- 西柚不是西游
-
从哪些方面判断:
教学体系
行业真正大数据,82%主讲都是hadoop、spark生态体系、storm实时开发等。
师资力量、硬件设施
靠谱的培训机构讲师来自于大型互联网企业的大数据开发人员,有着非常强的实战能力。甚至有些讲师在职期间担任项目经理、技术总监的职位。
课程设置
好的课程安排能够让学员有系统的学习,能够让小白也能够更快的入门,当然,课程还应该与市场需求相互对接,这样才能够让学员实现更好的成长。
实训项目
实训项目一般包括JAVA项目,大数据项目,企业大数据平台等,不同的学习阶段配合不同的项目,加深学员对所学知识的理解和应用。
招生门槛
企业在招聘大数据开发人员时是有一定门槛,最低学历要求是统招大专(个别小众企业有可能会放宽要求)。
班型选择
大数据技术庞多复杂,短期内想掌握几乎不可能,一般0基础的学习周期是5个月左右,且是全日制的学习。
- 小菜G的建站之路
-
经过2017年的发酵,2018年大数据培训机构越来越多,目前主要分为两类
一、综合性机构:本来就是做培训的,开始多种专业!因为大数据火爆所以开设了大数据专业,但是其专业度不高,没有技术情怀。只是单纯了赚钱而且
二、专业性机构:多为技术出身的专业大数据人员创办,不开设其他课程,专注于大数据人才培养。
而具体哪家好,需要自己来判断,从企业(技术)背景、讲师团队、就业率、硬件设施等等方面考察
- 大鱼炖火锅
-
这个要看你在哪个城市了,每个城市所存在的机构都不一样。最好选择覆盖地区广的,比较权威的培训机构。大数据的专业要求很高。目前敢培训大数据的学校都是具备一定专业性的,主要看看是否能提供真实的案例来供学生们分析来进行专业性的判断。多看看网络上的口碑。
- 瑞瑞爱吃桃
-
您好,很开心为您解答。好大数据培训机构挺多的,建议您从师资力量、教学方式、授课模式、就业情况等多方面综合考虑。
- 真颛
-
大数据培训有很多好的地方你可以自己去看看对比一下,一般来说都是北上广深比较好。
- clc1
-
全国培训机构千千万,别的不说,给几点建议还是可以的:
1.看师资,这个是必要的,毕竟好的老师,教学水平会直接影响在学学员的学习质量,那么我们该如何分辨?
直接有效的方式就是实地的试听,试听老师的课程,去感受上课的氛围,学生的一个学习状态,大概你就清楚老师的教学水平了。
2.看教学方式,授课模式,对于想通过培训转行IT,建议教学模式选择面授,教学方式选择理论+实践+项目实训的学习模式,因为技术行业,实践为主,面授的话,老师可以手把手的带,手把手的教,有什么问题可以随时的问,随时解决,提升自己的学习效率。
3.看后期学员的就业情况,看口碑,市场的口碑,是否总体口碑情况较好,了解往届毕业学员的就业情况,平均薪资,这个你可以看他们的就业数据,有条件的可以跟以往学生联系下,了解具体的一个情况,心里就有底了。道听途说不足为信,要实地考察。
个人建议,以上三个方面为重点考察要点,至于课程体系,学费,都是可以直观看到的,可以通过朋,自己的对比来进行考量,就不一一的阐述了。
对了还有最后一点,要明白,后期就业好不好,跟自己的技术能力有关,在培训期间好好的学习技术是关键,后期也需要自己不断的学习,那么就业自然是不用担心的。
希望想入行IT的小伙伴,都能找到自己满意的培训机构。
- 北境漫步
-
本人03年计算机科学与技术毕业,转行到商业数据分析,大学教书7年,从网络到数据库、软件开发;2010年接触数据分析,,一路学习,进入某上市公司做人才测评工作,开始正式入行,从产品竞争情报分析、产品快速测试、用户图谱、数据采集、报表、可视化制作等入手,后来到建模、对比分析、关联分析、聚类等,后来又去阿XXX呆了一年多,然后又和加拿大一帮分析师一起工作,从他们身上学到很多思维方式和分析经验,对如何通过数据去解决企业实践问题的能力提升很多。现在自己和加拿大哥们开公司,专门为中国企业做数据商业咨询服务,业务太多都有点忙不过来了。另外一块业务就是为阿里云提供大数据分析教育内容,比如高校大数据专业的课程体系、实验室产品等,阿里云大数据分析师ACP认证整套体系和认证考试培训研发都是我们公司开发的。还有每年全国各高校大数据专业的师资培训都是我们在做。所以总结我个人的学习路径和方法及认知,给你们提供一条学习路径,希望对你们在大数据商业分析师这条职业道路上有所帮助!以职业能力结构的学习图谱
具体学习路径与方法:第一层通用技能
1、 通用技能是作为数据分析师必须具备的分析工具和大数据相关知识;数据编程:数据编程工具有Python、R、SAS等,目前用的多的是Python,如果有语言基础的小伙伴上手很快,语法、函数、面向对象这些都比较简单,没有基础的小伙伴也可以自学,不是很难,推荐的学习《小象学院》每天学习一节课,听完后可以去阿里云大学官网去做一些Clouder,增加对Python在项目中的使用场景理解,数据清洗、爬虫、数据分析、数据可视化这些是工作中经常用到的。建议书籍:
2、 数据存储:主要是数据库、数据建模,分析师对数据仓库需要了解,这些基础课程完全可以自学,推荐优达学城里面有这些课程,老师讲的HIA不错,也可以去九道门做些实验项目,他们有时候搞活动是免费的;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;先解决会的问题。建议书籍:
另外分布式存储HDOOP需要简单了解就可以了,如果能自己搭建3个节点跑通,个人觉得就OK了,3、 云计算:做为分析师对云计算的技术作为了解就可以了,可以不做目前的强化学习内容4、 数据预处理:这个是数据分析师必须时刻记住的事情,从我们这个行业有句行话,叫垃圾进来垃圾出去,如果数据质量控制不好,后面做的再牛逼,也是垃圾;这个课程主要是看大家对数据的理解和质量控制的方法,目前市场上有专门的岗位就叫ETL数据清洗工程师;有专门的数据质量控制或者数据清洗的书。
5、 数据可视化:数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划。6、 大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,比如第四范式的产品和阿里云的机器学习PAN都是可以直接出结果的工具;推荐书籍:
7、 分析&AI:这部分先了解数据分析的基本流程和分析手法;上面的如果都学了,可以到阿里云大学上面去做几个数据分析方面的案例,增加对数据分析的流程理解和相关技术应用,但是要注意的是阿里案例都是用阿里的工具来实现的,比较简单,建议大家自己编程实现,也可以到天池大赛上去看一些案例,自己做做训练。
以上的工具学习如果自学的小伙伴觉得很难坚持,那就只能去报培训班了,需要提醒大家的是目前培训机构愚弄混杂,在工具教学上有些机构还算马马虎虎,大部分培训机构的老师根本没做过商业分析项目,很多思维方式可能会误导你。至于那个培训机构好,我也不是很清楚,个人觉得自己坚持以上东西是可以自学的,做好规划一步步往前,时间可能长点,需要恒心。第二层商业分析学完通用技能后你是否能真正入门,到企业能干活就看这一层了,在写这篇学习路径的时候我帮大家简单做了中国培训机构的调查分析,北风网、传智播客、达内、千峰、兄弟连、容大、华信智原等稍微好点的能做第一层,第二层都做不了,主要原因分析真正做大数据商业咨询人才都在名企,专业做数据咨询的公司员工一是没时间,二是价格高,培训机构请不起。
我帮大家总结了,目前中国市场大部分企业招聘大数据分析师主要为四个层面服务;一为产品经理服务,国内产品经理不懂数据分析,而新产品的竞争情报分析、产品敏捷测试等都需要数据分析师帮助完成,后期产品迭代优化还是需要数据分析师采集用户行为、习惯、评价等数据来完成。二是为运营服务,产品运营中的用户流量、促销、顾客关系管理等需要数据分析师帮助完成;三是公司数据制定和标准建设、各部门数据打通,数据化管理等工作需要数据分析师完成,四是数据情报和数据预测为高层服务。从以上四个方面我们再去看第二层的商业分析能力和业务知识能力就显得尤为重要,这个时候是考验分析师的业务理解能力及通过数据为企业解决实际问题的能力了。比如分析师的分析流程、分析思维、分析技能、展示说服能力。小伙伴们要想快速进入第二层只有三种方式,一是锁定一个行业,刚开始别嫌工资低,入行1年左右,拼的就是悟性和钻劲,也能进入,如果运气好找个专业做数据咨询的公司那就很快,一个项目下来套路就明白了;二是能遇到一个比较牛的师傅,人家愿意教你,这个也很快,我就是遇到师傅的人,半年时间就完成第二层,不过本人原来做过教师,口才、文案这些软性技能比较强;呵呵。第三种方法推荐去阿里合作伙伴决明科技,这家公司是专门做数据咨询服务的,这家公司有一块业务是做教育的,比如企业培训(阿里的合作企业大数据商业培训都是这家公司在交付),师资培训(这家公司每年做二期高校大数据应用师资培训),去年和前年做了二期大数据商业分析实训,有的被他们公司留下了,其他学员被阿里系的企业一抢而空,听说企业招聘一个人还给这个公司钱;不过他们招人实训要求比较高,首先要本科及以上学历,要会分析工具和数据库相关知识;具体情况小伙伴可以去百度一下九道门就知道了。另外听说很多培训机构租他们的大数据实验平台.第三层:上面我说在入行的时候建议大家选择一个行业,不要轻易换行业,大数据商业分析师对行业的要求很高,本身如果你是行业专家有加上懂数据分析,那就是行业大数据商业分析大牛了,这个需要时间和项目沉淀,现在这种行业大牛在国内很少,因为数据分析行业中国才刚刚发展,企业才刚刚接受这个岗位!这个行业是非常不错的,有潜力,偏商科,技术辅助;真正的大牛不是特别看重数据分析技术,而是分析思维,能用数据帮助企业在产品、价格、促销、顾客、流量、财务、广告、流程、工艺等方面进行价值提升。主要是三个方面的分析,一是现状分析、二是原因分析、三是预测分析。洋洋洒洒写了这么多,希望对您有一些启发和帮助!也希望我们以后在大数据商业分析的江湖上进行切磋相遇!祝您学业有成,尽快入行,加油!
- volcanoVol
-
个人建议多选择一些品牌知名度高,成立时间长,口碑好的学校进行学习,我一侄子就在光环大数据学的,现在已经工作了,薪资待遇都很不错,在报名之前一定要好好考察,因为一些刚成立的,不专业的小培训机构不要说为学生提供真实的大数据项目进行实训了,就连最基本的集群服务器都无法提供,师资和教学水平是保证学员技能掌握的关键!
- 安徽路人假
-
大数据开发程序员根据不同具体岗位,需要掌握以下技能
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage
Understanding),也称为计算语言学(Computational
Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial
Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web
,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。