细胞信号分子

DNA图谱 / 问答 / 标签

细胞分裂素如何作为细胞信号分子

细胞分裂素和生长素作为信号分子在植物生长和发育过程中起到了重要的调控作用

细胞信号分子的的产生和作用方式

答案如图

细胞信号分子的化学结构

从化学结构来看细胞信号分子包括:短肽、蛋白质、气体分子(NO、CO)以及氨基酸、核苷酸、脂类和胆固醇衍生物等等,其共同特点是:①特异性,只能与特定的受体结合;②高效性,几个分子即可发生明显的生物学效应,这一特性有赖于细胞的信号逐级放大系统;③可被灭活,完成信息传递后可被降解或修饰而失去活性,保证信息传递的完整性和细胞免于疲劳。

神经递质属于下列细胞信号分子中的哪一项?()

神经递质属于下列细胞信号分子中的哪一项?() A.化学信号 B.气体分子 C.光信号 D.电信号 正确答案:A

细胞信号分子有哪些?

生物细胞所接受的信号既可以使物理信号(光、热、电流),也可以是化学信号,但是在有机体间和细胞间的通讯中最广泛的信号是化学信号。从化学结构来看细胞信号分子包括:短肽、蛋白质、气体分子(NO、CO)以及氨基酸、核苷酸、脂类和胆固醇衍生物等等,其共同特点是:①特异性,只能与特定的受体结合;②高效性,几个分子即可发生明显的生物学效应,这一特性有赖于细胞的信号逐级放大系统;③可被灭活,完成信息传递后可被降解或修饰而失去活性,保证信息传递的完整性和细胞免于疲劳。从产生和作用方式来看可分为内分泌激素、神经递质、局部化学介导因子和气体分子等四类。从溶解性来看又可分为脂溶性和水溶性两类。脂溶性信号分子,如甾类激素和甲状腺素,可直接穿膜进入靶细胞,与胞内受体结合形成激素-受体复合物,调节基因表达。水溶性信号分子,如神经递质、细胞因子和水溶性激素,不能穿过靶细胞膜,只能与膜受体结合,经信号转换机制,通过胞内信使(如cAMP)或激活膜受体的激酶活性(如受体酪氨酸激酶),引起细胞的应答反应。所以这类信号分子又称为第一信使(primary messenger),而cAMP这样的胞内信号分子被称为第二信使(secondary messenger)。目前公认的第二信使有cAMP、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DG),Ca2+被称为第三信使是因为其释放有赖于第二信使。第二信使的作用是对胞外信号起转换和放大的作用。

细胞信号分子的分类

从产生和作用方式来看可分为内分泌激素、神经递质、局部化学介导因子和气体分子等四类。从溶解性来看又可分为脂溶性和水溶性两类。脂溶性信号分子,如甾类激素和甲状腺素,可直接穿膜进入靶细胞,与胞内受体结合形成激素-受体复合物,调节基因表达。水溶性信号分子,如神经递质、细胞因子和水溶性激素,不能穿过靶细胞膜,只能与膜受体结合,经信号转换机制,通过胞内信使(如cAMP)或激活膜受体的激酶活性(如受体酪氨酸激酶),引起细胞的应答反应。所以这类信号分子又称为第一信使(primary messenger),而cAMP这样的胞内信号分子被称为第二信使(secondary messenger)。目前公认的第二信使有cAMP、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DG),Ca2+被称为第三信使是因为其释放有赖于第二信使。第二信使的作用是对胞外信号起转换和放大的作用。

阐述细胞通讯中细胞信号分子的种类及其作用机理

这个问题比较大了,广义的说,细胞内所有分子不管是蛋白,还是糖,还是金属离子还是核苷酸都是可以作为胞内信号通讯的信号分子的。狭义的讲,按照信号分子所在部位,可以使细胞膜,细胞浆以及细胞核的信号分子,起着比如说各种膜受体,中者就多了去了,后者比如激素受体,转录因子等。信号分子通常由级联效应,比如ras-raf-mek-erk等等类似的级联放大。另外,各个信号通路之间存在非常广泛的crosstalk。

阐述细胞通讯中细胞信号分子的种类及其作用机理

这个问题比较大了,广义的说,细胞内所有分子不管是蛋白,还是糖,还是金属离子还是核苷酸都是可以作为胞内信号通讯的信号分子的. 狭义的讲,按照信号分子所在部位,可以使细胞膜,细胞浆以及细胞核的信号分子,起着比如说各种膜受体,中者就多了去了,后者比如激素受体,转录因子等. 信号分子通常由级联效应,比如ras-raf-mek-erk等等类似的级联放大.另外,各个信号通路之间存在非常广泛的crosstalk.

1.细胞信号分子主要有哪几类?2.染色质可发生哪些修饰而影响染色质活性?3.细胞衰老的原因有哪些?

1.常用信号分子有:(1)激素。如肾上腺素、胰岛素、胰高血糖素、甲状腺素、睾丸酮、雌二醇等。(2)局部介质。如表皮生长因子EGF、神经生长因子NGF、组胺、一氧化氮、血小板衍生生长因子PDEF等。(3)神经递质。如乙酰胆碱Ach、Gamma-氨基丁酸(GABA)等。(4)接触依赖性信号分子。如Delta分子。2.染色质发生的影响活性的化学修饰有组蛋白修饰,包括:(1)核心组蛋白的赖氨酸残基乙酰化;(2)组蛋白H3的甲基化;(3)组蛋白H1的磷酸化;乙酰化一般是活性染色质的标志,而甲基化、磷酸化则在活性染色质、非活性染色质中都存在。3.细胞衰老原因众多。机制也不十分清楚。主要学说有:(1)复制衰老机制:主要是端粒的“末端复制问题”。随着细胞分裂,染色体端粒越来越短。生殖细胞和癌细胞有端粒酶,因此不会有此问题。(2)胁迫诱导的早熟性衰老(SIPS):有氧化损伤理论,认为自由基的积累是细胞衰老的主要原因。