三股螺旋

DNA图谱 / 问答 / 标签

三股螺旋DNA和四股DNA结构上有何特点,并说明其主要的生物学功能?

三螺旋DNA不是DNA在自然态下的主要结构,而是在特定的条件下形成的. 它是由一条ODN通过与双链DNA形成Hoogsteen键或反Hoogsteen键,在其大沟处紧密缠绕而成.具体就是富含嘧啶的ODN与双链DNA的富含嘌呤的链以平行的方式键合,形成Hoogsteen键;富含嘌呤的ODN与双链DNA的富含嘌呤的链以反平行的方式键合,形成反Hoogsteen键.与双螺旋相类似,三螺旋DNA的组成结构基元是三碱基体.目前一般认为三碱基体有嘧啶-嘌呤-嘧啶型(Py-型)和嘌呤-嘌呤-嘧啶型(Pu—型)两种基本类型.这些三碱基体也具有专一性,具体体现在T、C+、G、A分别要接在AT、GC、GC和AT碱基对上.三碱基体的这四种主要类型如图1所示. Hoogsteen键或反Hoogsteen键的形成只是构筑三螺旋的必要条件;要想使三螺旋具备一定的生物学功能,实现它的实际应用,还必须保证它具有一定的稳定性,这正是本文所关注的.影响三螺旋DNA稳定性的因素可分为内部因素和外部因素两方面.内部因素主要是指链长、碱基序列组成、骨架本性等因素.这些因素主要是通过影响第三条链键合时碱基配合的强度、氢键相互作用的强度以及双链受体重排时的能量大小来影响所形成的三螺旋的稳定性的.许多研究表明,碱基错配对三螺旋稳定性的影响很大,这对于理解三螺旋结构在体内形成的专一性具有明显重要的意义.另外,不同位置的错误匹配对稳定性的影响也不同.比如,中心部位的错误匹配就要比靠近两端的错误匹配使螺旋更加不稳定[2].影响三链核酸稳定性的外界因素主要包括溶液的pH值、溶液中阳离子的浓度、配基结合作用力的大小等.需要指出的是,尽管已发现在生物体内和体外都可以形成三螺旋DNA结构,但研究各种外界因素特别是金属离子对三螺旋DNA稳定性的影响时大多是从化学的角度、在生物体外进行的;但在生物体外的研究对于指导三螺旋结构在生物体内的应用同样具有很重要的意义.

简述DNA三股螺旋的结构特征?

【答案】:DNA的三股螺旋是在双螺旋结构的基础上,三条DNA链绕在一起形成的螺旋,也称H-DNA。在三股螺旋中通常是一条寡嘌呤核苷酸链与另一条寡嘧啶核苷酸链通过Watson-Crick配对形成正常的双螺旋。第三条任意同型寡核苷酸链可以插入其中,通过Hoogsteen配对形成三股螺旋,即第三个碱基A或者T与原正常A=T碱基中的A配对,形成T=A*T或T=A*A,G或者C与原正常G≡C碱基中的G配对,C必须质子化,形成C≡G*C或C≡G*G。

为什么胶原蛋白的三股螺旋结构的抗张力强度比α-螺旋要强很多?

三顾螺旋中的每条单链称为a-链,约含1000个氨基酸残基,呈左手螺旋结构,每圈螺旋含三个氨基酸残基,因此这种左手螺旋结构比a-螺旋结构更加伸展。胶原蛋白是生物高分子,动物结缔组织中的主要成分,也是哺乳动物体内含量最多、分布最广的功能性蛋白,占蛋白质总量的25%~30%,某些生物体甚至高达80%以上。畜禽源动物组织是人们获取天然胶原蛋白及其胶原肽的主要途径,但由于相关畜类疾病和某些宗教信仰限制了人们对陆生哺乳动物胶原蛋白及其制品的使用,现今正在逐步转向海洋生物中开发。欧洲食品安全局已证实了即使是动物骨骼来源的胶原蛋白也不存在感染疯牛病和其它相关疾病的可能。分布在水产动物体内胶原蛋白含量高于陆生动物,如鲢鱼、鳙鱼和草鱼鱼皮的蛋白质含量分别为25.9%、23.6%和29.8%,均高于各自相应鱼肉的蛋白质含量:17.8%、15.3%和16.6%。而鱼皮中的胶原含量最高可超过其蛋白质总量的80%,较鱼体的其它部位要高许多,有研究报道真鲷鱼皮中胶原蛋白占粗蛋白的80.5%,鳗鲡则高达87.3%。如此高的含量意味着得率也高,如小鲔鲣42.5%;日本海鲈40.7%;香鱼53.6%;黄海鲷40.1%;竹荚鱼43.5%(均以干重计)。但胶原蛋白的种类要少得多,已从鱼类中分离鉴定出的胶原类型有:广泛分布在真皮、骨、鳞、鳔、肌肉等处的I型、软骨和脊索的Ⅱ型和Ⅺ型以及肌肉的V型。而鱼皮和鱼骨所含的Ⅰ型胶原蛋白是其主要胶原蛋白。此外,还发现ⅩⅧ型胶原,然而哺乳动物中含量比较丰富的Ⅲ型胶原,在水产动物中尚未发现。其中只有Ⅰ型胶原蛋白的价格人们才可以接受;其它类型的胶原如Ⅲ、Ⅳ、Ⅴ等仅在研究中制备,由于价格昂贵都不宜于大量生产。

为什么甘氨酸和脯氨酸频繁出现在胶原三股螺旋中,却很少出现在球状蛋白质中?

大虾,根据我知道的给简要的说下吧:由于胶原蛋白特殊的三股螺旋,使得本来不能够形成a-螺旋的pro能够与中心的gly形成氢键,促成了左手肽链a-螺旋的形成也正是由于有了这个特殊的结构,gly pro 和hyp组成的胶原能够组成三股螺旋得到了稳定。而对于球状蛋白质,主要的特点就是形成紧密的实体多数球状蛋白质内部都是形成高度折叠的a-螺旋和β-折叠。a-螺旋要求有能够旋转的酰胺肽键;β-折叠折要求能够在平行或反平行的β-折叠股中形成氢键。从拓扑学来看,球状蛋白质要求其内部组成高度的疏水区,外部有时亲水部分这样也限制了他们出现在球状蛋白内