组蛋白和蛋白组学有什么区别?
= =组蛋白是一类蛋白质~~~蛋白组学是一门学科。。。。。。根本就不是一类名词,有啥区别不区别的?那我问你人体细胞和细胞生物学有啥区别?
组蛋白是什么?(高中生物)
组蛋白是染色体的组成部分 染色体是由DNA和蛋白质组成的 组蛋白就像毛线球一样,四个一组使DNA缠成短棒
组蛋白的修饰是怎么样影响基因表达的
组蛋白甲基化诱导了DNA的甲基化:组蛋白甲基化是招募DNA甲基化酶DNMT的信号,在异染色质蛋白HP1的协助下,DNA发生甲基化。DNA的甲基化又诱导组蛋白的去乙酰化:甲基CpG结合蛋白MeCP2可以特定地结合到甲基化的DNA.上,在组蛋白去乙酰化酶的作用下,将组蛋白.上的乙酰基去掉。而组蛋白去乙酰化状态是异染色质的特征,是基因失活的表现。去乙酰化的染色质具有一个更浓缩的结构。结果基因转录被抑制。去乙酰化的染色质可以在组蛋白乙酰基转移酶HAT的作用下而发生组蛋白乙酰化,转录进行。但是这个过程可以被组蛋白去乙酰化酶HDAC逆转。HDAC又可以被抑制因子抑制。于是转录又被激活
类组蛋白和组蛋白
组蛋白: 保守的DNA结合蛋白 , 是染色体的结构蛋白 分为H1 H2a H2b H3 H4 与DNA共同组成 真核生物染色质的基本单位核小体。非组蛋白:染色体中 除组蛋白外的蛋白。
组蛋白进化上的特点及其意义。
组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因氨基酸成分和分子量不同,主要分成5类。组蛋白是真核生物染色体的基本结构蛋白,是一类小分子碱性蛋白质,有六种类型:H1、H2A、H2B、H3、H4及古细菌组蛋白,它们富含带正电荷的碱性氨基酸,能够同DNA中带负电荷的磷酸基团相互作用。 进化上的特点特点:1.进化上的极端保守性; 2.无组织特异性; 3.肽链上氨基酸分布的不对称性; 意义1.核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构 2.H1组蛋白,在构成核小体时期连接作用,赋予染色体极性 3.对染色体DNA的包装起着重要作用
组蛋白的介绍
组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因氨基酸成分和分子量不同,主要分成5类。组蛋白是真核生物染色体的基本结构蛋白,是一类小分子碱性蛋白质,有六种类型:H1、H2A、H2B、H3、H4及古细菌组蛋白,它们富含带正电荷的碱性氨基酸,能够同DNA中带负电荷的磷酸基团相互作用。
组蛋白在DNA中的作用
组蛋白(histones)为基础的DNA相关蛋白,其分子量介于11.21.5KDa之间,其作用为稳定DNA双链,也可能在基因调节中起作用.组蛋白可分为五种:H1、H2A、H2B、H3和H4,这五种组蛋白类型都有各自对应的自身抗体.组蛋白与DNA一起形成了紧密结合的核小体.其中心由H3-H3-H4-H4四聚体组成,H2A-H2B二聚体位于其两侧.组蛋白部分被DNA双链围绕两圈(共146个碱基对).核小体象一串珍珠一样结合在一起,在结合区,DNA(连接DNA)与组蛋白H1相连接.荧光模式 与抗dsDNA抗体相似,抗组蛋白抗体在HEp-2细胞的细胞核中也呈现均质型荧光.分裂期细胞的浓缩染色体荧光增强.用灵长类肝组织,则可见到细胞核为均质型、有时为粗块状荧光.抗组蛋白抗体不引起绿蝇短膜虫动基质产生荧光.还可选用欧蒙抗组蛋白ELISA试剂盒对抗组蛋白抗体进行单特异性测定.
组蛋白富含赖氨酸和精氨酸,那为什么要叫组蛋白(histone)? thx~
词根his的意思就是“组织”,histone就是组蛋白,histamine就是组胺,histidine就是组氨酸. 如同中文一样,只不过是名字上有相同的字而已,这些物质之间没有什么直接联系.
核心组蛋白的成分组分
几乎所有真核细胞染色体的组蛋白均可分成5种主要的组分,分别用字母或数字命名,命名方法也不统一,如H1或称F1,Ⅰ;H2A或称F2A2,Ⅱb1;H2B或称F2B,Ⅱb2;H3或称F3,Ⅲ;H4或称F2A1,Ⅳ。有核的红细胞或个别生物体中,还存在特别的组蛋白成分,红细胞中为H5或F2C,Ⅴ,鲑鱼组织中为H6或T。H2A、H2B、H3、H4组成核小体的核心,也称核心组蛋白。根据组蛋白的一级结构,又可将它们分为3种类型:赖氨酸含量特别丰富的组蛋白(H1);赖氨酸含量较丰富的组蛋白(H2A和H2B);精氨酸含量丰富的组蛋白(H3和H4)。从整体来说,组蛋白在进化过程中保守性很强。其中H1变化较大,H3和H4变化最小。如对小牛胸腺的5种组蛋白,豌豆苗组蛋白的H3、H4和兔胸腺组蛋白H1等的一级结构比较中发现,小牛胸腺和豌豆苗的组蛋白H4间只在60位和77位上的两个氨基酸残基不同。但已知的真菌和原生动物的组蛋白的部分一级结构和动、植物的组蛋白间的差异较大。
组蛋白修饰的简介
组蛋白修饰H3·H4 的乙酰化可打开一个开放的染色质结构,增加基因的表达。转录共同激活物如CBPöP 300、PCA F 实质上是体内的组蛋白乙酰基转移酶(HA T)。相反,HDAC 参与组成转录共同抑制复合物,已发现的两个共同抑制复合物S IN 3、M i22NHRD(核小体重塑蛋白去乙酰基酶) 都含有HDAC1、HDAC2。S IN 3 的组成为核心(HDAC1、HDAC2、RBA P46öRBA P48) + S IN 3AöS IN 3B、SA P30öSA P18共同构成。S IN 3 复合物通过组分S IN 3A 与序列特异性转录因子或共同抑制物包括mael2max,核激素受体N 2CORöSMRT、甲基化CPG 粘附蛋白(N ECP2、MBD2)相互作用。
比较组蛋白与非组蛋白的特点及其作用.
组蛋白: 特点:进化上的极端保守性; 无组织特异性; 肽链上氨基酸分布的不对称性; 组蛋白的修饰作用. 作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构 2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性 3,对染色体DNA的包装起着重要作用 非组蛋白: 特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和谷氨酸,带负电荷.具有多样性,组织专一性和种属多样性. 作用:是真核细胞转录活动的调控因子,与基因活化与选择性表达有关
组蛋白在DNA中的作用
组蛋白(histones)为基础的DNA相关蛋白,其分子量介于11.2~21.5KDa之间,其作用为稳定DNA双链,也可能在基因调节中起作用。组蛋白可分为五种:H1、H2A、H2B、H3和H4,这五种组蛋白类型都有各自对应的自身抗体。 组蛋白与DNA一起形成了紧密结合的核小体。其中心由H3-H3-H4-H4四聚体组成,H2A-H2B二聚体位于其两侧。组蛋白部分被DNA双链围绕两圈(共146个碱基对)。核小体象一串珍珠一样结合在一起,在结合区,DNA(连接DNA)与组蛋白H1相连接。 荧光模式 与抗dsDNA抗体相似,抗组蛋白抗体在HEp-2细胞的细胞核中也呈现均质型荧光。分裂期细胞的浓缩染色体荧光增强。 用灵长类肝组织,则可见到细胞核为均质型、有时为粗块状荧光。抗组蛋白抗体不引起绿蝇短膜虫动基质产生荧光。 还可选用欧蒙抗组蛋白ELISA试剂盒对抗组蛋白抗体进行单特异性测定。
组蛋白和非组蛋白
组蛋白组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因氨基酸成分和分子量不同,主要分成5类。真核生物细胞核中组蛋白的含量约为每克DNA 1克,大部分真核生物中有5种组蛋白,两栖类、鱼类和鸟类还有H5以替代或补充H1。染色质是由许多核小体组成的,H2A,H2B,H3和H4各2个分子构成的8聚体是核小体的核心部分,H1的作用是与线形 DNA结合以帮助后者形成高级结构。组蛋白是已知蛋白质中最保守的,例如,人类和豌豆的H4氨基酸序列只有两个不同,人类和酵母的H4氨基酸序列也只有8个不同,这说明H4的氨基酸序列在约109年间几乎是恒定的。早在1888年德国化学家科塞(A.Kossel)已从细胞核中分离出组蛋白,并认识到它们作为碱性物质应在核中与核酸结合,但直到1974年才了解组蛋白的确切作用。一些实验室随后证明组蛋白以独特的方式构成核小体的组分。非组蛋白(nonhistone proteins)非组蛋白是指细胞核中组蛋白以外的酸性蛋白质。非组蛋白不仅包括以DNA作为底物的酶,也包括作用于组蛋白的一些酶, 如组蛋白甲基化酶。此外还包括DNA结合蛋白、组蛋白结合蛋白和调节蛋白。由于非组蛋白常常与DNA或组蛋白结合, 所以在染色质或染色体中也有非组蛋白的存在, 如染色体骨架蛋白。