组DNA技术,可以同样读取基因中的信息。 第四阶段是测定一个基因乃至整个基因组。这一努力已取得丰硕的成果。到目前为止已经测定了599种病毒与类病毒,205种自然存在的质粒,185种细胞器,31种真细胞,7种古细菌,一种真菌,两种动物与一种植物。 二十世纪八十年代早期,对人类基因组计划就形成了两个重要共识:全面认识基因组可以极大地加速生物医学研究,可以使研究人员全面地、没有偏差地解决问题。1990年美国能源部与国立卫生院启动这一计划,英国、法国、日本也建立基因组中心开展研究。九十年代后期,人类基因组计划加速,德国和中国相继加入这一计划。中国是1999年9月加入这一国际协作组,负责测定人类基因组全部序列的1%,成为参与这一计划的惟一发展中国家。 人类基因竟然与老鼠蝇虫有许多相似之处科研人员曾经预测人类约有14万个基因,但新的研究却将人类基因总数锁定在2.6383万到3.9114万个之间。也就是说,人类蛋白编码基因总数只是线虫和果蝇基因数目的两倍,只是基因更复杂些。人类蛋白质有61%与果蝇同源,43%与线虫同源,46%与酵母同源。人类17号染色体上的全部基因几乎都可以在小鼠11号染色体上找到。数百个基因可能是由细菌在脊椎动物进化的某个环节水平转移而来的。 在人类基因组上大约1/4的区域是长长的、没有基因的片段。基因密度在第17、第19和第22号染色体上最高,在X染色体、第4、第18号和Y染色体上相对贫瘠。另有35.3%的基因组包含重复的序列,第19号染色体57%是重复的。染色体中心粒旁与端粒附近区域存在大量的近期片断性重复。男性减数分裂的突变率是女性的两倍,染色体的远端及短臂重组率较高。研究还发现,地球上人与人之间99.99%的基因密码是相同的。来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一。 过去10年来,科学家们已绘制出40余种物种的基因组图谱。人类基因组是第一个精确测定的脊椎动物的基因组,也是目前为止测定的最大基因组。比以前测定的任何一种生物的基因组都大25倍以上,是以前测定所有基因组总和的8倍。这是人类自身的基因组信息。绘制生物医学研究的元素周期表基因只占人类DNA的很小一部分,但却代表着人类基因组的主要生物学功能。绘制人类基因组图谱最终的目标是编译出全部人类基因及其编码的蛋白清单,使之成为生物医学研究的元素周期表。基因可以分为编码RNA的基因以及蛋白编码基因,工作框架图是确定人类基因组中心蛋白编码基因。 人类基因组计划为医学进步带来空前机遇,对医学将产生不可估量的、深远的影响,将导致疾病的分子机制的阐明,进而根据这些机制,设计出诊断与治疗的方法。 人类基因组图谱最重要的应用之一,就是将许多生物化学功能未知的疾病基因定位。人体23对染色体由约30亿个碱基对组成,包含数万个基因。找出30亿个碱基对在DNA链上的准确位置,进而识别分析出各种基因及其功能,将使人类最终征服癌症、心脏病、阿尔茨海默氏症等多种顽疾。目前科学家通过克隆的方法,至少定位了30种疾病基因,利用基因组的数据,一些常见的染色体缺失综合症的机制将得以揭示。随着下一步对人体各种致病基因展开全面大搜索,以及对各种基因功能及基因之间相互作用了解的加深,科学家们将在分子水平上深入了解疾病的根本发病机理,将为各种疾病的诊断、防治和新药的开发提供有力武器。了解全部人类的基因与蛋白还可为寻找合适的药物靶点提供便利。此外,人类基因组计划的推进,将会促进生命科学与信息科学、材料科学等相结合,带动一批新兴高技术产业的发展。树起探索生命奥秘的新里程碑人类基因组工作框架图是一个动态的产品,数据每天都在更新,终极目标是绘制完成图。国际协作组将人类基因组计划分为两个阶段,第一阶段是在2000年6月完成的“工作框架图”;第二阶段目前正在进行,即在2001年绘制出人类基因组的完成图。这一任务进展迅速,人类基因组大约有32亿碱基,已经有10亿碱基的序列达到了完成图标准。尽管要绘制完成图还有很多工作要做,但这些信息已经可以使人们对人类基因组有一个总体的认识。 人类基因组图谱初步分析结果是人类探索生命奥秘这一伟大工程的新里程碑,为本世纪人们全面了解这些信息的奥秘奠定了基础。中国科学院院士、我国“863”计划生物技术领域首席科学家强伯勤教授认为,这“说明生命科学已经发展到了更深的阶段,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。”据预测,在未来10至20年里,科学家还将解读大量生物的遗传密码,与此同时,还要完善全部人类基因与蛋白质的清单,对调控区域进行大规模的研究与分析等,基因组研究重点将进入确定基因结构与功能等应用研究阶段,生命科学因此将迎来新的大发展。
人类基因组测序:目前到底发现了多少个基因
全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。
科普:什么是人类基因组学
基因组学阐明整个基因组的结构、结构与功能的关系以及基因之间相 互作用的科学。换言之,基因组学是以分子 生物学技术、电子计算机技术和信息网络技术为手段,以生物体内基因组的全部基因为 研究对象,从整体水平上探索全基因组在生 命活动的作用及其内在规律和内外环境影响 机制的科学。从全基因组的整体水平而不是 单个基因水平,研究生命这个具有自身组织 和自装配特性的复杂系统,认识生命活动的 规律,更接近生物的本质和全貌
人类基因组图谱的解析
参加绘制人类基因组图谱的美、英、日、法、德、中6国科学家2月12日公布了更加准确、清晰、完整的人类基因组图谱。这是在去年完成“工作框架图”的基础上,经过整理、分类和排列后得到的。明天,国际权威科学刊物《自然》将以60多页的篇幅刊登题为《人类基因组的初步测定和分析》的学术论文,对图谱绘制中的许多发现和数据进行介绍。这是人类首次全面介绍人类基因组工作框架图的“基本信息”。据悉,《自然》杂志网站已提前发布论文。同一期杂志还将发表多篇相关论文,涉及人类基因组图谱的绘制方法、染色体端粒图谱、Y染色体图谱、生殖细胞形成过程中染色体交换基因序列的方式、人体单核苷多态性数据等,公众可以在互联网上免费取阅有关原始数据。基因研究起源于孟德尔遗传规律的发现20世纪初孟德尔遗传规律的重新发现,激发了人类探索遗传信息的价值及内涵的兴趣。在过去的一百年中,这些探索极大地推动了生物学的发展。科学家将这些进步分为四个阶段:第一阶段是遗传的细胞基础——染色体的发现。 第二阶段是遗传的分子基础——DNA双螺旋结构的提出。 第三阶段是遗传的信息基础的提出。科学家发现了细胞读取基因中信息的机制,借助重组DNA技术,可以同样读取基因中的信息。 第四阶段是测定一个基因乃至整个基因组。这一努力已取得丰硕的成果。到目前为止已经测定了599种病毒与类病毒,205种自然存在的质粒,185种细胞器,31种真细胞,7种古细菌,一种真菌,两种动物与一种植物。 二十世纪八十年代早期,对人类基因组计划就形成了两个重要共识:全面认识基因组可以极大地加速生物医学研究,可以使研究人员全面地、没有偏差地解决问题。1990年美国能源部与国立卫生院启动这一计划,英国、法国、日本也建立基因组中心开展研究。九十年代后期,人类基因组计划加速,德国和中国相继加入这一计划。中国是1999年9月加入这一国际协作组,负责测定人类基因组全部序列的1%,成为参与这一计划的惟一发展中国家。 人类基因竟然与老鼠蝇虫有许多相似之处科研人员曾经预测人类约有14万个基因,但新的研究却将人类基因总数锁定在2.6383万到3.9114万个之间。也就是说,人类蛋白编码基因总数只是线虫和果蝇基因数目的两倍,只是基因更复杂些。人类蛋白质有61%与果蝇同源,43%与线虫同源,46%与酵母同源。人类17号染色体上的全部基因几乎都可以在小鼠11号染色体上找到。数百个基因可能是由细菌在脊椎动物进化的某个环节水平转移而来的。 在人类基因组上大约1/4的区域是长长的、没有基因的片段。基因密度在第17、第19和第22号染色体上最高,在X染色体、第4、第18号和Y染色体上相对贫瘠。另有35.3%的基因组包含重复的序列,第19号染色体57%是重复的。染色体中心粒旁与端粒附近区域存在大量的近期片断性重复。男性减数分裂的突变率是女性的两倍,染色体的远端及短臂重组率较高。研究还发现,地球上人与人之间99.99%的基因密码是相同的。来自不同人种的人比来自同一人种的人在基因上更为相似。在整个基因组序列中,人与人之间的变异仅为万分之一。 过去10年来,科学家们已绘制出40余种物种的基因组图谱。人类基因组是第一个精确测定的脊椎动物的基因组,也是目前为止测定的最大基因组。比以前测定的任何一种生物的基因组都大25倍以上,是以前测定所有基因组总和的8倍。这是人类自身的基因组信息。绘制生物医学研究的元素周期表基因只占人类DNA的很小一部分,但却代表着人类基因组的主要生物学功能。绘制人类基因组图谱最终的目标是编译出全部人类基因及其编码的蛋白清单,使之成为生物医学研究的元素周期表。基因可以分为编码RNA的基因以及蛋白编码基因,工作框架图是确定人类基因组中心蛋白编码基因。 人类基因组计划为医学进步带来空前机遇,对医学将产生不可估量的、深远的影响,将导致疾病的分子机制的阐明,进而根据这些机制,设计出诊断与治疗的方法。 人类基因组图谱最重要的应用之一,就是将许多生物化学功能未知的疾病基因定位。人体23对染色体由约30亿个碱基对组成,包含数万个基因。找出30亿个碱基对在DNA链上的准确位置,进而识别分析出各种基因及其功能,将使人类最终征服癌症、心脏病、阿尔茨海默氏症等多种顽疾。目前科学家通过克隆的方法,至少定位了30种疾病基因,利用基因组的数据,一些常见的染色体缺失综合症的机制将得以揭示。随着下一步对人体各种致病基因展开全面大搜索,以及对各种基因功能及基因之间相互作用了解的加深,科学家们将在分子水平上深入了解疾病的根本发病机理,将为各种疾病的诊断、防治和新药的开发提供有力武器。了解全部人类的基因与蛋白还可为寻找合适的药物靶点提供便利。此外,人类基因组计划的推进,将会促进生命科学与信息科学、材料科学等相结合,带动一批新兴高技术产业的发展。树起探索生命奥秘的新里程碑人类基因组工作框架图是一个动态的产品,数据每天都在更新,终极目标是绘制完成图。国际协作组将人类基因组计划分为两个阶段,第一阶段是在2000年6月完成的“工作框架图”;第二阶段目前正在进行,即在2001年绘制出人类基因组的完成图。这一任务进展迅速,人类基因组大约有32亿碱基,已经有10亿碱基的序列达到了完成图标准。尽管要绘制完成图还有很多工作要做,但这些信息已经可以使人们对人类基因组有一个总体的认识。 人类基因组图谱初步分析结果是人类探索生命奥秘这一伟大工程的新里程碑,为本世纪人们全面了解这些信息的奥秘奠定了基础。中国科学院院士、我国“863”计划生物技术领域首席科学家强伯勤教授认为,这“说明生命科学已经发展到了更深的阶段,它将推动基因组测序工作、功能基因的研究和基因技术的应用,从而推动整个生物技术的发展,也将对科技发展、经济发展以及整个社会产生深远影响。”据预测,在未来10至20年里,科学家还将解读大量生物的遗传密码,与此同时,还要完善全部人类基因与蛋白质的清单,对调控区域进行大规模的研究与分析等,基因组研究重点将进入确定基因结构与功能等应用研究阶段,生命科学因此将迎来新的大发展。
人类基因组计划都有哪些国家参与了?
人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
人类基因组和人类单倍体基因组区别
人类基因组是指合成有功能的人体各类细胞中蛋白质及(或)多肽链和RNA 所必须的全部DNA顺序和结构,包括人类的23对染色体上全部的DNA所携带的遗传信息的总和,即30亿个碱基对的序列,估计约含10万个基因。人类基因组首先有两层意义:一是代表我们全人类整体上生生不息,又各有差异的所有遗传信息;二是存在于我们每个人体的所有细胞中的DNA分子,它们都近乎相同。人的单倍体基因组包括3×109碱基对(Basepair, bp),分布在22条常染色体和X、Y性染色体上。
人类基因组承担各个国家比例是什么
1% 。美国,英国,法国,德国,日本,中国。其中我国是唯一的发展中国家,承担百分之一的任务。
人类基因组的核DNA包括线粒体DNA吗
不包括。核DNA在细胞核,线粒体DNA在线粒体。
人的基因各不相同,那为什么还要测人类基因组序列呢?
人类基因组DNA序列分布于22条常染色体和2条性染色体上,目前人们已掌握其信息储存与表达规律的基因,只占其中的一小部分。对人类基因组的研究,并不是为了单纯地积累数据,而是为了揭示大量数据中所蕴藏的内在规律,从而更好地认识和保护生命体。由于载有基因的染色体不能直接用来测序,人类基因组计划的战略构想是将人类的整个基因组一步步由粗到细地进行有序的划分,最后得到可用于测序的重叠度最小的连续克隆系,将基因组分解成为较易操作的小的结构区域的过程称为作图,根据所用标志和手段不同,可分为遗传连锁图、物理图和转录图(也称基因图)。分解得到的大片段DNA一般采用下列步骤进行测序:(1)将待测大片段DNA的克隆体随机切成小片段(约1500bp);(2)将小片段克隆入测序载体;(3)对每kb的DNA进行10个~30个亚克隆的高覆盖率测序;(4)将相互重叠的读出序列组装成连续的多序列的重叠线;(5)从质量最高的读出序列中取得最后的确认序列。 人类基因组计划把“作图”定为测序的前提,目的是保证人类整个基因组的完整性,然而作图速度会限制基因组DNA的测序速度。自宣布成功绘制人类基因组草图和公布人类基因组测序草图至今,对人类基因的研究又取得了一系列重大的发现: 1 人类基因总数在3万个到3.5万个之间,低于原来估计数目的一半。这说明人类在使用基因上比其它物种更为高效。 2 基因组中存在着基因密度较高的“热点”区域和大片不携带人类基因的“荒漠”区域。研究结果表明:基因密度在第17、19和22号染色体上最高,在X、Y、第4号和第18号染色体上密度较小。 3 大约1/3以上基因组包含重复序列,这些重复序列的作用有待进一步研究。 4 所有人都具有99.99%的相同基因,而且不同人种的人比同一人种的人在基因上更为相似,任何两个不同个体之间大约每1000个核苷酸序列中会有一个不同,这称为单核苷酸多态性(SNP),每个人都有自己的一套SNP,它对“个性”起着决定的作用。 人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的。 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。人体内真正发挥作用的是蛋白质,人类功能基因组学便是应用基因组学的知识和工具去了解影响发育和整个生物体特定序列的表达谱。有人将HGP比作生命周期表,因为它不再是从研究个别基因着手,而是力求在细胞水平解决基因组问题,同时研究所有基因及其表达产物,以建立对生命现象的整体认识。目前,研究者已着手通过DNA芯片等新技术对基因的表达展开全面研究,也通过蛋白质芯片的制作,标准化双向蛋白质凝胶电泳、色谱、质谱等分析手段对人类可能存在的几十万种蛋白质或多肽的特征和功能进行研究。科学家预言,蛋白质组的研究将导致药物开发方面实质性的突破,以使人类真正攻克癌症等顽疾。最后,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。
在人类基因组中,中国承担了什么任务
2000年6月,经过中、美、英、日、法、德6国科学家的共同努力,人类基因组序列工作框架图宣布完成,这项重大科研成果为人类了解自己提供了大量的遗传信息。然而,每个人之间基因组并不完全相同,也叫基因组的多态性,这个多态性表现在DNA序列上。统计表明,任意两个人之间的DNA核苷酸差异约占基因组的0.01%,按人类基因组共有30亿对碱基计算,将有300万核苷酸位点的不同。就是这0.01%的差异,决定了人类的遗传多样性。例如,有的人容易生病,而有的人却对疾病的免疫能力特别强;对于某些药物,有的人用就灵验,有的人用就不灵验。 为了整合人类基因组计划中的所有测序成果,从基因组水平检测多个不同种群样品的核苷酸多态性位点,从而建立人类遗传的群体信息资源。中、美、英、日、加5国科学家于2002年10月在美国华盛顿召开会议,并宣布“国际人类基因组单体型图计划”启动。 中国的工作量占国际人类基因组单体型图计划的10%,将负责3号染色体、21号染色体和8号染色体短臂的单体型图构建工作。其他各国承担的构建任务分别是:美国31%,日本25%,英国24%,加拿大10%。 该计划将以世界三大族群(亚、非、欧裔)为研究对象,三大族群样品各占1/3。中国将提供一半的亚裔样品,即占世界各地样品总数的1/6。 中国协作组计划在北京师范大学设点向全社会公开招募志愿参与者,总共采集130个成年健康汉族的血样。据称,这一过程将按照国际生命伦理学的标准,在中美两国有关专家设计下进行。今后数月中,将进行大范围的“社会参与”活动,让公众了解这一研究。对志愿者来说,将在了解基本的遗传学知识与生命伦理学的基础上,详细听取这一项目的介绍,在充分知情、完全自愿的情况下,做出自己愿意不愿意的选择。 据悉,“国际人类基因组单体型图计划”投资1亿美元,历时3年。我国科学家计划在2004年10月31日前完成“中国卷”任务。
人类基因组和人类单倍体基因组区别
人类基因组是指合成有功能的人体各类细胞中蛋白质及(或)多肽链和RNA 所必须的全部DNA顺序和结构,包括人类的23对染色体上全部的DNA所携带的遗传信息的总和,即30亿个碱基对的序列,估计约含10万个基因. 人类基因组首先有两层意义:一是代表我们全人类整体上生生不息,又各有差异的所有遗传信息;二是存在于我们每个人体的所有细胞中的DNA分子,它们都近乎相同. 人的单倍体基因组包括3×109碱基对(Basepair,bp),分布在22条常染色体和X、Y性染色体上.
怎样理解人类基因组多样性
人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对体染色体、1条X染色体和1条Y染色体。人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的少得多,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的约1.5%。人类只有一个基因组,大约有2-3万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在人类基因组阐明30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。
人类基因组的结构特征。
【答案】:人类基因组的结构特征有:(1)人类有24条染色体,分别是22条常染色体、X染色体与Y染色体。含有约30亿个DNA碱基对。碱基对是以氢键相结合的两个含氮碱基,以A、T、C、G四种碱基排列成碱基序列。其中一部分的碱基对组成了大约20000到25000个基因。(2)结构基因是不连续的,内部含有不编码蛋白质的内含子,编码区称为外显子。人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的更少,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的1.5%。(3)基因转录产物为单顺反子,即一个结构基因转录、翻译成一个mRNA分子、一条多肽链。(4)在人类基因组中存在大量的重复序列,短的仅含2个碱基,长的多达数百、上千个碱基,可分为高度重复序列、中度重复序列、低度重复序列三种。高度重复序列重复频率可达106次,包括反向重复序列、卫星DNA等约占10%~15%。
什么是人类基因组?基因组学如何促进医学和生物学的进展?
人类基因组是指人类所有基因的总体遗传信息,它由约30亿个碱基对组成,编码了约20,000~25,000个蛋白质编码基因,以及大量的非编码DNA序列。基因组学是研究基因组的学科,涉及到基因的结构、功能、调控、演化等方面。基因组学的发展对医学和生物学的进展产生了深远的影响,具体包括以下几个方面:1. 疾病研究:基因组学为疾病的研究提供了新的思路和方法。通过对人类基因组的测序和比较,可以识别与疾病相关的基因变异,并探索其遗传机制和作用方式。这有助于识别新的疾病靶点和疾病治疗方法,如基因治疗、靶向治疗等。2. 药物研发:基因组学可以加速新药的研发和上市。通过对药物作用靶点基因的研究,可以发现新的靶点,从而开发新的药物。此外,基因组学还可以应用于药物剂量和副作用预测,提高药物的治疗效果和安全性。3. 生命科学研究:基因组学为生命科学的研究提供了新的视角和手段。通过对不同物种的基因组进行比较,可以探索生命的演化历程和进化机制。此外,基因组学还可以用于研究基因表达调控、细胞信号传导等基本生命过程,推动生命科学的发展。综上所述,基因组学在医学和生物学的研究中发挥着越来越重要的作用,为疾病诊断和治疗、药物研发、生命科学等领域带来了新的机遇和挑战。
人类基因组数目是多少?
基因是生命遗传的基本单位。由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为3.4万至3.5万个,仅比果蝇多2万个,远小于原先10万个基因的估计。
人类基因组是由多少染色体组成的?
人类基因组是由23对染色体(共46个)所构成,每一个染色体皆含有数百个基因,在基因与基因之间,会有一段可能含有调控序列和非编码DNA的基因间区段。人类拥有24种不同的染色体,其中有22个属于体染色体,另外还有两个能够决定性别的性染色体,分别是X染色体与Y染色体。1号到22号染色体的编号顺序,大致符合他们由大到小的尺寸排列。最大的染色体约含有2.5亿个碱基对,最小的则约有3800万个碱基对。这些染色体通常以细丝状存于细胞核内,若将单一细胞内的染色体拉成直线,那么将大约有6英尺长。在人类个体的体细胞中,通常含有来自亲代的1到22对体染色体,再加上来自母亲的X染色体,以及来自父亲的X或Y染色体,总共是46个(23对)染色体。
为什么人类基因组计划要测定24条染色体
这是由于人类细胞内共有22对常染色体,2对性染色体。“人类基因组计划”在研究人类过程中建立起来的策略、思想与技术,构成了生命科学领域新的学科——基因组学,可以用于研究微生物、植物及其他动物。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,是人类科学史上的又一个伟大工程,被誉为生命科学的“登月计划”。人类基因组计划由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的图谱。扩展资料:人类基因组计划的相关情况:1、人类基因组计划(Human genome project)由美国于1987年启动,中国于1999年9月积极参加到这项研究计划中的,承担其中1%的任务,即人类3号染色体短臂上约3000万个碱基对的测序任务。中国因此成为参加这项研究计划的唯一的发展中国家。2、测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。3、解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。参考资料来源:百度百科-人类基因组计划
人类基因组计划将对人类产生什么样的影响
1、HGP对人类疾病基因研究的贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息.对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础.对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点.健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”. 2、HGP对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预. 3、HGP对生物技术的贡献 (1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体. (2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型. (3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造. 4、HGP对制药工业的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”. 个体化的药物治疗:药物基因组学. 5、HGP对社会经济的重要影响 生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响 生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 7、HGP带来的负面作用 侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资1、HGP对人类疾病基因研究的贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息.对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础.对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点.健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”. 2、HGP对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预. 3、HGP对生物技术的贡献 (1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体. (2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型. (3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造. 4、HGP对制药工业的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”. 个体化的药物治疗:药物基因组学. 5、HGP对社会经济的重要影响 生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响 生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 7、HGP带来的负面作用 侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私.源的掠夺战;基因与个人隐私.
人类基因组计划什么时候完成的
人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体2.5万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。
人类基因组是由多少染色体组成的?
人类基因组是由23对染色体(共46个)所构成,每一个染色体皆含有数百个基因,在基因与基因之间,会有一段可能含有调控序列和非编码DNA的基因间区段。人类拥有24种不同的染色体,其中有22个属于体染色体,另外还有两个能够决定性别的性染色体,分别是X染色体与Y染色体。1号到22号染色体的编号顺序,大致符合他们由大到小的尺寸排列。最大的染色体约含有2.5亿个碱基对,最小的则约有3800万个碱基对。这些染色体通常以细丝状存于细胞核内,若将单一细胞内的染色体拉成直线,那么将大约有6英尺长。在人类个体的体细胞中,通常含有来自亲代的1到22对体染色体,再加上来自母亲的X染色体,以及来自父亲的X或Y染色体,总共是46个(23对)染色体。
人类基因组计划的进展可能给人类带来哪些新的问题和挑战
人类基因组计划的进展可能给人类带来哪些新的问题和挑战中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。 在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。 3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。 4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。 首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人。
人类基因组计划是测全部基因的序还是全部
人体内每个细胞内有23对染色体;包括22对常染色体和一对性染色体,性染色体包括:X染色体和Y染色体.含有一对X染色体的受精卵发育成女性,而具有一条X染色体和一条Y染色体者则发育成男性.即男性染色体的组成:22对常染色体+XY,女性染色体的组成:22对常染色体+XX,因此人类基因组计划要测定的人类染色体数应该是22条常染色体和两条性染色体X和Y,即24条.故选:B
人类基因组织计划是怎么回事
2000年6月26日是人类科技史上一个令人难忘的日子, 参加者人类基因组计划研究,美国、英国、法国、德国、 日本和中国科学家同时向世界宣布人类基因组工作草图已基本完成, 已给制出人体97%的基因组,基中85% 的基因组序列得到了精确测定, 包含了人体约30亿个碱基对的正确排序。 这一重大成就立刻受到全世界的瞩目,各国均给予了高度评价, 人们认为人类基因组计划是断曼哈顿原子计划, 阿波罗登月计划之后的第三大科学计划,它对人类认识自身, 提高健康水平,推动生命科学、医学、生物技、制药业、 农业等的发展具有极其重要的意义, 人类基因组工作草图的完成是该计划实施的一个里程碑, 标志着人类在研究自身的过程中迈出其不意关键的一步。 有人将此成就与伽利略的天文发现相媲美, 有人认为它的意义远远大于抗生素的发明。 第一,人类基因组计划的由来与进展 人类基因组计划最初是由美国生物学家, 诺贝尔奖获得者杜尔贝科(R. Dulbecco)于1986年在美国《科学》 杂志上发表的一篇文章中提出的, 主要目标是测出人类基因组DNA长达3×109碱基对的序列, 发现所有人类基因并阐明其在染色体上的位置, 从而在整体上破译人类遗传信息。经过约3年的讨论, 美国政府于1990年10月正式启动了这项将耗资30亿美元、 为时15年的计划, 预期在2005年完成人类基因组全部序列的测定。 这一计划还包括对一生活费列模式生物体基因组的全测序, 如大肠杆菌,酵母,拟南芥、线虫、果蝇和小鼠等, 因为对这些处于生物演化不同阶段的生物体的研究是认识人类基因结 构与功能不可缺少的。 1993年年美国国立卫生研究院和能源部修改了其五年计划的指标 ;1994年遗传图谱传图的五年计划提前完成; 1995年人第3、11、 12和22号染色体的中等精度的图谱公布;人第16、 19号染色体的高分辨率物理图谱分别完成。该计划自实施以来, 很快受到国际科学界的重视,英国、日本、法国、 德国的科学家先后加盟,遂扩展成国际性合作计划。 1996年举行了国际合作的人类基因组大规模测序战略会议。 1997年美国国立卫生研究院成立国家人类基因组研究所( NHGRI)。 1998年美国国立卫生研究院与能源部提出新的五年计划( 1998-2003),人类DNA测序是其重中之重, 旨在2003年底前完成整个人类基因组的测序,其间, 将在2001年底前产生人类基因组序列的工作草图。 1999年7月,在中国科学家的积极申请之下, 中国科学院遗传研究所人类基因组中心在国际人类基因组组织注册成 功,负责测定全部序列的1%。中国成为该计划的第六个参与国, 唯一的发展中国家。 1999年12月国际基因组计划联合小组宣布, 已完整译出人第22号染色体的遗传密码, 人类首次完成人体染色体基因完整序列的测定。 2000年4月美国塞莱拉(Celera)基因研究公司宣布, 该公司已破译出一名实验者的完整遗传密码。 但不少欧美科学对此表示质疑, 因为该公司的研究没有提供有关基因序列的长度和完整性的可靠数据 。2000年5月, 德国与日本科学家合作完成了人第21号染色体的基因测序工作, 该项成果可以揭开早老性痴保症、躁狂抑郁症状等疾病的成病机理。 在六国16个测序中心的1100多名科学家、 计算机专家和技术人员的通力合作下, 终于在5月提前完成了人类基因组的工作草图。 国际人类基因组计划的完成时间将再次提前, 预计从原订的2003年6月提前到2001年6月。 第二,我国人类基因组研究工作的历程与进展 我国人类基因组的研究工作, 在国家自然科学基金委员会的支持下, 于1994年启动以后又得到了国家高技术发展计划(863) 和国家自然科学基金的重点支持,以及中国科学院和北京、 上海等市政府的支持, 1998年疾病基因组等研究被列入国家重点基础研究规划( 973)的第一批项目之中;中国南方基因中心在上海成立。翌年, 北方人类基因组中心和中国科学院人类基因组中心先后在京成立。 1999年9月中国加入国际人类基因组计划, 并仅用半年多的时间, 于2000年4月提前完成了人第3号染色体短臂上3000万个碱 基对的工作草图,从而在这一科学丰碑上自豪地刻下中国人的名字。 我国通过参与这一计划,改变了国际人类基因组研究的格局, 能够分享这一计划历时10年积累的全部成果、数据和技术, 建立起了我们自己的大规模测序的全套技术及科技队伍, 为我国今后的生物资源基因组研究及参与国际生物产业竞争奠定了基 础。 现在,我国已建立起一整套较完整的基因组研究体系, 在基因多样性领域,建立了多民族人群的DNA样品库,对中国南、 北30个民族或人群的遗传关系进行了研究, 并与世界其他人群进行了比较。 疾病基因的研究也取得了可喜的进展, 克隆了遗传性高频耳聋的致病基因, 定位了若干单基因疾病的染色体位点。 在白血病和某些实体肿瘤相关基因的结构, 功能研究方面也取得重大突破,已获得EST(表达序列标签) 10多万条,克隆了1000条以上新基因的全长cDNA, 在模式生物体基因组的全测序方面我国也做了出色的工作, 开展了中国生物数据库的建设。 尽管我国在人类基因在人类基因组研究方面取得了一系列令人惊喜的 成就,但科学家们指出,我国现有的基因组研究队伍的总体状况, 特别是在资金与技术设备方面与发达国家相比, 仍存在着相当大的差距。 要使我国从基因资源大国转变为基因研究大国, 扭转目前面临的生物资源流失的来重情况,不农历付出极大的努力。 第三,后基因组时代的展望 随着人类基因组大规模测序工作接近尾声, 生命科学进入了后基因组时代,亦称功能基因组学时代。 它以揭示基因组的功能及调控机制为目标, 其核心科学问题主要包括:基因组的多样性, 基因组的表达调控与蛋白产物的功能,以及模式生物基因组研究等。 它的研究将为人们深入理解人类基因组遗传语言的逻辑构架, 基因结构与功能的关系,个体发育、生长、衰老和死亡机理, 神经活动和脑功能表现机理,细胞增殖,分化和凋亡机理, 信息传递和作用机理,疾病发生、发展的基因及基因后(如病机理、 病理过程) 机理以及各种生命科学问题提供共同的科学基础功能基因组研究成果 不仅具有巨大的科学意义,而且有着十分光明,广泛的应用前景, 在医疗卫生方面,研究成果可用于医药的发现和开发; 致病基因或疾病易感基因的鉴定和克隆,可用于全新原理的诊断、 治疗和预防方法的设计;医生将能够根据患者的个人遗传构成, 进行更加个人化的药物疗法;科学家们在人体器官和组织"重造" 以及修复方面将取得巨大进步;以基因组成果为基础的基因组工业, 将带动一批高新技术产业向新的领域开拓。在农业、畜牧业方面, 可用新的方式对动植物疾病进行诊断和处治,改善它们的品质, 提高产量,在纺织业,废物控制和环境治理整顿, 都将发挥重要作用。满意请采纳
最新的人类基因组计划内容是什么?
人类基因组计划于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。2001年公布了人类基因组图谱及初步分析结果。其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。我国于1999年9月积极参加到这项研究计划中的,承担其中1%的任务,即人类3号染色体上约3000万个碱基对的测序任务。我国因此成为参加这项研究计划的唯一的发展中国家。2000年6月26日人类基因组工作草图完成。最新的人类基因组计划内容是:后人类基因组计划后基因组计划就是人类完成人类基因组计划(结构基因组学)以后的若干领域,实际上是指完成顺序后的进一步计划,其实质内容就是生物信息学与功能基因组学。其核心问题是研究基因组多样性,遗传疾病产生的原因,基因表示调控的协调作用,以及蛋白质产物的功能。人类基因组研究的目的不只是为了读出全部的DNA序列,更重要的是读懂每个基因的功能,每个基因与某种疾病的种种关系,真正对生命进行系统地科学解码,从此达到从根本上了解认识生命的起源、种间、个体间的差异的原因,疾病产生的得机制以及长寿、衰老等困扰着人类的最基本的生命现象目的。
人类基因组计划及其意义是什么论文
人类基因组计划(HumanGenomeProject,简称HGP)HGP的研究内容HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。1、遗传图谱(geneticmap)又称连锁图谱(linkagemap),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。2、物理图谱(physicalmap)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。3、序列图谱随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。4、基因图谱基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。基因图谱的意义:在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。HGP对人类的重要意义1、HGP对人类疾病基因研究的贡献人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。2、HGP对医学的贡献基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。3、HGP对生物技术的贡献(1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。(2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。(3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。4、HGP对制药工业的贡献筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。个体化的药物治疗:药物基因组学。5、HGP对社会经济的重要影响生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药)6、HGP对生物进化研究的影响生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”?7、HGP带来的负面作用侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。参考资料:/view/22966.htm
人类基因组计划有什么作用?
人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。
人类基因组计划对人类有哪些益处?
人类基因组计划(human genome project, HGP)对人类的益处有以下一个方面:1、HGP对人类疾病基因研究的贡献人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。 健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。2、HGP对医学的贡献基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。3、HGP对生物技术的贡献(1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。(2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。(3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。4、HGP对制药工业的贡献筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。个体化的药物治疗:药物基因组学。5、HGP对社会经济的重要影响生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”?
人类基因组计划启动于1990年 ,为什么六国科学家中中国科学家承担1%的任务?
我国承担的工作区域,位于人类3号染色体短臂上.由于这一区域约占人类基因组的1%,因此简称为“1%项目”.我国科学家对被国际同行称为“北京区域”的这一部分进行了详细分析,共测定3.84亿个碱基,相当于将所负责区域重复测定12次以上,对人类基因组的实际贡献率为1%左右.虽然只占了1%,但这份任务对我国后续的其他基因组测序有很大的帮助,比如后来的水稻基因组测序.
关于人类基因组计划的求教!
1. 首先,该计划并没有测序所有人类细胞的DNA。就算是你自己身体里面也不是每个细胞都一样的。比如,产生不同抗体的B细胞,每个人就有成千上万种,也就是有成千上万个不同的序列。2. 测序的过程。你说的不同当然是存在的,不过对于编码序列来说,编码功能蛋白的序列都是一样的,不然就是基因突变了。测序是把从不同个体测来的序列拼接而成的。测序的目的是在于研究基因的序列,目前发现人类有大约23000基因。个体的差异主要在于那些非编码序列(或者说调控区)3. 目前,对已个体不同的序列还一直在研究。你可以参考“ International HapMap Project”, “Celera Genomics private-sector project”。2007年9月4日,Craig Venter发表了他的全基因组序列(6亿),这才是第一个对个体的测序结果。http://www.ncbi.nlm.nih.gov/pubmed/17803354
人类基因组计划测定多少条染色体
人类基因组计划至少应测24条染色体的碱基序列,原因是: ①基因在染色体上. ②染色体上的DNA的碱基序列代表遗传信息,人类的女性有(22对+XX)条染色体,男性有(22对+XY)条染色体. ③由于X、Y染色体之间具有不相同的基因和碱基顺序,只有测24条(22常染色体+XY)染色体,才能获得人类基因组的全部遗传信息. 故选:A.
人类基因组计划的主要用途
人类疾病贡献人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿氏舞蹈症、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。对医学的贡献基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。生物技术贡献⑴基因工程药物分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。⑵诊断和研究试剂产业基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。推动细胞工程胚胎和成年期干细胞、克隆技术、器官再造。对制药的贡献筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。个体化的药物治疗:药物基因组学。社会经济影响生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药)生物进化影响生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”?负面作用侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。破译人类遗传信息,将对生物学,医学,乃至整个生命科学产生无法估量的深远影响。目前基因组信息的注释工作仍然处于初级阶段。随着将来对基因组的理解更加深入,新的知识会使医学和生物技术领域发展更为迅速。基于DNA载有的信息在细胞生命活动中的指导作用,在分子生物学水平上深入了解疾病的产生过程将大力推动新的疗法和新药的开发研究。对于癌症、老年痴呆症等疾病的病因研究也将会受益于基因组遗传信息的破解。事实上,在人类基因组计划完成之前,它的潜在使用价值就已经表现出来。大量的企业,例如巨数遗传公司开始提供价格合宜,而且容易使用的基因检测,其声称可以预测包括乳腺癌、凝血、纤维性囊肿、肝脏疾病在内的很多种疾病。 人类基因组计划对许多生物学研究领域有切实的帮助。例如,当科研人员研究一种癌症时,通过人类基因组计划所提供的信息,可能会找到某个,或某些相关基因。如果在互联网上访问由人类基因组信息而建立的各种数据库,可以查询到其他科学家相关的文章,包括基因的DNA,cDNA碱基顺序,蛋白质立体结构、功能,多态性,以及和人类其他基因之间的关系。也可找到和小鼠、酵母、果蝇等对应基因的进化关系,可能存在的突变及相关的信号传到机制。人类基因组计划对与肿瘤相关的癌基因,肿瘤抑制基因的研究工作,起到了重要的推动作用。分析不同物种的DNA序列的相似性会给生物进化和演变的研究提供更广阔的路径。事实上,人类基因组计划提供的数据揭示了许多重要的生物进化史上的里程碑事件。如核糖体的出现,器官的产生,胚胎的发育,脊柱和免疫系统等都和DNA载有的遗传信息有密切关系。
在人类基因组计划中,由于中国起步较晚,只参与了多少的工作?
1%1994年,我国HGP在吴旻、强伯勤、陈竺、杨焕明的倡导下启动,最初由国家自然科学基金会和863高科技计划的支持下,先后启动了“中华民族基因组中若干位点基因结构的研究”和“重大疾病相关基因的定位、克隆、结构和功能研究”,1998年在国家科技部的领导和牵线下,1998年在上海成立了南方基因中心,1999年在北京成立了北方人类基因组中心,1998年,组建了中科院遗传所。1999年7月在国际人类基因组注册,得到完成人类3号染色体短臂上一个约30Mb区域的测序任务,该区域约占人类整个基因组的1%。人类基因组计划(Human genome project)由美国于1987年启动,我国于1993年加入该计划,承担其中1%的任务,即人类3号染色体短臂上约30Mb的测序任务。2000年6月28日人类基因组工作草图完成。由于人类基因测序和基因专利可能会带来巨大的商业价值,各国政府和一些企业都在积极地投入该项研究,如1997年AMGE公司转让了一个与中枢神经疾病有关的基因而获利3.92亿美元。
人类基因组计划的目的是测定全部的DNA?
错,自然与人为 现在,人们正拿起了基因测序这一先进武器,在“非典”的战场上与病魔展开较量.4月14日,人类基因组全图正式发表,从此全世界的人们都可以免费获得这份资源;50年前的这个时候,沃森和克里克共同发表了DNA分子的双螺旋结构,从此为人类认识、了解自己打开了关键的一道门. 曾几何时,当人类自身的秘密困扰着我们的时候,我们是那样迷惑;但当这秘密渐渐将大白于天下时,我们不自禁地又犹豫起来. 距离是产生美感的基础,当一切都变得如此清晰,我们还会一如从前吗?科学,是双刃剑,即使在“人类基因组计划”这样从一开始就本着全人类免费共享资源的项目,也曾遇到某些不和谐的声音. 但是,无论科学,还是人为,都要遵循自然的法则.按照中国传统的哲学思想———天之道,损有余补不足.一切的不平衡都会在宗法自然中找到自己的支点. 不知不觉间,人类已经在第21个世纪走过了两个半年头,DNA分子的双螺旋结构也已经发表了50周年.回想50年前,生命奥秘答案初现端倪之时,人们的惊喜、迷惑与期待还仿佛如刚刚掠过的那一缕清风,在我们的耳边、心里留下挥之不去的印象. 时间是最自然的,又是最人为的.自然似乎只通过时间给我们以启示,斗转星移的相应位置造成的物理变化,以及与此有关的生物的生死循环等.作为国际人类基因组计划的执行者,我相信经过我们所有正直的、负责任科学家的努力,人类基因组计划也将造福于人类. 科学是最人为的.科学之所以谓为科学,它是那些自然存在事物的新发现与自然中并不存在的新事物的新发明.科学又是最自然的.所有科学发现与发明都是基于自然界的固有规律.科学又应该是自然与人为的统一.科学是人类文明的一部分,而人类的文明依赖于其对自然的了解和与自然的和谐. 科学是人为的,它才成为我们所担心的一柄“双刃剑”.它给人类带来了繁荣幸福,又给人类带来了新的危险.自然与人为的问题,从根本上来说,是如何认识人类在自然界中位置的问题.整个人类在自然界中的位置,是自然界安排的.随着人类的意识的形成,对自然认识的拓展也随之改变. 我们人类是什么? 我们是如何来到这个世界,又如何离去?为什么你那高高的鼻子那么像你的爸爸?那漂亮的眼睛又像你的妈妈?为什么我们都一样———无疑是人类这个大家庭的一员,可我们大家又都不一样?生死、衰老、人之异同,已困扰了我们几千年,这些问题的答案现在尚可等候.可疾病对我们的危害确是每一个人、每一个家庭、每一个负责的团体与国家政府都不得不考虑的问题. 20世纪是物理学最为风光、最为辉煌、为人类文明与科学进步贡献最大的世纪.对物质原子结构的认识,使物理学进入鼎盛时期.原子弹的爆炸与人类走向太空,更使物理学登峰造极.最后,又以最简单的无机硅研制成芯片. “不知庐山真面目,只缘身在此山中”.站在太空上,人类以前所未有的视角,重新审视我们的栖息地—地球.它与我们目前所知其他星球的主要区别之一,就是生物的存在.基因使地球郁郁葱葱,生机一片,它使我们对生命的奥秘与神奇充满新的遐想与好奇;也使我们对人类本身的了解提出新的质疑:我们已成为地球的主宰,却不能主宰自己. 世界上仍有一半以上的人,不同程度地受各种慢性病的折磨.曾肆虐一时的传染病,尽管已得到控制,可并没有像天花一样销声匿迹.抗菌素等药物发现的步子越来越慢,相反,自然界抗药的病原微生物越来越多. 肿瘤、心血管疾病等主要死因已成为人类祛除不掉的幽灵.艾滋病的出现与肆虐,使人类深感忧虑.从一战期间死于感冒美国士兵身上分离到的病毒又告诉我们:一不小心,它还可能要我们的性命,因为人类对这种致命的感冒病毒仍没有天生的免疫力.在此同时,医学研究的进展、新药的开发的步伐正在一步步减慢.近几十年没有新的抗生素问世.一种重要的药研究需要耗时12年,相当于三架波音747-400飞机的代价. 人类开始了对人类自己的最大的研究.对于自我、对于生命世界、对大自然开展了空前规模的探索,这就是六国参与的“国际人类基因组计划”. 我至此刻还不知道文明的确切定义是什么.但人类的有文字记载的文明史至少已有五六千年. 科学总是与文明、与道义相连的.人类不仅有了科学的巨大发展,也对人类符合人的自然———人性文明的重建有了新的反省.而重建文明的关键,便是重新认识人类在自然科学界中的位置.这正是人类基因组计划将要对人类做出的最大贡献. 人类基因组研究与自然 20世纪被很多人认为是物理学的世纪.我很欣赏这样的描述:这一世纪从人类认识物质的基本组成———原子结构开始.原子弹爆炸与人类登月是这一世纪最辉煌成就的一部分,而最后以最简单无机硅制造的马铃薯芯片(Chip)使人类进入了信息时代! 20世纪还孕育了另一个世纪:这是从我们重新发现生命的最基本信息———基因开始.50年代的遗传物质结构模型的提出与70年代遗传工程技术的成立使之趋于成熟,而90年代开始的国际人类基因组计划把人类带进了另一个世纪. 现在我想以人类基因组计划的发展来谈一谈人类在自然界中的位置,再谈自然与“人为”的问题. 从前,当我们讨论“科学是双刃剑”时,我们关心的仅仅是人类的敌人可能也会挥起这柄剑,如希特勒、如山本五十六.现在,我们的问题一下子复杂起来了.我们的法律一下子在克隆人类等新问题前变得无所适从,或无能为力.我们把它们归咎于道义或伦理问题.实际上,就是自然与人为的问题. 人类基因组计划在科学上的目的,是测定组成人类基因组的30亿个核苷酸的序列.从而奠定阐明人类所有基因的结构与功能,解读人类的遗传信息,揭开人类奥秘的基础.由于生命物质的一致性与生物进化的连续性,这就意味着揭开生命最终奥秘的关键,也就是人类基因组计划的所有理论、策略与技术,是在研究人类这一最为高级、最为复杂的生物系统中形成的. 规模化就是随着人类基因组计划的启动而诞生,随着人类基因组计划的进展成功而发展的“基因组学”.生物学家第一次从整个基因组的规模去认识、去研究,而不是大家分头一个一个去发现,基因研究将是基因组学区别于基因组(genetics)与所有涉及基因的学科的主要地方.基因组规模也改变了经典的实验室规模,改变了原有的实验方式,这也许是“国际人类基因组计划”只有6个正式成员国与16个中心的原因之一. 生物的序列化即生命科学以序列为基础.这是新时代的生命科学区别于以前的生物学的最主要的特点.随着人类基因组序列图的最终完成,SNP(单核苷酸多态性,即序列差异)的发现以及比较基因组学古代DNA、“食物基因组计划”、“病原与环境基因组计划”(主要是致命致病学)以及与之有关的人类易感性有关序列的推进,有科学、经济、医学意义的主要物种的基因组序列图都将问世.我们从序列中得到的信息,已经比到现在为止的所有生物研究积累的信息还要多.生物学第一次成为以数据(具体的序列数据)为根据与导向,而不是再以假说与概念为导向的科学.即使进化这一生命最实质的特征以及进化的研究,都把因多种模式及其他生物的基因组序列为基础.古代DNA的研究,也不再是因时间与过去了的环境而惟一不能在实验室重复的进化研究,从而揭示生命进化的奥秘与古今生物的联系.这就帮助人们更好地认识人类在生物世界中的关系. 生物的信息化,是借助于电子计算机的威力,也借助于把地球变小的网络.没有它们,国际人类基因组计划的协调与全世界的及时公布是不可能的.没有全部的软件与硬件,人类基因组计划一切都不可能.序列一经读出,它的质控、组装,以至于递交、分析都有赖于生物信息学,而现在开始,序列的意义完全决定于生物信息学.没有电子计算机的分析与正在爆炸的信息的比较,序列又有何用? 人类基因组计划之所以引人注目,首先源于人们对健康的需求.疾病问题是自然影响健康的首要因子,是每一个人、每一对父母、每一个家庭、每一个国家政府所不得不考虑的问题.因为人类对健康的追求,从来都不曾懈怠过. 专家简介: 杨焕明,人类基因组计划中国项目负责人.1952年10月6日生于中国浙江温州,早年自杭州大学毕业.1988年在丹麦哥本哈根大学获博士学位.曾先后在美国哈佛大学、洛杉矶大学加州分校攻读博士后.现任中科院基因组研究所负责人,联合国教科文组织生物伦理委员会委员,中国人类基因组计划秘书长,中国人类基因组多样性委员会秘书长.2002年被美国著名的科普月刊《科学美国人》选为今年度的“科研领袖人物”.
人类基因组计划现在的进展如何?
1.人类基因组计划测序早就测完了,由全世界科学家+一家公司一起完成,结果分别发表在Science和Nature上。一家公司PK全世界的科学家,这是一个很有趣的故事,这家公司的BOSS(Craig Venter)就是前段时间,美国炒得沸沸扬扬的“奥巴马关于合成生命举行听证会”中的那位宣称合成生命的科学家。(合成生物学)2.现在又完成了两个计划,分别叫做“千人基因组计划”(顾名思义,测了全世界一千个人的基因组),和“炎黄计划”(测的中国人,南北方的基因组)3.人类基因组计划的最主要目的,是实现个体化医疗。即根据每个人基因组的差异,制定个体化医疗方案,可惜这个目标未能达成。Scientific American 2011年下半年有一篇文章,讨论了人类基因组计划到目前的进展(刚刚翻了一圈没有找到),该文以2011年如火如荼的GWAS研究(全基因组关联分析)为引,“痛斥” 从人类基因组计划开始到现在的三十年间,在基因组研究中投入大量的钱(和人力),不但离个体化医疗的目标非常遥远,即使人类基因组计划的数据对疾病的研究,贡献也是微小的(与投入相比)。4.补充一点,现在美国正在启动“百万人基因组计划”,因为很多疾病在万人的级别上才能够分析,另外就是现在个体化医疗只是一种通俗说法,学术界称之为precise medicine人类基因组计划 本身指的是测出人类所有DNA序列,这项工作在2001年已经完成。现在会有些研究说某某基因和人体某些方面有关,这并不是指严格意义上的人类基因组计划 。关于基因的研究现在很多,如果真有突破性的进展,就会出现在新闻里了。
人类基因组计划的提出与实施始末是什么??
人类基因组计划是由美国科学家在1985年首先提出的。它是一项希望解开人类生老病死的奥秘,并彻底破解控制各种疾病基因密码的国际科学研究工程,是人类生命科学史上最伟大的工程。 1988年,美国全国卫生协会和能源部开始组织和实施这项计划,1990年10月正式启动,耗资30亿美元。人类只有一个基因组,大约有5万~10万个基因,30亿个碱基对。 人类基因组计划最初的目标是:通过国际合作,用15年时间构建详细的人类基因组遗传图和物理图,并期望通过分析每个人类基因的功能和基因在染色体上的位置,使医学专家们了解所有疾病的分子结构,从而在根本上获得治疗的方法,进而破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我,最终解开人类生命的奥秘。 现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达,也就是使遗传信息以一定的方式反映到蛋白质的分子结构上,从而使后代表现出与亲代相似的性状。 研究结果表明,每一条染色体都含有一个DNA分子,每个DNA分子又含有很多个基因,一个基因就是DNA分子的一部分。一个基因要有正常的生理机能,它的几个正常组成部分一定要位于相继邻近的位置上,也就是说核苷酸要排成一定的次序,才能决定一种蛋白质的分子结构。假使一个基因的几个正常组成部分分处于两条染色体上,理论上就是核苷酸的种类和排列改变了,这样就会失去正常的生理机能。所以,基因不仅是一个遗传物质在上下代之间传递的基本单位,也是一个功能上独立的单位。 几乎每个人一生下来就带着各种病,这可能就是人体内的有缺陷基因造成的。这些基因在人生长的特定时期才会反应,接下来就会表现出各种症状。科学家估计,在人体内5万~10万个基因中,大约有30%~40%与人类疾患有关,其中有上千个基因又与肿瘤有关。因此,能破解这些基因就成为现代生物学的重要任务。人类基因组工程正由此产生。 长期以来,医学工作者希望用生物芯片做临床检测,而生物芯片技术更依赖于基因图的破解。这种面积为2.25平方厘米的芯片上可承载几千至上百万个基因点,用它进行病理测试时,人体内所有的“生病”基因均可显示,这样就给医生治疗提供了依据。由于一般人在基因上都存在这样或那样的异常,这就往往表现成病症甚至生理缺陷。人类基因组计划完成后能绘制出一幅最标准的基因范本,而参照此基因范本实施的基因诊疗将是具有革命性的新医学。 人类基因组计划是人类历史上第一次由全世界各国科学家共同执行的科研项目,美国、德国、日本、英国、法国和中国6个国家的科学家已正式加入了这一计划。因而有人把人类基因组计划和制造原子弹的“曼哈顿工程”计划以及阿波罗登月计划列为同等重要的地位。迄今为止,科学家们已经完成人类基因组“工作草图”,而精确的人体基因组图谱的诞生也指日可待。
人类基因组计划到底是怎么测序的?
测定组成人类染色体的30亿个碱基对的核苷酸序列,从而绘制人类基因组图谱,并辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。人类基因组计划在研究人类过程中建立起来的策略、思想与技术,构成了生命科学领域新的学科—基因组学,也可以用于研究微生物、植物、动物。人类基因组计划与“曼哈顿原子弹计划”和“阿波罗计划”并称为三大科学计划。人类科学史上的又一个伟大工程,被誉为生命科学的“登月计划”。人类基因组计划于1985年提出, 这可谓是一次“世纪拍板”。没人能准确测算到底需要花多少钱才能测完,于是按一美元一对碱基做的“拍脑袋”预算,总预算30亿美元。人类基因组计划介绍:来自美、英、法、德、日和中国六国的2000多名科学家共同参与这一浩大工程,克服重重困难,特别是测序技术和工具的落后,终于在2001年发表人类基因组工作草图,又在2003年4月14日提前原定计划完成精细图。基因组测序技术的飞速发展,推动成本直线下降。一个人的基因组测序成本从38亿美元下降到1000美元,而且只需要一两天时间。如同摩尔定律带来的互联网普及,“人人基因组”时代的到来,只是个时间问题。
参与人类基因组计划研究的国家有
中国、美国、英国等。参与人类基因组计划研究是由美国科学家于1985年率先提出,于1990年正式启动的,参加研究的国家有:中国、美国、英国、法国、德国、和日本科学家们共同参与了这一预算达30亿美元的人类基因组计划。人类基因组计划是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
人类基因组计划到底有什么意义?请简述
1、HGP对人类疾病基因研究的贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。 健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。 2、HGP对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 3、HGP对生物技术的贡献 (1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。 (2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。 (3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。 4、HGP对制药工业的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。 个体化的药物治疗:药物基因组学。 5、HGP对社会经济的重要影响 生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响 生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 7、HGP带来的负面作用 侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。
什么是基因和人类基因组计划
基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
人类基因组计划的研究领域
选择人类的基因组进行研究是因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源,使人类长生不老。测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。
请谈谈人类基因组计划对人类有哪些影响
人类基因组计划简言之,是通过对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息的一项工程。其利弊个人观点如下:人类基因组计划的优点是可以便于人类发现自己基因上存在的问题,从而更加准确,有效的进行一些有关疾病的防治。当然,通过这个,人们可以更清晰更直观的了解自己的身体,这对于无论是医学,还是社会,之于人们的健康,都是十分有利的。但是它的弊端也是显而易见的,如果人们的身上都有这么一个“基因身份证”,从某种角度上来讲,是对人们隐私的一种暴露。例如说找工作,举个不恰当的例子,如果你是老板,对于雇佣的人,他的基因上存在某些问题,假使这决定了他的心脏功能不好,即使他说没有问题,你还会雇佣他么?这无疑会加重社会就业负担,造成诸如上述所出现的问题。对于家庭而言,新出生的孩子,一些父母在得知他们的基因有问题的情况下,难免会出现抛弃婴儿的现象。从这个角度上来讲,人类基因计划组又是一项加重社会负担的工程。就个人观点,不支持基因工程。
人类基因组计划对人类有哪些影响
人类基因组计划对人类有哪些影响人类基因组计划(human genome project,HGP)是由美国科学家于1985年率先提出,于1990年正式启动的.美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划.按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图.换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密.人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划.
人类基因组计划的重要意义是什么
1、HGP对人类疾病基因研究的贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。 健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。 2、HGP对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 3、HGP对生物技术的贡献 (1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。 (2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。 (3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。 4、HGP对制药工业的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。 个体化的药物治疗:药物基因组学。 5、HGP对社会经济的重要影响 生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响 生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 7、HGP带来的负面作用 侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。
人类基因组计划的主要内容包括绘制人类基因组的四张图,其中最重要的是 转录图
原话:遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。序列图谱随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。
什么是人类基因组计划?对人类社会有什么影响
人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体2.5万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。
人类基因组计划有几个国家参与?
人类基因组计划 人类基因组计划简介 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本国国和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA的详细知识而得到巨大推动。”什么是基因组(Genome)?基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。
什么是人类基因组计划?中国科学家起了什么作用?
人类基因组计划的研究现状与展望------发表日期:2004年3月30日 一、研究现状 1、人类基因组测序 1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。 值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国政府资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。 在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。 3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。 4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。 首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。 目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。 中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。 二、展望 1、生命科学工业的形成 由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。 世界上一些大的制药集团纷纷投资建立基因组研究所。Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。Glaxo-Wellcome 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。 大型化学工业公司向生命科学工业转轨。孟山都公司早在1985年就开始转向生命科学工业。至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。 传统的农业和食品部门也出现了向生物技术和制药合并的趋势。Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶III,一群羊的酶产量相当于投资1.15亿美元工厂的产量。据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。 能源、采矿和环境工业也已在分子水平上向基因组研究汇合。例如,用产甲烷菌Methanobacterium 作为一种新能源。用抗辐射的细菌Deinococcus radiodurans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。 2、功能基因组学 人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。 (1)基因组的表达及其调控 1)基因转录表达谱及其调控的研究 一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。 研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。网络概念对于生理和病理条件下的基因表达调控都是十分重要的。一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。 2)蛋白质组学研究 蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。 蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。 3)生物信息学的应用 目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。 (2)基因组多样性的研究 人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。 1)对人类DNA的再测序 可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。 2)对其它生物的测序 对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。 认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。对序列差异性的研究则有助于认识产生大自然多样性的基础。在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。 (3)开展对模式生物体的研究 1)比较基因组研究 在人类基因组的研究中,模式生物体的研究占有极其重要的地位。尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。 目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。 2)功能缺失突变的研究 识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。在这方面,基因剔除方法(knock-out)是一项特别有用的工具。目前。国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Network)的研究网络。美国、加拿大和日本也启动了类似的计划。 随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。蛋白质水平的剔除术也许是说明基因功能最有力的手段。利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。 总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。 通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。参考资料:http://www.gzxq.com/zupei/ReadNews.asp?NewsID=30
什么叫人类基因组计划,它对医学上的研究具有哪些意义
人类基因组计划(human genome project,HGP)是一项规模宏大,跨国跨学科的科学探索工程,于1990年正式启动。 它的宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的选择人类的基因组进行研究是因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。
人类基因组计划的主要目标是什么?目前进入什么阶段?
这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。一、研究现状 1、人类基因组测序 1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。 值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国政府资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。 在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。 3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。 4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。 首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。 目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。 中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。
人类基因组计划
人类基因组计划的研究现状与展望------发表日期:2004年3月30日 一、研究现状 1、人类基因组测序 1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。 此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。 美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。 这一进度将比美国 *** 资助的HGP的预定目标提前三年。 美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。 与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国 *** 资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。 同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。 2003年完成基因组测序,差错率为万分之一。 这一时间表显示,计划将比开始的目标提前两年完成。2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。 6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。 所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。 随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。 今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。 这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。 由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。 这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。 近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。 实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国 *** 和科学界的高度重视。 在 *** 的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。 有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。 中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。 但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。 如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。二、展望 1、生命科学工业的形成 由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。世界上一些大的制药集团纷纷投资建立基因组研究所。 Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。 Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。 Glaxo-Welle 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。大型化学工业公司向生命科学工业转轨。 孟山都公司早在1985年就开始转向生命科学工业。 至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。 1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。 1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。 Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。 Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。传统的农业和食品部门也出现了向生物技术和制药合并的趋势。 Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶III,一群羊的酶产量相当于投资1.15亿美元工厂的产量。 据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。 一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。能源、采矿和环境工业也已在分子水平上向基因组研究汇合。 例如,用产甲烷菌Methanobacterium 作为一种新能源。 用抗辐射的细菌Deinococcus radiodurans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。2、功能基因组学 人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。 另一方面,功能基因组学已提上议事日程。 人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。 在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。(1)基因组的表达及其调控 1)基因转录表达谱及其调控的研究 一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。 为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。 近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。 关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。 网络概念对于生理和病理条件下的基因表达调控都是十分重要的。 一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。 在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。 进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。2)蛋白质组学研究 蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。 目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。 首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。 生物大分子之间的相互作用构成了生命活动的基础。 组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。 如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。3)生物信息学的应用 目前,生物信息学已大量应用于基因的发现和预测。 然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。 模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。 同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。 但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。(2)基因组多样性的研究 人类是一个具有多态性的群体。 不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。 开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。1)对人类DNA的再测序 可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。 这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。 另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。 需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。2)对其它生物的测序 对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。 这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。 对序列差异性的研究则有助于认识产生大自然多样性的基础。 在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。(3)开展对模式生物体的研究 1)比较基因组研究 在人类基因组的研究中,模式生物体的研究占有极其重要的地位。 尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。 这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。 通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。 根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。2)功能缺失突变的研究 识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。 在这方面,基因剔除方法(knock-out)是一项特别有用的工具。 目前。 国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。 欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Network)的研究网络。 美国、加拿大和日本也启动了类似的计划。随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。 一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。 小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。 同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。 利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。 对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。 蛋白质水平的剔除术也许是说明基因功能最有力的手段。 利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。 今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。 而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。 一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。 也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。
人类基因组计划完成以后,将对人类的生活产生怎样的影响
人类基因组计划对人类生活的影响: 人类疾病贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿氏舞蹈症、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。 对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 生物技术贡献 胚胎细胞克隆羊——多利 ⑴基因工程药物 分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。 ⑵诊断和研究试剂产业 基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。 推动细胞工程 胚胎和成年期干细胞、克隆技术、器官再造。 对制药的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。 个体化的药物治疗:药物基因组学。 社会经济影响 生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 生物进化影响 生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 负面作用 侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。 破译人类遗传信息,将对生物学,医学,乃至整个生命科学产生无法估量的深远影响。目前基因组信息的注释工作仍然处于初级阶段。随着将来对基因组的理解更加深入,新的知识会使医学和生物技术领域发展更为迅速。基于DNA载有的信息在细胞生命活动中的指导作用,在分子生物学水平上深入了解疾病的产生过程将大力推动新的疗法和新药的开发研究。对于癌症、老年痴呆症等疾病的病因研究也将会受益于基因组遗传信息的破解。事实上,在人类基因组计划完成之前,它的潜在使用价值就已经表现出来。大量的企业,例如巨数遗传公司开始提供价格合宜,而且容易使用的基因检测,其声称可以预测包括乳腺癌、凝血、纤维性囊肿、肝脏疾病在内的很多种疾病。 人类基因组计划对许多生物学研究领域有切实的帮助。例如,当科研人员研究一种癌症时,通过人类基因组计划所提供的信息,可能会找到某个,或某些相关基因。如果在互联网上访问由人类基因组信息而建立的各种数据库,可以查询到其他科学家相关的文章,包括基因的DNA,cDNA碱基顺序,蛋白质立体结构、功能,多态性,以及和人类其他基因之间的关系。也可找到和小鼠、酵母、果蝇等对应基因的进化关系,可能存在的突变及相关的信号传到机制。人类基因组计划对与肿瘤相关的癌基因,肿瘤抑制基因的研究工作,起到了重要的推动作用。 分析不同物种的DNA序列的相似性会给生物进化和演变的研究提供更广阔的路径。事实上,人类基因组计划提供的数据揭示了许多重要的生物进化史上的里程碑事件。如核糖体的出现,器官的产生,胚胎的发育,脊柱和免疫系统等都和DNA载有的遗传信息有密切关系。
人类基因组计划是在什么时候启动的?
人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
人类基因组计划的内容是什么?
分类: 文化/艺术 解析: 人类基因组这个研究,第一次在生命科学里面实现了整体上的遗传信息的解析,基因组功能的研究。基因组就是一个生命体的遗传信息的总和。 生命信息的储存单位,实际上就是我们说的基因,载体是脱氧核糖核酸 DNA。在多细胞的生物里,不同的细胞之间,由不同的 细胞所组成的组织之间,由不同的组织所形成的器官之间都在发生信息的流动。这个就是我们所说的:遗传学的中心法则。基因组就是一个生命体的遗传信息的总和。DNA双螺旋的发现大概是20世纪生命科学最最伟大的突破。ATCG四种不同的碱基构成了纷繁复杂的遗传学语言。 实际上绝大多数的人类疾病都是多基因控制的。人类基因组计划正式启动是1990年,就是要用15年的时间,到2005年完成人类基因组DNA全序列的测定。到今天为止我们也还没有这样的技术,说拿来一条染色体,我们就能直接测序。所以整个人类基因组计划实际上就是由复杂到简单,再由简单又回归复杂的一个过程。在人类基因组测序起步的时候,当时用的DNA序列的分析方法是凝胶电泳为主的方法,基本上还是手工运作的。但是在20世纪90年代以后,新的一个测序技术产生了就是毛细管电泳仪技术。使得测序的速度大大加快。一天就可以有100万个碱基对的的序列被测出。中国也加入这一个测序计划,我们承担了1%的任务。2000年4月份,21号染色体全序列测序草图完成了。 现在我们已经可以做到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。将来要去看病,不光要带病卡,还要带一个自己的芯片。医生用药诊断之前,用芯片看看你可能得什么病。通过对进化不同阶段的生物体基因组学的比较,就可以发现基因组结构组成的功能调节的规律。实际上人类疾病相关的基因,也恰恰是人类基因组结构和功能完整性至关重要的信息。实际上在过去几年当中,对疾病的研究早已成为人类基因组研究一个重要计划的组成部分。1997年提出了两个计划:一个是肿瘤基因组的解剖计划,还有一个叫环境基因组计划。实际上都是和健康相关的。人类基因组计划对医学的贡献,一个是在诊断方面,另外是在基因治疗方面。对于我们这样发展中国家来说,更应该注重预防。 我们国家的基因组计划,是1994年开始启动的,从功能基因组的角度进行切入。采取结构与功能并重,多学科交叉建立关键技术,进行基因组多样性和疾病基因研究。这是我们一开始的时候一个策略。我们可以很自豪的说:现在除了Y染色体,所有的染色体上面都遍布着中国科学家发现和命名的基因。最近我们启动了一个中华民族基因组-SNP的大规模的研究。这个工作从群体遗传学转向了,我们中国人群特点的、疾病发生发展的遗传学信息的研究。所以,如果现在我们能够把中华民族生命元素变异的系统目录和数据库做出来的话,就能够获得我国生物医学界和制药工业界技术创新的知识产权来造福子孙后代来贡献于全人类。 全文 当然清华是我们国家最高等的学府之一了。所以,今天到这里来,也有点诚惶诚恐。那么主要是来求教的。现在我要给大家介绍的人类基因组这个研究,可以说是第一次,在生命科学里面,实现了某种大科学的概念。也就是说来一个整体上的遗传信息的解析,基因组功能的研究。所以我说现在生物学的特点,已经从70年代、80年代,主要是以分析为主,学科的精细化,分工的细化,这样一个趋势到了一个新的平台上面。这个平台就是大综合,其实我们中国的科学,一开始就是讲究大综合。你看我们的艺术也是这样,我们的写意画就是一种大综合。这个东西方的融合非常重要,把西方严谨的分析,和中国早在几千年前的大综合的思路结合在一起的话,我想有可能带来一些新的突破的机遇。那么这张图我想,恐怕不光是搞生命科学的,就是我们非生命科学的同学们,也都是非常熟悉的,遗传学中心法则。 我们都知道,生命活动它的本质,它是一个信息的流动。有人一直说,我们都是搞生命科学的。但是突然有一个冒出一句话:“什么是生命”?这个倒可以让人思索一番。我个人体会,生命信息它的储存单位,生命的重要特点之一,它有记忆功能。那么它的储存的单位,实际上就是我们说的基因,在绝大部分的生命体我们知道,它的载体是脱氧核糖核酸DNA。但是它的执行单位,主要来说是蛋白质。这里面它用信息的语言,不是一样的,一个是核酸的语言,一个是氨基酸的语言。所以在这个空间信息的流动,需要有一些调控的机制。这个调控大家知道,第一步就是转录。这个时候生命信息的语言,没有发生变化,都是核酸的语言。只是从DNA到了MRNA上面,这个过程我们称为转录。然后语言要发生变化,发生转换,要求来进行翻译了。所以从MRNA上面的生命语言,变成蛋白质的生命语言。当然我们知道这个蛋白质,很多的蛋白质它都具有代谢的活动。生命体和非生命体的重要差别之一就是有代谢和新陈代谢,然后蛋白质可以形成高级空间的构型。那么在这个里面,细胞的不同的部分互相之间作用,细胞核和细胞浆互相在作用。然后在多细胞的生物里,不同的细胞之间、由不同的细胞所组成的组织之间、由不同的组织所形成的器官之间都在发生信息的流动。我想这个就是我们所说的“遗传学的中心法则”。那么基因这个概念,大家都很清楚了或者说基本概念很清楚,确切的定义也许今天还不是非常清楚。 那么基因组是什么意思?基因组就是一个生命体的遗传信息的总和。那么在这里我们就不是单个基因,而是所有的基因。它所编码所有的氨基酸相互之间的这个关系,所以感官性是完全不一样的。DNA双螺旋结构的发现大概是20世纪生命科学最最伟大的突破。那么A、T、C、G四种不同的碱基,构成了纷繁复杂的遗传学语言,生命信息的最基本的符号。这个最基本的符号实在是让我们感到非常简单。大自然就用这四种简单的字符,组成了让我们叹为观止的大千世界的无数生命的多样性的现象。那么它的遗传信息,在绝大多数的生命体,我刚才说的是DNA的分子。那么它的排列组合在那里就决定了,或者说在相当大的程度上决定了生命活动在人体,也就是我们讲的:生、老、病、死等等这些活动。那么我们在讲双螺旋结构的时候,我们都知道,碱基对、DNA是生物的大分子。一般来说我们不是用一个质量单位来表示它的体量,而是用它的长度。那么一个bp,中文叫一个碱基对。但是在基因来说,一个基因常常是要成千上万个碱基对。所以我们引入了“千碱基对”这样的尺度。然后再做到基因组的时候,我们都知道基因组它是非常大的尺度,所以又发明了一些新的尺度单位,像Mb指的是百万碱基对。 这个是基因组计划之前的,我们对人类基因组的一些了解。我们知道人类基因组的长度,一个单倍体的基因组的长度大概是30亿个碱基对。一般的教科书上都说,序列当中编码序列,也就是说我们刚才说的,发生转录表达的,可以被称之为基因的序列。大概实际上是指成熟的MRNA,发生加工以后的MRNA当中的序列,大概小于5%。也就是说,非编码序列占了绝大多数。在人体细胞核里面,遗传信息它是以染色体的方式进行组织的,分布于22个常染色体和2条性染色体。我们都知道以前的生物科学的特点,基本上是师傅带徒弟、作坊式的操作。那么到了80年代中期的时候,我想一个是生命科学的这个科学思维的大大扩展,第二个是技术的这个进步。比方说当时遗传工程已经非常成熟了,当时DNA测序也相对成熟,然后PCR的技术在那里开始产生了。因此使得科学家们,生命科学家们的雄心壮志,在那里萌发了,决心要冲破原来的这种作坊式的被物理学界甚至化学界不太看得起的那种运作方式,搞一点可以称为是大科学的东西。 当然我想科学研究的条件,思维这是一个方面。但是实际上回顾一下科学史的话,很多重大的事件它还是需求在那里拉动的。我们有的科学家批评这样的做法,意思是说我们要注意把基础研究和社会重大需求结合在一起。我觉得实际上这有点失之偏颇的,就是说有各种各样类型的研究:有的是一种自由的探索,那么这个可以非常小心,一个人的脑瓜里都可以产生诺贝尔奖的构思。但是也有一些研究的确是希望能够造福人类的。但是这样的研究提出的挑战,实际上又可以孕育着不知道多少人的诺贝尔奖的思想在里面。那么人类基因组计划,就是这样一个典型。 我们看第一份,可以认为是正式的标书。我们做这个课题,一般来说首先要有标书。那么人类基因组计划的第一个标书,可以被认为是诺贝尔奖获得者Dulbecco 1986年发表在《科学》杂志的一篇短文。它的这个短文的题目是什么呢?《肿瘤研究的转折点——人类基因组研究》。事实上我们知道美国有一位雄心勃勃的年轻总统肯尼迪上台以后,当时他在科学上有两大计划:一个是实现人类登月,还有一个战胜癌症。那么人类登月随着阿波罗计划的比较顺利地实施,1969年人类实现了登月。但是攻克肿瘤的计划是一个失败的。为什么?原来科学家把问题想得太简单了,以为肿瘤就是一两个基因的问题。但实际上绝大多数的肿瘤,都是多基因的问题。它涉及的面是整个基因组的问题,是遗传信息的整体上面紊乱的这样一些问题。就是刚才讲的,我们不要以为好像一个融合基因打到小鼠里面去,就足以引起一个白血病,不是那么简单的。因为如果那样的话,你一打进去就要产生白血病,事实上我们PML罗拉白血病,在受精卵里面注射进这个融合基因以后,需要等待一年的时间才会出现白血病而且不是每一个小时都会发生白血病。所以就提示有其他的决定因素在里面。我们现在知道有时候几个基因一起传染的时候,它发生白血病的速率就会大大加快。 Dulbecco这个文章它就说,如果我们想更多地了解肿瘤,我们从现在开始必须关注细胞的基因组。从哪那个物种着手努力?如果我们想理解人类肿瘤,那就应该从人类开始。人类肿瘤研究将因对DNA的详细知识而得到巨大的推动。实际上绝大多数的人类疾病都是多基因的。人类基因组计划正式起动,现在一般的说法是1990年。那么1990年因为是美国国会通过了正式启动这样一个计划。这个计划雄心勃勃就是要用15年的时间,到2005年完成DNA的全序列的测定。这个投资量是多少呢?30亿美元。当时计算的依据是测一个碱基对大概需要一美元。整个计划在这个地方实际上是一个比较狭义的一个计划,这个计划实际上就是一个测序计划。实际上我们讲测序,读出天书只是理解人类自身的第一步,最重要的是读懂天书。但是即使是这样读出天书一个计划的话,它也要经历很多的磨难,很多的困难。也就是说,到今天为止,我们还没有这样的技术说,拿来一条染色体,我们就能够直接测序,从一头测到另外一头我们没有办法这样做。所以整个人类基因组计划,实际上可以简单地说就是由复杂到简单再由简单又回归复杂,最后大概还是回归到简单。也就是说把不能直接测序的一条染色体拿来给它进行分解,分解成比较小的可以操作的这样的单位。那么怎么分解呢?那就是作图,你可以用遗传学的方法去作图,也可以用物理学的方法来作图。我们知道遗传学作图,就是利用遗传学的标志来确定DNA标志间相对的距离。另外一个概念就是说要构成一些所谓的DNA连续的克隆系,那么这些片断,它互相之间重叠,它可以覆盖整个的染色体,从一端覆盖到另外一端。这样就把一个不能直接拿来测序的单位,就给它解析成比较小的、可以操作的这样一个单位。最后给它重新组合成忠实于原来染色体里面生命信息这个排列的,这样一个状况在这里面,识别全部的人类基因。所以人类基因组就是作图,或者狭义的人类基因组计划,就是作图的计划,遗传图、物理图、序列图,然后基因图。 在人类基因组计划进行大规模测序的策略有两种,一种就是我刚才说的那种思路,实际上叫逐个克隆。我刚才说了,你把DNA克隆的连续克隆系建起来了,覆盖整条染色体了,然后你就把一个一个的克隆,用得最多的就是叫BAC--细菌的人工染色体,大概100多个KB这样的长度。那么把这个克隆一个一个挑出来,挑出来以后再进行亚克隆。这种亚克隆就是这样的,就可以测序了,测序以后再给它组装起来、还原起来。这样一个策略,是国际上公共领域的测序计划所采取的策略。实际上它是历史的沿革,就是说从作图,遗传、物理作图演化过来的。我们都知道美国的瑟拉尔公司,也知道奎克曼特。那么它搞了一个叫全基因组鸟枪法,在一定作图信息基础上,绕过大片段连续克隆系统的构建而直接将基因组分解成小片段随机测序,然后利用超级计算机来进行组装。能够使得人类基因组,在初步完成作图以后,很快地迈入到测序,尤其是大规模测序。并且使得整个进度朝向人们的预期。这里面有两个重大因素的贡献,不得不承认这里面,工业界的贡献是非常大的。比如说在人类基因组起步的时候,当时用的这个DNA序列的分析方法,还是凝胶电泳仪为主的方法,基本上还是手工运作的。但是在20世纪90年代上半段的时间里面,新的一个测序技术出现了,毛细管电泳仪。另外把自动化的运作和包括工业界的管理这种系统,都引进来。所以使得测序的速度大大加快。你像这样一个测试仪,它的名字就叫做Megabace。什么意思?就是毛细管电泳,它差不多两小时就可以进行读出一个序列,大概能够读到几百个碱基,那么它一天可以做十班,那么它是96道,所以一天可以做960道。每一道按照他们的宣传,都可以达到一个KB的话,实际上是很难做到的,这是最理想的状态下。所以一天就可以有100万个碱基对的产出。但是曾经使学术界感觉比较困惑的另外一个问题,就是说如果我们现在处于一个知识爆炸的这样一个时代,可以说生物信息的爆炸,是最最给人印象深刻的。 我们看在基因组计划起步之前,在公共数据库里边DNA序列增长非常缓慢。然后1990年以后,就是指数增长期。而且这个东西我是统计到去年、2000年两家世界的公共领域,测序计划和瑟拉尔分别宣布完成了所谓的工作草图。这个时候是这样一个情况,现在大概是这样的情况。1999年当时面对着瑟拉尔的强行挑战,它是1998年成立的,号称三年要拿下人类基因组,国际人类基因组计划决定迎接挑战。就由国际上16个组,分担了人类基因组测序的任务,中国也加入这样一个测序计划。当然我们承担的是1%的任务,1%还是很重要的。因为对于一个发展中的国家来说,能够挤入到这种属于发达国家的俱乐部里面,应该说还是很不容易的。有些事情我们想挤也不一定挤得进去的,像空间站的计划,人家还防范你。 在这里我想介绍一下什么叫工作框架图?因为都在说工作框架图,什么叫工作框架图?其实就是一个工作草图。那么它的意思呢?就是说通过对染色 *** 置明确的BAC(细菌人工染色体)连续克隆系4—5倍覆盖率的测序,获得基因组90%以上的基因序列,其错误率应该低于1%。也就是说你的覆盖面要达到基因组的90%以上。第二个呢,错误率应该低于1%。100个碱基对立面允许你有一个以下的碱基对的错误。虽然这只是一张草图,但是它已经有用途,就是对基因组结构的基本认识,基因的识别和解析、疾病基因的定位克隆、单个核苷酸的多态性的发现等。 那么讲到草图就一定有一个最终完成图了,所以这张图的定义,要求测序所用的克隆能忠实地代表常染色质的基因组结构,覆盖率要达到99.9%以上,然后序列的错误率应该低于万分之一。与工作框架图的关系呢,实际上就是在工作框架图的基础上再加大测序的覆盖率,填补空隙,使得序列的精度增加,能够达到这样一个标准。也就是说,它是草图的下一步。2000年6月25号,当时的测序的情况是怎么样的呢?我们看当时在公共领域就是说各国 *** 支持的六各国家,美国、英国、德国、日本、法国、中国,六国 *** 支持的公共领域的计划,当时是覆盖了大概人类基因组的86.8%。其中包含一部分已经完成,就是我们刚才说的最终序列图这样标准的序列大概是20%多一点点,然后66%左右的序列处于所谓的工作草图这样的阶段。那么也可以说,还没有完成。因为我们说要达到90%以上,但是同时瑟拉尔他号称他的覆盖率已经超过了95%。当然他的覆盖率其实包括了所有的公共领域的这个贡献,再加上他的贡献,所以两者相加起来。我想我们应该相信大概90%以上的序列,都是被工作草图以上的这样一个序列的质量所覆盖着。我们看看公共领域测序计划当时的情况,在24条染色体上分布的情况。我们知道,实际上1999年12月份,22号染色体作为人类最小的染色体之一,它的全序列被测定,或者说是它的常染色体,指部分的全序列。我们注意到它的短臂这个地方,就是易染色体区域,实际上非常难测。因为都是大量的空序列,又没有多少基因。2000年4月份21号染色体全序列完成了,也是同样的定义,就是说常染色体的这个部分。我们看这里是用深红的颜色来表示,差不多就是最终完成的。而这种黄颜色表示的是我们刚才说的工作草图,在大部分染色体区域,是工作草图部分。实际上现在我们讲的,完成人类基因组全序列的测定,都是指的常染色体部分,所以有的人说也许人类基因组序列永远也不能被结束。 2001年2月15日,我们知道公共领域在《自然》上,都是有一种分庭抗礼的,兵对兵、将对将的感觉。2月16号就登了瑟拉尔序列,显然,经过新的一轮角逐,比2000年6月份的时候,完成序列的质量又要高得很多。所以这样的话,应该认为,两家加在一起的信息,应该说比我刚才说的一般的定义又要进一步了。所以就产生了一个在工作草图和最终完成图之间的一个中间状态,这个中间状态就叫做高质量的草图。但是就是这样一个高质量的草图,让我们已经基本上知道我人体生命信息的家当到底有多大。弄到最后我们发现我们的家当好像还是比较可怜的,比我们原来的想像,因为我们的基因数量大概只有线虫,只有900多个细胞的一个生命体的大概一倍左右,我们就比那么一个小虫多一倍。从低等生物到高等生物它的基因组的复杂度,与其说是由基因的数量来决定的,还不如说更主要的是由基因的长度来决定的。我们最近完成了一个细菌的测序,叫钩端螺旋体,可以引起传染病的。它平均一个KB就有一个基因,这幺小的一个东西,500万个碱基对的一个基因组,有5000个基因。我们人30亿个碱基对,我们不过就3万个,顶多接近4万个这样一个数字。但是你看到了酵母,到了真核细胞的话,那它就是平均大概5到10个KB一个基因。然后到了果蝇的话,虽然它的基因数量好像还没有线虫的多。但是它的基因长度已经达到10个KB以上,然后到了哺乳类一个基因,大概像人类现在是100多个KB才有一个基因。所以替换、剪接这种可能性就大大增加了。另外跟时间和空间,也就是发育阶段和组织特异性表达的调控相关这些序列复杂大大增加了。虽然基因在高等生物可以达到十的五次方数量级,几万到十万个这样的比较高等的生物。但是实际上它的蛋白质的结构域,实际上如果把基因组比成一个大厦的话,组成这个大厦的预制件,这个数量实际上是比较有限的。那么另外有一些高级生物中有更为丰富的结构域组合,神经功能、组织特异发育、调控、止血和免疫系统的基因,在脊椎动物大量扩展。数以百计的人类基因源于脊椎动物进化过程中某个时间点上,细菌基因的横向转移。基因组在不同个体之间差异很大——单核苷酸多态性,单倍体的基因差异为1/1250,能够导致蛋白质变异的不到1%。 这本遗传天书,已经放在我们面前了,接下来就是要读懂它。要读懂它,一定要从大的系统的概念来考虑怎么样读懂。一个这个基因组的信息,和外界的环境,是在那里相互作用。另外这个基因组的信息不是从天上掉下来的,它是通过一个漫长的几十亿年进化的过程发展过来的,所以要用比较的方法去读它。另外要考虑到在个体之间和群体之间又是有变异的,这种变异也受到外界环境的一些调节。所以功能基因组学的研究内容,虽然现在没有一个严格的定义,但是我个人认为,至少包括这几个方面:人类基因组DNA序列变异性研究,其核心的内容是SNP,因为这是最常见的变异类型,当然还有很多其他的变异。然后基因组表达调控的研究,这个是发育阶段组织器官的变异,然后模式生物体的研究,这个里面包括进化的意思,和利用模式生物进行功能研究。当然从事所有这些研究,就像我们进行测序研究一样。生物信息学,它既是一个基本的工具,又是一个新兴的学科。因为最后要把这些信息整合起来,搞成一个我们所说的,系统生物学的话,你一定要用理论的手段,和大规模信息处理的手段。 那么基因组DNA序列变异性的研究,SNP,这种变异类型实际上是所有基因组的共同特征。它在相当大的程度上决定了不同的个体群体,这个是指的人类在疾病的易感性,对环境致病因子反应性和其他性状上面的差别。 在这里我举一个例子,说明这个性状有多么重要。我们就来看一看,我们对药物的反应性。我想我们每一个人、再健康的人,一生当中总要接触一些药物的。现在有一个新的提法叫药物遗传学,指的是大部分药物,在体内代谢的酶会有遗传多态性。像这里,一类是改变基团的一些酶,一类是对基团进行转移的一些酶。它都有很多的多态性,这种多态性的后果是什么呢?它在相当大的程度上决定了我们个体对药物的反应性。比方说这是一个很复杂的程序,但是我想我们主要的信息在这个地方。对于某一个药物来说,最适合它的基因型的,它的疗效可以达到75%,毒性只有1%。同样一个药,如果到了一个最不适合它的一个个体的情况是怎么样?它的疗效只有10%,毒性大于80%。那么基因组表达以及表达的调控的这个研究,这个我想都可以理解。那么指的是在全细胞的水平,如果是在单细胞的生命体是整个生命体的水平,识别基因组的所有转录表达的产物。实际上它是高通量的结构生物学,大批量解析蛋白质的高级结构,是连接基因组功能研究和新药开发研究的桥梁。然后为了在这样大的规模上,在整体水平上获得功能信息,需要一些所谓的并行化的分析手段。就是现在已经做得到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。所以有人说将来要去看病不光要带病卡,还要带一个自己的芯片。医生用药诊断之前先把芯片 *** 去,看看你可能得什么病,说起来很好,也很吓人的。模式生物体的研究一般的说法大概从单细胞、第一个生命跟外界隔绝以后,到现在的万物之灵的人类,大概是14亿年的进化史。那么通过进化不同阶段的生物体基因组序列的比较,发现基因组结构组成和功能调节的规律。 那么基因组计划,我刚才说一个是科学兴趣使然,科学家要探索人类的自身,另外也是社会驱动使然,就是说要战胜人类的疾病。所以最后它的价值的实现,我想还是应该回归到对人类的健康的贡献上面去。那么在这个意义上说,人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。我们看到过去的十年当中,由于人类基因组研究的带动,使得人类疾病相关性的研究有了长足的进步。单基因疾病由于定位克隆和定位候选克隆的新思路,导致了一大批遗传病基因的发现。我们知道传统的对基因的认识,是从表型到基因型。也就是你知道一个蛋白质,你测定了它的氨基酸的序列,然后根据密码址的原理,你推测它的DNA的序列可能是什么。你合成一个探针到基因组当中一调,把基因调出来。比方说血红蛋白病,这是第一个人类发现的分子病,它就是先知道了猪蛋白氨基酸的序列,然后再把它的基因调出来。但是绝大多数的人类疾病,我们不知道它的生化基础是什么东西,特别是在基因组计划之前。比方说像亨氏舞蹈病,我们就知道这个人会手舞足蹈,叫亨氏舞蹈病。比方说像遗传性的结肠癌,我们知道大肠部位大容易长息肉,但是我们不知道那个蛋白质出了问题。你怎么办?怎么来找到它的疾病基因?所以有了一个新的概念,叫反过来的遗传学,是什么呢?先去找它的基因,然后再去看它的表型。一旦拿到基因以后,很容易你马上可以推测它的蛋白质的结构。你可以产生抗体,你可以接下来做很多基因的功能。健康相关的研究是HGP的重要组成部分,1997年相继提出:肿瘤基因组的解剖计划,环境基因组计划。 人类基因组计划对医学的贡献。基因诊断,基因治疗和基因组信息为基础的治疗,发展中国家和发达国家越来越重视疾病的预防,特别是基于基因组信息的疾病预防。我国一贯提倡的是预防为主。如果能够在一个人刚出生的时候进行疾病易感基因的识别,在早期把风险人群挑出来,然后在环境因子、生活方式上实施干预。生物技术发生了深刻的变化,更多地进入到细胞、胚胎和组织的研究水平上来,推动了胚胎和成年期干细胞技术的应用。血液病研究与其他先进学%
人类基因组计划的内容是什么?
人类基因组这个研究,第一次在生命科学里面实现了整体上的遗传信息的解析,基因组功能的研究。基因组就是一个生命体的遗传信息的总和。 生命信息的储存单位,实际上就是我们说的基因,载体是脱氧核糖核酸 DNA。在多细胞的生物里,不同的细胞之间,由不同的 细胞所组成的组织之间,由不同的组织所形成的器官之间都在发生信息的流动。这个就是我们所说的:遗传学的中心法则。基因组就是一个生命体的遗传信息的总和。DNA双螺旋的发现大概是20世纪生命科学最最伟大的突破。ATCG四种不同的碱基构成了纷繁复杂的遗传学语言。 实际上绝大多数的人类疾病都是多基因控制的。人类基因组计划正式启动是1990年,就是要用15年的时间,到2005年完成人类基因组DNA全序列的测定。到今天为止我们也还没有这样的技术,说拿来一条染色体,我们就能直接测序。所以整个人类基因组计划实际上就是由复杂到简单,再由简单又回归复杂的一个过程。在人类基因组测序起步的时候,当时用的DNA序列的分析方法是凝胶电泳为主的方法,基本上还是手工运作的。但是在20世纪90年代以后,新的一个测序技术产生了就是毛细管电泳仪技术。使得测序的速度大大加快。一天就可以有100万个碱基对的的序列被测出。中国也加入这一个测序计划,我们承担了1%的任务。2000年4月份,21号染色体全序列测序草图完成了。 现在我们已经可以做到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。将来要去看病,不光要带病卡,还要带一个自己的芯片。医生用药诊断之前,用芯片看看你可能得什么病。通过对进化不同阶段的生物体基因组学的比较,就可以发现基因组结构组成的功能调节的规律。实际上人类疾病相关的基因,也恰恰是人类基因组结构和功能完整性至关重要的信息。实际上在过去几年当中,对疾病的研究早已成为人类基因组研究 一个重要计划的组成部分。1997年提出了两个计划:一个是肿瘤基因组的解剖计划,还有一个叫环境基因组计划。实际上都是和健康相关的。人类基因组计划对医学的贡献,一个是在诊断方面,另外是在基因治疗方面。对于我们这样发展中国家来说,更应该注重预防。 我们国家的基因组计划,是1994年开始启动的,从功能基因组的角度进行切入。采取结构与功能并重,多学科交叉建立关键技术,进行基因组多样性和疾病基因研究。这是我们一开始的时候一个策略。我们可以很自豪的说:现在除了Y染色体,所有的染色体上面都遍布着中国科学家发现和命名的基因。最近我们启动了一个中华民族基因组-SNP的大规模的研究。这个工作从群体遗传学转向了,我们中国人群特点的、疾病发生发展的遗传学信息的研究。所以,如果现在我们能够把中华民族生命元素变异的系统目录和数据库做出来的话,就能够获得我国生物医学界和制药工业界技术创新的知识产权来造福子孙后代来贡献于全人类。 全文 当然清华是我们国家最高等的学府之一了。所以,今天到这里来,也有点诚惶诚恐。那么主要是来求教的。现在我要给大家介绍的人类基因组这个研究,可以说是第一次,在生命科学里面,实现了某种大科学的概念。也就是说来一个整体上的遗传信息的解析,基因组功能的研究。所以我说现在生物学的特点,已经从70年代、80年代,主要是以分析为主,学科的精细化,分工的细化,这样一个趋势到了一个新的平台上面。这个平台就是大综合,其实我们中国的科学,一开始就是讲究大综合。你看我们的艺术也是这样,我们的写意画就是一种大综合。这个东西方的融合非常重要,把西方严谨的分析,和中国早在几千年前的大综合的思路结合在一起的话,我想有可能带来一些新的突破的机遇。那么这张图我想,恐怕不光是搞生命科学的,就是我们非生命科学的同学们,也都是非常熟悉的,遗传学中心法则。 我们都知道,生命活动它的本质,它是一个信息的流动。有人一直说,我们都是搞生命科学的。但是突然有一个冒出一句话:“什么是生命”?这个倒可以让人思索一番。我个人体会,生命信息它的储存单位,生命的重要特点之一,它有记忆功能。那么它的储存的单位,实际上就是我们说的基因,在绝大部分的生命体我们知道,它的载体是脱氧核糖核酸DNA。但是它的执行单位,主要来说是蛋白质。这里面它用信息的语言,不是一样的,一个是核酸的语言,一个是氨基酸的语言。所以在这个空间信息的流动,需要有一些调控的机制。这个调控大家知道,第一步就是转录。这个时候生命信息的语言,没有发生变化,都是核酸的语言。只是从DNA到了MRNA上面,这个过程我们称为转录。然后语言要发生变化,发生转换,要求来进行翻译了。所以从MRNA上面的生命语言,变成蛋白质的生命语言。当然我们知道这个蛋白质,很多的蛋白质它都具有代谢的活动。生命体和非生命体的重要差别之一就是有代谢和新陈代谢,然后蛋白质可以形成高级空间的构型。那么在这个里面,细胞的不同的部分互相之间作用,细胞核和细胞浆互相在作用。然后在多细胞的生物里,不同的细胞之间、由不同的细胞所组成的组织之间、由不同的组织所形成的器官之间都在发生信息的流动。我想这个就是我们所说的“遗传学的中心法则”。那么基因这个概念,大家都很清楚了或者说基本概念很清楚,确切的定义也许今天还不是非常清楚。 那么基因组是什么意思?基因组就是一个生命体的遗传信息的总和。那么在这里我们就不是单个基因,而是所有的基因。它所编码所有的氨基酸相互之间的这个关系,所以感官性是完全不一样的。DNA双螺旋结构的发现大概是20世纪生命科学最最伟大的突破。那么A、T、C、G四种不同的碱基,构成了纷繁复杂的遗传学语言,生命信息的最基本的符号。这个最基本的符号实在是让我们感到非常简单。大自然就用这四种简单的字符,组成了让我们叹为观止的大千世界的无数生命的多样性的现象。那么它的遗传信息,在绝大多数的生命体,我刚才说的是DNA的分子。那么它的排列组合在那里就决定了,或者说在相当大的程度上决定了生命活动在人体,也就是我们讲的:生、老、病、死等等这些活动。那么我们在讲双螺旋结构的时候,我们都知道,碱基对、DNA是生物的大分子。一般来说我们不是用一个质量单位来表示它的体量,而是用它的长度。那么一个bp,中文叫一个碱基对。但是在基因来说,一个基因常常是要成千上万个碱基对。所以我们引入了“千碱基对”这样的尺度。然后再做到基因组的时候,我们都知道基因组它是非常大的尺度,所以又发明了一些新的尺度单位,像Mb指的是百万碱基对。 这个是基因组计划之前的,我们对人类基因组的一些了解。我们知道人类基因组的长度,一个单倍体的基因组的长度大概是30亿个碱基对。一般的教科书上都说,序列当中编码序列,也就是说我们刚才说的,发生转录表达的,可以被称之为基因的序列。大概实际上是指成熟的MRNA,发生加工以后的MRNA当中的序列,大概小于5%。也就是说,非编码序列占了绝大多数。在人体细胞核里面,遗传信息它是以染色体的方式进行组织的,分布于22个常染色体和2条性染色体。我们都知道以前的生物科学的特点,基本上是师傅带徒弟、作坊式的操作。那么到了80年代中期的时候,我想一个是生命科学的这个科学思维的大大扩展,第二个是技术的这个进步。比方说当时遗传工程已经非常成熟了,当时DNA测序也相对成熟,然后PCR的技术在那里开始产生了。因此使得科学家们,生命科学家们的雄心壮志,在那里萌发了,决心要冲破原来的这种作坊式的被物理学界甚至化学界不太看得起的那种运作方式,搞一点可以称为是大科学的东西。 当然我想科学研究的条件,思维这是一个方面。但是实际上回顾一下科学史的话,很多重大的事件它还是需求在那里拉动的。我们有的科学家批评这样的做法,意思是说我们要注意把基础研究和社会重大需求结合在一起。我觉得实际上这有点失之偏颇的,就是说有各种各样类型的研究:有的是一种自由的探索,那么这个可以非常小心,一个人的脑瓜里都可以产生诺贝尔奖的构思。但是也有一些研究的确是希望能够造福人类的。但是这样的研究提出的挑战,实际上又可以孕育着不知道多少人的诺贝尔奖的思想在里面。那么人类基因组计划,就是这样一个典型。 我们看第一份,可以认为是正式的标书。我们做这个课题,一般来说首先要有标书。那么人类基因组计划的第一个标书,可以被认为是诺贝尔奖获得者Dulbecco 1986年发表在《科学》杂志的一篇短文。它的这个短文的题目是什么呢?《肿瘤研究的转折点——人类基因组研究》。事实上我们知道美国有一位雄心勃勃的年轻总统肯尼迪上台以后,当时他在科学上有两大计划:一个是实现人类登月,还有一个战胜癌症。那么人类登月随着阿波罗计划的比较顺利地实施,1969年人类实现了登月。但是攻克肿瘤的计划是一个失败的。为什么?原来科学家把问题想得太简单了,以为肿瘤就是一两个基因的问题。但实际上绝大多数的肿瘤,都是多基因的问题。它涉及的面是整个基因组的问题,是遗传信息的整体上面紊乱的这样一些问题。就是刚才讲的,我们不要以为好像一个融合基因打到小鼠里面去,就足以引起一个白血病,不是那么简单的。因为如果那样的话,你一打进去就要产生白血病,事实上我们PML罗拉白血病,在受精卵里面注射进这个融合基因以后,需要等待一年的时间才会出现白血病而且不是每一个小时都会发生白血病。所以就提示有其他的决定因素在里面。我们现在知道有时候几个基因一起传染的时候,它发生白血病的速率就会大大加快。 Dulbecco这个文章它就说,如果我们想更多地了解肿瘤,我们从现在开始必须关注细胞的基因组。从哪那个物种着手努力?如果我们想理解人类肿瘤,那就应该从人类开始。人类肿瘤研究将因对DNA的详细知识而得到巨大的推动。实际上绝大多数的人类疾病都是多基因的。人类基因组计划正式起动,现在一般的说法是1990年。那么1990年因为是美国国会通过了正式启动这样一个计划。这个计划雄心勃勃就是要用15年的时间,到2005年完成DNA的全序列的测定。这个投资量是多少呢?30亿美元。当时计算的依据是测一个碱基对大概需要一美元。整个计划在这个地方实际上是一个比较狭义的一个计划,这个计划实际上就是一个测序计划。实际上我们讲测序,读出天书只是理解人类自身的第一步,最重要的是读懂天书。但是即使是这样读出天书一个计划的话,它也要经历很多的磨难,很多的困难。也就是说,到今天为止,我们还没有这样的技术说,拿来一条染色体,我们就能够直接测序,从一头测到另外一头我们没有办法这样做。所以整个人类基因组计划,实际上可以简单地说就是由复杂到简单再由简单又回归复杂,最后大概还是回归到简单。也就是说把不能直接测序的一条染色体拿来给它进行分解,分解成比较小的可以操作的这样的单位。那么怎么分解呢?那就是作图,你可以用遗传学的方法去作图,也可以用物理学的方法来作图。我们知道遗传学作图,就是利用遗传学的标志来确定DNA标志间相对的距离。另外一个概念就是说要构成一些所谓的DNA连续的克隆系,那么这些片断,它互相之间重叠,它可以覆盖整个的染色体,从一端覆盖到另外一端。这样就把一个不能直接拿来测序的单位,就给它解析成比较小的、可以操作的这样一个单位。最后给它重新组合成忠实于原来染色体里面生命信息这个排列的,这样一个状况在这里面,识别全部的人类基因。所以人类基因组就是作图,或者狭义的人类基因组计划,就是作图的计划,遗传图、物理图、序列图,然后基因图。 在人类基因组计划进行大规模测序的策略有两种,一种就是我刚才说的那种思路,实际上叫逐个克隆。我刚才说了,你把DNA克隆的连续克隆系建起来了,覆盖整条染色体了,然后你就把一个一个的克隆,用得最多的就是叫BAC--细菌的人工染色体,大概100多个KB这样的长度。那么把这个克隆一个一个挑出来,挑出来以后再进行亚克隆。这种亚克隆就是这样的,就可以测序了,测序以后再给它组装起来、还原起来。这样一个策略,是国际上公共领域的测序计划所采取的策略。实际上它是历史的沿革,就是说从作图,遗传、物理作图演化过来的。我们都知道美国的瑟拉尔公司,也知道奎克曼特。那么它搞了一个叫全基因组鸟枪法,在一定作图信息基础上,绕过大片段连续克隆系统的构建而直接将基因组分解成小片段随机测序,然后利用超级计算机来进行组装。能够使得人类基因组,在初步完成作图以后,很快地迈入到测序,尤其是大规模测序。并且使得整个进度朝向人们的预期。这里面有两个重大因素的贡献,不得不承认这里面,工业界的贡献是非常大的。比如说在人类基因组起步的时候,当时用的这个DNA序列的分析方法,还是凝胶电泳仪为主的方法,基本上还是手工运作的。但是在20世纪90年代上半段的时间里面,新的一个测序技术出现了,毛细管电泳仪。另外把自动化的运作和包括工业界的管理这种系统,都引进来。所以使得测序的速度大大加快。你像这样一个测试仪,它的名字就叫做Megabace。什么意思?就是毛细管电泳,它差不多两小时就可以进行读出一个序列,大概能够读到几百个碱基,那么它一天可以做十班,那么它是96道,所以一天可以做960道。每一道按照他们的宣传,都可以达到一个KB的话,实际上是很难做到的,这是最理想的状态下。所以一天就可以有100万个碱基对的产出。但是曾经使学术界感觉比较困惑的另外一个问题,就是说如果我们现在处于一个知识爆炸的这样一个时代,可以说生物信息的爆炸,是最最给人印象深刻的。 我们看在基因组计划起步之前,在公共数据库里边DNA序列增长非常缓慢。然后1990年以后,就是指数增长期。而且这个东西我是统计到去年、2000年两家世界的公共领域,测序计划和瑟拉尔分别宣布完成了所谓的工作草图。这个时候是这样一个情况,现在大概是这样的情况。1999年当时面对着瑟拉尔的强行挑战,它是1998年成立的,号称三年要拿下人类基因组,国际人类基因组计划决定迎接挑战。就由国际上16个组,分担了人类基因组测序的任务,中国也加入这样一个测序计划。当然我们承担的是1%的任务,1%还是很重要的。因为对于一个发展中的国家来说,能够挤入到这种属于发达国家的俱乐部里面,应该说还是很不容易的。有些事情我们想挤也不一定挤得进去的,像空间站的计划,人家还防范你。 在这里我想介绍一下什么叫工作框架图?因为都在说工作框架图,什么叫工作框架图?其实就是一个工作草图。那么它的意思呢?就是说通过对染色体位置明确的BAC(细菌人工染色体)连续克隆系4—5倍覆盖率的测序,获得基因组90%以上的基因序列,其错误率应该低于1%。也就是说你的覆盖面要达到基因组的90%以上。第二个呢,错误率应该低于1%。100个碱基对立面允许你有一个以下的碱基对的错误。虽然这只是一张草图,但是它已经有用途,就是对基因组结构的基本认识,基因的识别和解析、疾病基因的定位克隆、单个核苷酸的多态性的发现等。 那么讲到草图就一定有一个最终完成图了,所以这张图的定义,要求测序所用的克隆能忠实地代表常染色质的基因组结构,覆盖率要达到99.9%以上,然后序列的错误率应该低于万分之一。与工作框架图的关系呢,实际上就是在工作框架图的基础上再加大测序的覆盖率,填补空隙,使得序列的精度增加,能够达到这样一个标准。也就是说,它是草图的下一步。2000年6月25号,当时的测序的情况是怎么样的呢?我们看当时在公共领域就是说各国政府支持的六各国家,美国、英国、德国、日本、法国、中国,六国政府支持的公共领域的计划,当时是覆盖了大概人类基因组的86.8%。其中包含一部分已经完成,就是我们刚才说的最终序列图这样标准的序列大概是20%多一点点,然后66%左右的序列处于所谓的工作草图这样的阶段。那么也可以说,还没有完成。因为我们说要达到90%以上,但是同时瑟拉尔他号称他的覆盖率已经超过了95%。当然他的覆盖率其实包括了所有的公共领域的这个贡献,再加上他的贡献,所以两者相加起来。我想我们应该相信大概90%以上的序列,都是被工作草图以上的这样一个序列的质量所覆盖着。我们看看公共领域测序计划当时的情况,在24条染色体上分布的情况。我们知道,实际上1999年12月份,22号染色体作为人类最小的染色体之一,它的全序列被测定,或者说是它的常染色体,指部分的全序列。我们注意到它的短臂这个地方,就是易染色体区域,实际上非常难测。因为都是大量的空序列,又没有多少基因。2000年4月份21号染色体全序列完成了,也是同样的定义,就是说常染色体的这个部分。我们看这里是用深红的颜色来表示,差不多就是最终完成的。而这种黄颜色表示的是我们刚才说的工作草图,在大部分染色体区域,是工作草图部分。实际上现在我们讲的,完成人类基因组全序列的测定,都是指的常染色体部分,所以有的人说也许人类基因组序列永远也不能被结束。 2001年2月15日,我们知道公共领域在《自然》上,都是有一种分庭抗礼的,兵对兵、将对将的感觉。2月16号就登了瑟拉尔序列,显然,经过新的一轮角逐,比2000年6月份的时候,完成序列的质量又要高得很多。所以这样的话,应该认为,两家加在一起的信息,应该说比我刚才说的一般的定义又要进一步了。所以就产生了一个在工作草图和最终完成图之间的一个中间状态,这个中间状态就叫做高质量的草图。但是就是这样一个高质量的草图,让我们已经基本上知道我人体生命信息的家当到底有多大。弄到最后我们发现我们的家当好像还是比较可怜的,比我们原来的想像,因为我们的基因数量大概只有线虫,只有900多个细胞的一个生命体的大概一倍左右,我们就比那么一个小虫多一倍。从低等生物到高等生物它的基因组的复杂度,与其说是由基因的数量来决定的,还不如说更主要的是由基因的长度来决定的。我们最近完成了一个细菌的测序,叫钩端螺旋体,可以引起传染病的。它平均一个KB就有一个基因,这么小的一个东西,500万个碱基对的一个基因组,有5000个基因。我们人30亿个碱基对,我们不过就3万个,顶多接近4万个这样一个数字。但是你看到了酵母,到了真核细胞的话,那它就是平均大概5到10个KB一个基因。然后到了果蝇的话,虽然它的基因数量好像还没有线虫的多。但是它的基因长度已经达到10个KB以上,然后到了哺乳类一个基因,大概像人类现在是100多个KB才有一个基因。所以替换、剪接这种可能性就大大增加了。另外跟时间和空间,也就是发育阶段和组织特异性表达的调控相关这些序列复杂大大增加了。虽然基因在高等生物可以达到十的五次方数量级,几万到十万个这样的比较高等的生物。但是实际上它的蛋白质的结构域,实际上如果把基因组比成一个大厦的话,组成这个大厦的预制件,这个数量实际上是比较有限的。那么另外有一些高级生物中有更为丰富的结构域组合,神经功能、组织特异发育、调控、止血和免疫系统的基因,在脊椎动物大量扩展。数以百计的人类基因源于脊椎动物进化过程中某个时间点上,细菌基因的横向转移。基因组在不同个体之间差异很大——单核苷酸多态性,单倍体的基因差异为1/1250,能够导致蛋白质变异的不到1%。 这本遗传天书,已经放在我们面前了,接下来就是要读懂它。要读懂它,一定要从大的系统的概念来考虑怎么样读懂。一个这个基因组的信息,和外界的环境,是在那里相互作用。另外这个基因组的信息不是从天上掉下来的,它是通过一个漫长的几十亿年进化的过程发展过来的,所以要用比较的方法去读它。另外要考虑到在个体之间和群体之间又是有变异的,这种变异也受到外界环境的一些调节。所以功能基因组学的研究内容,虽然现在没有一个严格的定义,但是我个人认为,至少包括这几个方面:人类基因组DNA序列变异性研究,其核心的内容是SNP,因为这是最常见的变异类型,当然还有很多其他的变异。然后基因组表达调控的研究,这个是发育阶段组织器官的变异,然后模式生物体的研究,这个里面包括进化的意思,和利用模式生物进行功能研究。当然从事所有这些研究,就像我们进行测序研究一样。生物信息学,它既是一个基本的工具,又是一个新兴的学科。因为最后要把这些信息整合起来,搞成一个我们所说的,系统生物学的话,你一定要用理论的手段,和大规模信息处理的手段。 那么基因组DNA序列变异性的研究,SNP,这种变异类型实际上是所有基因组的共同特征。它在相当大的程度上决定了不同的个体群体,这个是指的人类在疾病的易感性,对环境致病因子反应性和其他性状上面的差别。 在这里我举一个例子,说明这个性状有多么重要。我们就来看一看,我们对药物的反应性。我想我们每一个人、再健康的人,一生当中总要接触一些药物的。现在有一个新的提法叫药物遗传学,指的是大部分药物,在体内代谢的酶会有遗传多态性。像这里,一类是改变基团的一些酶,一类是对基团进行转移的一些酶。它都有很多的多态性,这种多态性的后果是什么呢?它在相当大的程度上决定了我们个体对药物的反应性。比方说这是一个很复杂的程序,但是我想我们主要的信息在这个地方。对于某一个药物来说,最适合它的基因型的,它的疗效可以达到75%,毒性只有1%。同样一个药,如果到了一个最不适合它的一个个体的情况是怎么样?它的疗效只有10%,毒性大于80%。那么基因组表达以及表达的调控的这个研究,这个我想都可以理解。那么指的是在全细胞的水平,如果是在单细胞的生命体是整个生命体的水平,识别基因组的所有转录表达的产物。实际上它是高通量的结构生物学,大批量解析蛋白质的高级结构,是连接基因组功能研究和新药开发研究的桥梁。然后为了在这样大的规模上,在整体水平上获得功能信息,需要一些所谓的并行化的分析手段。就是现在已经做得到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。所以有人说将来要去看病不光要带病卡,还要带一个自己的芯片。医生用药诊断之前先把芯片插进去,看看你可能得什么病,说起来很好,也很吓人的。模式生物体的研究一般的说法大概从单细胞、第一个生命跟外界隔绝以后,到现在的万物之灵的人类,大概是14亿年的进化史。那么通过进化不同阶段的生物体基因组序列的比较,发现基因组结构组成和功能调节的规律。 那么基因组计划,我刚才说一个是科学兴趣使然,科学家要探索人类的自身,另外也是社会驱动使然,就是说要战胜人类的疾病。所以最后它的价值的实现,我想还是应该回归到对人类的健康的贡献上面去。那么在这个意义上说,人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。我们看到过去的十年当中,由于人类基因组研究的带动,使得人类疾病相关性的研究有了长足的进步。单基因疾病由于定位克隆和定位候选克隆的新思路,导致了一大批遗传病基因的发现。我们知道传统的对基因的认识,是从表型到基因型。也就是你知道一个蛋白质,你测定了它的氨基酸的序列,然后根据密码址的原理,你推测它的DNA的序列可能是什么。你合成一个探针到基因组当中一调,把基因调出来。比方说血红蛋白病,这是第一个人类发现的分子病,它就是先知道了猪蛋白氨基酸的序列,然后再把它的基因调出来。但是绝大多数的人类疾病,我们不知道它的生化基础是什么东西,特别是在基因组计划之前。比方说像亨氏舞蹈病,我们就知道这个人会手舞足蹈,叫亨氏舞蹈病。比方说像遗传性的结肠癌,我们知道大肠部位大容易长息肉,但是我们不知道那个蛋白质出了问题。你怎么办?怎么来找到它的疾病基因?所以有了一个新的概念,叫反过来的遗传学,是什么呢?先去找它的基因,然后再去看它的表型。一旦拿到基因以后,很容易你马上可以推测它的蛋白质的结构。你可以产生抗体,你可以接下来做很多基因的功能。健康相关的研究是HGP的重要组成部分,1997年相继提出:肿瘤基因组的解剖计划,环境基因组计划。 人类基因组计划对医学的贡献。基因诊断,基因治疗和基因组信息为基础的治疗,发展中国家和发达国家越来越重视疾病的预防,特别是基于基因组信息的疾病预防。我国一贯提倡的是预防为主。如果能够在一个人刚出生的时候进行疾病易感基因的识别,在早期把风险人群挑出来,然后在环境因子、生活方式上实施干预。生物技术发生了深刻的变化,更多地进入到细胞、胚胎和组织的研究水平上来,推动了胚胎和成年期干细胞技术的应用。血液病研究与其他先进学%
人类基因组计划进展?
中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。 在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。 3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。 4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国政府和科学界的高度重视。在政府的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。 首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人。 祝您早日找到满意的答案!