DNA图谱 / 问答 / 问答详情

因式分解技巧 十字相乘法公式

2023-07-06 08:47:29
共2条回复
meira

二次三项式,十字相乘,因式分解,

窍门就是,结合分组分解法一同使用,

正如

x"

+

(a

+

b)x

+

ab

=

(

x

+

a

)(

x

+

b

)

中间的一次项

mx

=

(a+b)x

首先一分为二,拆开变成

ax

+

bx

接下来把四个项,分两组提公因式,做起来就轻松多了;

Q

关键是一次项怎样一分为二,就由常数项的正负来决定,

一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;

Q

如果常数项是正数,

一次项就是拆开两个绝对值比原来小的两个项;

就连完全平方的式子,这样做起来也会觉得更加可靠。

例如

x"

+

10x

+

25

=

x"

+

5x

+

5x

+

25

=

x(

x

+

5

)

+

5(

x

+

5

)

=

(

x

+

5

)"

常数项都是

+25,一次项就都是分开

10=5+5,

x"

-

10x

+

25

=

x"

-

5x

-

5x

+

25

=

x(

x

-

5

)

-

5(

x

-

5

)

=

(

x

-

5

)"

类似的常数项为正数

x"

+

10x

+

24

=

x"

+

4x

+

6x

+

24

=

x(

x

+

4

)

+

6(

x

+

4

)

=

(

x

+

4

)(

x

+

6

)

常数项都是

+24,一次项就都是分开

10=4+6,

x"

-

10x

+

24

=

x"

-

4x

-

6x

+

24

=

x(

x

-

4

)

-

6(

x

-

4

)

=

(

x

-

4

)(

x

-

6

)

Q

如果常数项是负数,

一次项系数就是分开两个项的相差数;

x"

+

10x

-

24

=

x"

+

12x

-

2x

-

24

=

x(

x

+

12

)

-

2(

x

+

12

)

=

(

x

-

2

)(

x

+

12

)

常数项都是

-24,一次项就都是分开

10=12-2,

x"

-

10x

-

24

=

x"

-

12x

+

2x

-

24

=

x(

x

-

12

)

+

2(

x

-

12

)

=

(

x

+

2

)(

x

-

12

)

看到了吧,

一次项和常数项,绝对值都是

10x

24,

分解因式却有

4

种结果,会不会看得晕头转向呢?

怎么办?只要这样一步一步地写出来,就肯定不会出错了。

x"

±

5x

±

6

x"

±

10x

±

24

x"

±

15x

±

54

x"

±

20x

±

96

x"

±

25x

±

150

都是这样有

4

种结果,

使用这个分解因式的方法,

你自己也试一试吧。

只要熟悉这个方法,就连二次项系数不是

1

也同样方便,

例如

4x"

-

31x

-

45

对着

31,我们恐怕不知道怎样分开两项

可是看到

-45,我们都会想到

4X9=36,5X9=45,

那么

=

4x"

-

36x

+

5x

-

45

=

4x(

x

-

9

)

+

5(

x

-

9

)

=

(

x

-

9

)(

4x

+

5

)

或者

=

4x"

+

5x

-

36x

-

45

=

x(

4x

+

5

)

-

9(

4x

+

5

)

=

(

x

-

9

)(

4x

+

5

)

臭打游戏的长毛

十字相乘

基本式子:x^2+(a+b)x+ab=(x+a)(x+b)

这个很实用,但用起来不容易.

在无法用其他的方法进行分解时,可以用下十字相乘法.

例子:x^2+5x+6

首先观察,有二次项,一次项和常数项,可以采用十字相乘法.

一次项系数为1.所以可以写成1*1

常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)

然后这样排列

1

-

2

1

-

3

(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)

然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3)

(此时横着来就行了)

我再写几个式子,楼主再自己琢磨下吧.

x^2-x-2=(x-2)(x+1)

2x^2+5x-12=(2x-3)(x+4)

其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.

顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)

这些方法一般在最高次为二次时适用!

参考资料:自己原先的回答

相关推荐

十字相乘分解因式的原理?

十字相乘法是因式分解几种方法中的一种特殊方法,在一定条件下,用十字相乘法来解题的速度比较快,节约时间而且避免了大量运算,不容易出错。一、十字相乘法概念十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。二、十字相乘法因式分解的一般步骤(1)把二次项系数和常数项分别分解因数;(2)尝试十字交叉图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字交叉图并写出因式分解的结果;(4)检验。二次项系数为1的多项式十字相乘法因式分解二次项系数为1的多项式十字相乘法因式分解二次项系数不为1的多项式十字相乘法因式分解二次项系数不为1的多项式十字相乘法因式分解​三、十字相乘法的口诀首尾分解,交叉相乘,求和凑中,平行书写。竖分常数交叉验,横写因式不能乱。(1)竖分常数交叉验:竖分二次项和常数项,即把二次项和常数项的系数竖向写出来;交叉相乘,和相加,即斜向相乘然后相加,得出一次项系数;检验确定,检验一次项系数是否正确。(2)横写因式不能乱即把因式横向写,而不是交叉写,这里不能搞乱。
2023-07-06 05:30:553

十字相乘法分解因式

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。    十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解. 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
2023-07-06 05:31:054

因式分解(十字相乘法)

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:31:3411

因式分解 十字相乘

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:32:013

怎么因式分解 怎么用十字相乘法

十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像 二次那样因式分解. 因式分解的步骤: 1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减) 2.完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行. 3.平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解. 4.十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法.(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。) 或者用试根法得出该因式的一个根,通常用0,+1,—1,+2,—2等试根;然后用三项因式去除试根得出的因式即可。
2023-07-06 05:32:093

怎么学会二次三项式分解因式,也就是十字相乘法(要简单的方法)

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。 x-3x+2=如下:  x-1  ╳  x-2  左边x乘x=x  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1c1  ╳  a2c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax+bx+c=(a1x+c1)(a2x+c2).
2023-07-06 05:32:391

十字相乘法分解因式。数学题。

7.(x+5)(x-2)8.-2 -39.2x+110.xy x+2y11.(x-4)(x+2)
2023-07-06 05:32:452

因式分解十字相乘法

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:33:062

谁能告诉我因式分解中的十字相乘法是怎么回事?

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。 十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法),然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。
2023-07-06 05:33:143

求因式分解的十字相乘法使用方法步骤

有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法.1×1=1(二次项系数)ab=ab(常数项)1×a+1×b=a+b(一次项系数)要把二次项系数不为1的二次三项式把分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同.对于分解的两个因数,还要看它们的和是不是等于一次项的系数p.例:十字相乘法(1)x2-6x-7(2)x2+6x-7(3)x2-8x+7(4)x2+8x+7(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6解:(1)x2-6x-7=(x-7)(x+1)(2)x2+6x-7=(x+7)(x-1)(3)x2-8x+7=(x-7)(x-1)(4)x2+8x+7=(x+7)(x+1)(5)x2-5x+6=(x-2)(x-3)(6)x2-5x-6=(x-6)(x+1)(7)x2+5x-6=(x+6)(x-1)(8)x2+5x+6=(x+2)(x+3)
2023-07-06 05:33:221

初中数学十字相乘法的算法!

十字相乘法  这种方法有两种情况。  ①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .  ②kx^2+mx+n型的式子的因式分解   如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).  图示如下:  ·a b   · ×  ·c d   例如:因为  ·1 -3   · ×  ·7 2   且2-21=-19,   所以7x^2-19x-6=(7x+2)(x-3).  十字相乘法口诀:首尾分解,交叉相乘,求和凑中
2023-07-06 05:33:311

如何用十字相乘法解不等式组

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1)如果多项式的各项有公因式时,应先提取公因式;(2)如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3)对于二次三项式的因式分解,可考虑用十字相乘法分解;(4)对于多于三项的多项式,一般应考虑使用分组分解法进行。在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。
2023-07-06 05:33:381

三次三项式如何因式分解 可以用十字相乘法吗?请详解 谢谢

十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像 二次那样因式分解.因式分解的步骤:1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减)2.完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行.3.平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.4.十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法.(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。)或者用试根法得出该因式的一个根,通常用0,+1,—1,+2,—2等试根;然后用三项因式去除试根得出的因式即可。
2023-07-06 05:33:472

数学中的十字相乘是什么意思

印象中有2个地方用到 a/b=c/d 十字相乘法 变成A*D=B*C然后是二次方程求解因式分解那里用到,x x1 x x2
2023-07-06 05:34:351

请数学高手来解答!因式分解和十字相乘法。

(x^2+x-12)(x^2+x-2)+24=(x^2+x)^2-14(x^2+x)+48=(x^2+x-6)(x^2+x-8)当且仅当二次三项式方程有“有理数根”时,才能使用十字相乘法因式分解。 如果二次三项式方程虽然有实数根,但是没有有理数根(即虽然a,b,c为整数,且b^2-4ac≥0,但b^2-4ac不是完全平方数),那么肯定不能使用十字相乘法因式分解。 例如x^2-2x-1对应的二次三项式方程x^2-2x-1=0没有有理数根,其因式分解式 x^2-2x-1=(x-1+√2)(x-1-√2)  是不能使用十字相乘法得到的。必须用配方方法得到,即 x^2-2x-1=(x-1)^2-(√2)^2=(x-1+√2)(x-1-√2)。
2023-07-06 05:35:174

提取公因式十字相乘

⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:.a^2-b^2=(a+b)(a-b) ②完全平方公式:a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. 十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax-b)(cx-d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式.
2023-07-06 05:35:341

十字相乘法分解因式

(2)2x^2-7x+32x 1 x 3(2x-1)(x-3)-2x^2-3x+2 -2x 1 x 2-a^2+10a-9-a 1a -95x^2+7xy-6y^2 5x -3yx 2y (5)-2(a+b)^2+(a+b)+3-2(a+b) 3(a+b) 1(6)(x+y)^4+4(x+y)^2-5(x+y)^2 5(x+y)^2 -1x^3-7x^2+10x=x(x^2-7x+10)x -5x -2
2023-07-06 05:35:561

十字相乘法的具体过程

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。把2x^2;-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项:  3=1×3=1×3=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  11  ╳  23  1×3+2×1  =5  13  ╳  21  1×1+2×3  =7  1-1  ╳  2-3  1×(-3)+2×(-1)  =-5  1-3  ╳  2-1  1×(-1)+2×(-3)  =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解2x^2;-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1c1  ╳  a2c2  a1a2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常  叫做十字相乘法.  
2023-07-06 05:36:031

数学十字相乘法因式分解教程

十字相乘法因式分解讲解如下:十字分解法能用于二次三项式、一元二次式的分解因式,不一定是整数范围内。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1a2的积,把常数项c分解成两个因数c1c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。示例(1)例1因式分解:x2-x-56;分析:因为7x+(-8x)=-x;解:原式=(x+7)(x-8)。(2)例2因式分解:x2-10x+16;分析:因为-2x+(-8x)=-10x;解:原式=(x-2)(x-8)。十字相乘法十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数其实就是运用乘法公式运算来进行因式分解。十字相乘法是因式分解中十四种方法之一,另外十三种分别都是:提公因式法、公式法 、双十字相乘法、轮换对称法、拆添项法、配方法、因式定理法、换元法、综合除法、主元法、特殊值法、待定系数法、二次多项式。
2023-07-06 05:36:521

因式分解十字相乘法怎么做

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:37:072

因式分解十字相乘法

十字相乘法是因式分解中十四种方法之一。十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
2023-07-06 05:37:501

十字相乘法分解因式

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:38:282

一元二次方程因式分解法十字相乘

十字相乘法的方法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b.那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.如解:6x^2-7x-5=0,6x-7x-5=(2x+1)(3x-5),(2x+1)(3x-5)=0,解得x1=-1/2,x2=5/3
2023-07-06 05:38:511

求因式分解的十字相乘法使用方法步骤

例如:x^2+4x-12=0 分析: 在十字相乘法中,二次项系数a=十字左边的相乘; 一次项系数b=交叉相乘然后相加; 常数项c=十字右边的相乘。 这里a=1,b=4,c=-12 ,12=2*6 或 3*4 由此可知b=-2+6,即3*4舍去; 所以(如下): 左 x -2 右 x 6 最后分解因式为(x+6)(x-2)=0 则:x=-6,2
2023-07-06 05:39:141

数学 十字相乘法 计算

计算方程的解或者是范围时例如X的平方-3X-4=0可以分解为(X-4)(X+1)=0得解为4或者-11-411
2023-07-06 05:39:231

怎么利用十字相乘法来分解因式?

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .  上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法讲解:  x^2-3x+2=如下:  x -1  ╳  x -2  左边x乘x= x^2  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  x^2-3x+2=(x-1)*(x-2)编辑本段通俗方法方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写  1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b  第四次a=2 b=2 c=二次项系数÷a d=常数项÷b  第五次a=2 b=3 c=二次项系数÷a d=常数项÷b  第六次a=3 b=2 c=二次项系数÷a d=常数项÷b  第七次a=3 b=3 c=二次项系数÷a d=常数项÷b  ......  依此类推  直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)例  :(^2代表平方)  a^2x^2+ax-42  首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)  然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式。  再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2  首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。  然后,在确定是-7×6还是7×-6.  (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略)  得到结果与原来结果不相符,原式+a 变成了-a  再算:  (a×+7)×(a×+(-6))=a^2+a-42  正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.编辑本段例题解析例1  把2x^2-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!  2=1×2=2×1;  分解常数项:  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5 ≠-7  1 3  ╳  2 1  1×1+2×3=7 ≠-7  1 -1  ╳  2 -3  1×(-3)+2×(-1)=-5 ≠-7  1 -3  ╳  2 -1  1×(-1)+2×(-3)=-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax^2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种  2 1  ╳  3 -5  2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是  1 -3  ╳  1 5  1×5+1×(-3)=2  所以x+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即  1 2  ╳  5 -4  1×(-4)+5×2=6  解 5x+6xy-8y=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.  问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1 -2  ╳  2 1  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5  x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)  (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。  =(x-3)(x+5)  总结:①x+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么  kx^2+mx+n=(ax+b)(cx+d)  a b  ╳  c d  教学重点和难点  重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;  难点:灵活运用十字相乘法分解因式.编辑本段解决两者之间的比例问题原理  一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设总量为S, A所占的数量为M,B为S-M。  则:[A*M+B*(S-M)]/S=C  A/S*M/S+B/S*(S-M)/S=C  M/S=(C-B)/(A-B)  1-M/S=(A-C)/(A-B)  因此:M/S∶(1-M/S)=(C-B)∶(A-C)  上面的计算过程可以抽象为:  A ………C-B  ……C  B……… A-C  这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰使用时的注意事项  第一点:用来解决两者之间的比例问题。  第二点:得出的比例关系是基数的比例关系。  第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。例题  某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?  十字相乘法  解:去年毕业生一共7500人,7650÷(1+2%)=7500人。  本科生:-2%………8%  …………………2%  研究生:10%……… -4%  本科生∶研究生=8%∶(-4%)=-2∶1。  去年的本科生:7500×2/3=5000  今年的本科生:5000×0.98=4900  答:这所高校今年毕业的本科生有4900人。  鸡兔同笼问题  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?  十字相乘法  解:假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚  鸡:70……… …46  ……………………94  兔:140……… …24  鸡:兔=46:24=23:12  答:鸡有23只,兔有12只。编辑本段十字相乘法解一元二次方程例1  把2x^2-7x+3分解因式.  分析:先 分解二次项系数,  分别写在十字交叉线的左上角和左下角,  再分解常数项,  分别写在十字交叉线的右上角和右下角,  然后交叉相乘,  求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5  1 3  ╳  2 1  1×1+2×3=7  1 -1  ╳  2 -3  1×(-3)+2×(-1) =-5  1 -3  ╳  2 -1  1×(-1)+2×(-3) =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax^2+bx+c(a≠0),  如果二次项系数a可以分解成两个因数之积,  即a=a1a2,  常数项c可以分解成两个因数之积,  即c=c1c2,把a1,a2,c1,c2,  排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,  若它正好等于二次三项式ax2+bx+c的一次项系数b,  即a1c2+a2c1=b,  那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积,  即 ax2+bx+c=(a1x+c1)(a2x+c2).例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,  分解二次项系数6及常数项-5,  把它们分别排列,  可有8种不同的排列方法,  其中的一种 21╳3-5 2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x^2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,  运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,  往往要经过多次观察,  才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,  也可以用十字相乘法分解因式,  这时只需考虑如何把常数项分解因数.  例如把x^2+2x-15分解因式,  十字相乘法是1-3╳ 15 1×5+1×(-3)=2  所以x^2+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,  把-8y^2看作常数项,  在分解二次项及常数项系数时,  只需分解5与-8,用十字交叉线分解后,  经过观察,选取合适的一组,  即 12╳ 5-4 1×(-4)+5×2=6  解 5x^2+6xy-8y^2=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,  只有先进行多项式的乘法运算,  把变形后的多项式再因式分解.  问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1-2╳ 21  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,  这又是运用了数学中的“整体”思想方法.例5x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,  可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),  其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5)  总结:①x^2+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;  常数项是两个数的积;一次项系数是常数项的两个因数的和.  因此,可以直接将某些二次项的系数是1的二次三项式因式分解:  x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,  那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0  (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0  (1)解:(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)  (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x1=5,x2=-2是原方程的解。  (2)解:2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0 (转化成两个一元一次方程)  ∴x1=0,x2=-3/2是原方程的解。  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。  (3)解:6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)  ∴2x-5=0或3x+10=0  ∴x1=5/2,x2=-10/3 是原方程的解。  (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2 )=0  ∴x1=2,x2=2是原方程的解。  例题x^2-x-2=0  解:(x+1)(x-2)=0  ∴x+1=0或x-2=0  ∴x1=-1,x2=2  (附:^是数学符号)
2023-07-06 05:39:312

初一十字相乘法因式分解

答:1.原式=(2x+3)(x+2)2.原式=(3x-1)(x+6)3.原式=(6x+1)(x-3)4.原式=(x^2-9)(x^2-1)=(x+3)(x-3)(x+1)(x-1)5.原式=(x^2-4)(x^2-2)=(x+2)(x-2)(x^2-2)=(x+2)(x-2)(x+√2)(x-√2)如果没学根号就要上一步不要这步。6.原式=(5x-2y)(9x+y)7.原式=(2a-3b)(6a-5b)8.原式=(3(p-q)-1)^2=(3p-3q-1)^29.提公因,再十字相乘法。原式=(x+y)[7(x+y)^2-5(x+y)-2]=(x+y)[7(x+y)+2][(x+y)-1]=(x+y)(7x+7y+2)(x+y-1)
2023-07-06 05:40:141

十字相乘法的公式

最常考的是1用十字相乘法来分解因式。2用十字相乘法来解一元二次方程。都不难,别太担心
2023-07-06 05:40:304

一元二次方程因式分解法十字相乘

x2+(p+q)x+pq=(x+p)(x+q)。十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。
2023-07-06 05:40:451

因式分解法的十字相乘法算法过程???

例1 把2x^2;-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2;-7x+3=(x-3)(2x-1). 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1a2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法. 例2 把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5). 例3 把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式. 例4 把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 1 -2 ╳ 2 1 1×1+2×(-2)=-3 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法. 例5 x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax+b)(cx+d) a b ╳ c d
2023-07-06 05:41:074

用十字相乘法分解因式解方程。求详细过程。

2023-07-06 05:41:303

数学解不等式十字相乘法的顺序是什么样的

十字相乘法--借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1)如果多项式的各项有公因式时,应先提取公因式;(2)如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3)对于二次三项式的因式分解,可考虑用十字相乘法分解;(4)对于多于三项的多项式,一般应考虑使用分组分解法进行。在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。
2023-07-06 05:41:461

因式分解的方法十字相乘法图解!!

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:41:574

十字相乘法口诀

十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法) 然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。 3.因式分解的一般步骤 (1) 如果多项式的各项有公因式时,应先提取公因式; (2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解; (3) 对于二次三项式的因式分解,可考虑用十字相乘法分解; (4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。 在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。 在我们做题时,可以参照下面的口诀: 首先提取公因式,然后考虑用公式; 十字相乘试一试,分组分得要合适; 四种方法反复试,最后须是连乘式。
2023-07-06 05:42:321

求十字相乘法法则

十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。凡是一般的二元一次方程组(a1X + a2Y = a3( X +Y )关系式)的习题 ,均可用十字交叉法,但受我们所学知识的条件限制,这里只介绍其中的几种。<br>一、用组分的式量与混合气的平均式量做十字交叉,求组分体积比或含量。<br>例1:已知H2 和CO 的混合气,其平均式量是20,求混合气中H2 和CO 的体积比。(4∶9)<br>解: H2 2 28-20 4<br> ╲ ╱<br> —— 20 ——<br> ╱ ╲<br> CO 28 20-2 9<br>例2:已知CO、CO2 混合气的平均式量是32,耱混合气中CO 的体积百分数。(75%)<br>解: CO 28 12 3<br> ╲ ╱<br> —— 32 ——<br> ╱ ╲<br> CO2 44 4 1<br>二、用同位素的原子量或质量数与元素原子量作交叉,求原子个数比或同位素百分数。<br>例3:已知铜有63Cu 和65Cu 两种同位素,铜元素的原子量是63.5,求63Cu 和65Cu的原子个数比。(3∶1)<br>解: 63Cu 63 1.5 3<br> ╲ ╱<br> —— 63.5 ——<br> ╱ ╲<br> 65Cu 65 0.5 1<br>三、用组分的气体密度与混合气的密度作十字交叉,求组分的体积比或体积分数。<br>例4:标况下,氮气的密度为1.25 g•L-1,乙烷的密度为1.34 g•L-1,两种气体混合后,其密度为1.30 g•L-1,求混合气中氮气和乙烷的体积比(4∶5)<br>解: 氮气 1.25 0.04 4<br> ╲ ╱<br> —— 1.30 ——<br> ╱ ╲<br> 乙烷 1.34 0.05 5<br>四、用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比<br>例5:用60%和20%的两种NaOH 溶液混合配成30%的NaOH 溶液,则所用两种NaOH 溶液的质量比为多少(1∶3)<br>解: 60% 60% 10% 1<br> ╲ ╱<br> —— 30% ——<br> ╱ ╲<br> 20% 20% 30% 3<br>五、用两种物质中同一元素的质量分数求两物质的质量比<br>例6:FeO 中和FeBr2 的混合物中Fe 的质量百分率为50%,求两物质的质量比(13∶15)<br>解: FeO 7/9 13/54 13<br> ╲ ╱<br> —— 1/2 ——<br> ╱ ╲<br> FeBr2 7/27 5/18 15
2023-07-06 05:42:403

十字相乘法怎么算啊?

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。一个例题~例1把2x^2;-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项:  3=1×3=1×3==(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  11  ╳  23  1×3+2×1  =5  13  ╳  21  1×1+2×3  =7  1-1  ╳  2-3  1×(-3)+2×(-1)  =-5  1-3  ╳  2-1  1×(-1)+2×(-3)  =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
2023-07-06 05:43:242

数学十字相乘法的公式是什么?

x^2+(p+q)x+pq=(x+p)(x+q) abx^2+(ad+bc)x+cd=(ax+c)(bx+d) 字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
2023-07-06 05:43:323

十字相乘法分解因式100道题

1- 14 x2 4x –2 x2 – 2 ( x- y )3 –(y- x) x2 –y2 – x + y x2 –y2 -1 ( x + y) (x – y ) x2 + 1 x2 -2-( x -1x )2 a3-a2-2a 4m2-9n2-4m+1 3a2+bc-3ac-ab 9-x2+2xy-y2 2x2-3x-1 -2x2+5xy+2y2 10a(x-y)2-5b(y-x) an+1-4an+4an-1 x3(2x-y)-2x+y x(6x-1)-1 2ax-10ay+5by+6x 1-a2-ab-14 b2 a4+4 (x2+x)(x2+x-3)+2 x5y-9xy5 -4x2+3xy+2y2 4a-a5 2x2-4x+1 4y2+4y-5 3X2-7X+2 8xy(x-y)-2(y-x)3 x6-y6 x3+2xy-x-xy2 (x+y)(x+y-1)-12 4ab-(1-a2)(1-b2) -3m2-2m+4 a2-a-6 2(y-z)+81(z-y) 9m2-6m+2n-n2 ab(c2+d2)+cd(a2+b2) a4-3a2-4 x4+4y4 a2+2ab+b2-2a-2b+1 x2-2x-4 4x2+8x-1 2x2+4xy+y2 - m2 – n2 + 2mn + 1 (a + b)3d – 4(a + b)2cd+4(a + b)c2d (x + a)2 – (x – a)2 –x5y – xy +2x3y x6 – x4 – x2 + 1 (x +3) (x +2) +x2 – 9 (x –y)3 +9(x – y) –6(x – y)2 (a2 + b2 –1 )2 – 4a2b2 (ax + by)2 + (bx – ay)2 x2 + 2ax – 3a2 3a3b2c-6a2b2c2+9ab2c3 xy+6-2x-3y x2(x-y)+y2(y-x) 2x2-(a-2b)x-ab a4-9a2b2 ab(x2-y2)+xy(a2-b2) (x+y)(a-b-c)+(x-y)(b+c-a) a2-a-b2-b (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 (a+3)2-6(a+3) (x+1)2(x+2)-(x+1)(x+2)2 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 我搜到的就是没答案。。哎。。
2023-07-06 05:43:461

求因式分解十字相乘法

x^2-x-2=(x-2)(x+1)2x^2-5x+2=(2x-1)(x-2)2x^2+5x+2=(2x+1)(x+2)
2023-07-06 05:43:541

利用十字相乘法来解决因式分解,结果的因式如何确定正负号?

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.   十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .  上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法讲  x^2-3x+2=如下:  x -1  ╳  x -2  左边x乘x= x^2  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  x^2-3x+2=(x-1)*(x-2)编辑本段通俗方法方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写  1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b  第四次a=2 b=2 c=二次项系数÷a d=常数项÷b  第五次a=2 b=3 c=二次项系数÷a d=常数项÷b  第六次a=3 b=2 c=二次项系数÷a d=常数项÷b  第七次a=3 b=3 c=二次项系数÷a d=常数项÷b  .  依此类推  直到(ad+cb=一次项系数)为止.最终的结果格式为(ax+b)(cx+d)例  :(^2代表平方)  a^2x^2+ax-42  首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)  然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式.  再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2  首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者.  然后,在确定是-7×6还是7×-6.  (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略)  得到结果与原来结果不相符,原式+a 变成了-a  再算:  (a×+7)×(a×+(-6))=a^2+a-42  正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.编辑本段例题解析例1  把2x^2-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!  2=1×2=2×1;  分解常数项:  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5 ≠-7  1 3  ╳  2 1  1×1+2×3=7 ≠-7  1 -1  ╳  2 -3  1×(-3)+2×(-1)=-5 ≠-7  1 -3  ╳  2 -1  1×(-1)+2×(-3)=-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax^2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种  2 1  ╳  3 -5  2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是  1 -3  ╳  1 5  1×5+1×(-3)=2  所以x+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即  1 2  ╳  5 -4  1×(-4)+5×2=6  解 5x+6xy-8y=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.  问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1 -2  ╳  2 1  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5  x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)  (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2.  =(x-3)(x+5)  总结:①x+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么  kx^2+mx+n=(ax+b)(cx+d)  a b  ╳  c d  教学重点和难点  重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;  难点:灵活运用十字相乘法分解因式.编辑本段解决两者之间的比例问题原理  一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B.平均值为C.求取值为A的个体与取值为B的个体的比例.假设总量为S, A所占的数量为M,B为S-M.  则:[A*M+B*(S-M)]/S=C  A/S*M/S+B/S*(S-M)/S=C  M/S=(C-B)/(A-B)  1-M/S=(A-C)/(A-B)  因此:M/S∶(1-M/S)=(C-B)∶(A-C)  上面的计算过程可以抽象为:  A ………C-B  ……C  B……… A-C  这就是所谓的十字相乘法.X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值.即比例,以十字相乘法形式展现更加清晰使用时的注意事项  第一点:用来解决两者之间的比例问题.  第二点:得出的比例关系是基数的比例关系.  第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上.例题  某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?  十字相乘法  去年毕业生一共7500人,7650÷(1+2%)=7500人.  本科生:-2%………8%  …………………2%  研究生:10%……… -4%  本科生∶研究生=8%∶(-4%)=-2∶1.  去年的本科生:7500×2/3=5000  今年的本科生:5000×0.98=4900  答:这所高校今年毕业的本科生有4900人.  鸡兔同笼问题  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?  十字相乘法  假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚  鸡:70……… …46  ……………………94  兔:140……… …24  鸡:兔=46:24=23:12  答:鸡有23只,兔有12只.编辑本段十字相乘法解一元二次方程例1  把2x^2-7x+3分解因式.  分析:先 分解二次项系数,  分别写在十字交叉线的左上角和左下角,  再分解常数项,  分别写在十字交叉线的右上角和右下角,  然后交叉相乘,  求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5  1 3  ╳  2 1  1×1+2×3=7  1 -1  ╳  2 -3  1×(-3)+2×(-1) =-5  1 -3  ╳  2 -1  1×(-1)+2×(-3) =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax^2+bx+c(a≠0),  如果二次项系数a可以分解成两个因数之积,  即a=a1a2,  常数项c可以分解成两个因数之积,  即c=c1c2,把a1,a2,c1,c2,  排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,  若它正好等于二次三项式ax2+bx+c的一次项系数b,  即a1c2+a2c1=b,  那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积,  即 ax2+bx+c=(a1x+c1)(a2x+c2).例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,  分解二次项系数6及常数项-5,  把它们分别排列,  可有8种不同的排列方法,  其中的一种 21╳3-5 2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x^2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,  运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,  往往要经过多次观察,  才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,  也可以用十字相乘法分解因式,  这时只需考虑如何把常数项分解因数.  例如把x^2+2x-15分解因式,  十字相乘法是1-3╳ 15 1×5+1×(-3)=2  所以x^2+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,  把-8y^2看作常数项,  在分解二次项及常数项系数时,  只需分解5与-8,用十字交叉线分解后,  经过观察,选取合适的一组,  即 12╳ 5-4 1×(-4)+5×2=6  解 5x^2+6xy-8y^2=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,  只有先进行多项式的乘法运算,  把变形后的多项式再因式分解.  问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1-2╳ 21  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,  这又是运用了数学中的“整体”思想方法.例5x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,  可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),  其中只有(-3)(5)中-3和5的和为2. =(x-3)(x+5)  总结:①x^2+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;  常数项是两个数的积;一次项系数是常数项的两个因数的和.  因此,可以直接将某些二次项的系数是1的二次三项式因式分  x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,  那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0  (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0  (1)(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)  (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x1=5,x2=-2是原方程的解.  (2)2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0 (转化成两个一元一次方程)  ∴x1=0,x2=-3/2是原方程的解.  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.  (3)6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)  ∴2x-5=0或3x+10=0  ∴x1=5/2,x2=-10/3 是原方程的解.  (4)x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2 )=0  ∴x1=2,x2=2是原方程的解.  例题x^2-x-2=0  (x+1)(x-2)=0  ∴x+1=0或x-2=0  ∴x1=-1,x2=2  (附:^是数学符号)
2023-07-06 05:44:154

求高手叫因式分解中的十字相乘发!特别详细 例题指导!

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。5、十字相乘法解题实例:1)、 用十字相乘法解一些简单常见的题目例1把m +4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m +4m-12=(m-2)(m+6)例2把5x +6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题解: 因为 1 25 ╳ -4所以5x +6x-8=(x+2)(5x-4)例3解方程x -8x+15=0分析:把x -8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。解: 因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程 6x -5x-25=0分析:把6x -5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解: 因为 2 -53 ╳ 5所以 原方程可变形成(2x-5)(3x+5)=0所以 x1=5/2 x2=-5/32)、用十字相乘法解一些比较难的题目例5把14x -67xy+18y 分解因式分析:把14x -67xy+18y 看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y 可分为y.18y , 2y.9y , 3y.6y解: 因为 2 -9y7 ╳ -2y所以 14x -67xy+18y = (2x-9y)(7x-2y)
2023-07-06 05:44:236

十字相乘法分解因式正负规律

十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。例:x2+2x-15分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。=(x-3)(x+5)
2023-07-06 05:45:391

十字相乘法分解因式的公式

初 二 代 数第八章 因式分析[重点、难点点拨]一、知识要点 1.因式分解——把一个多项式化为几个整式的积的 形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 2.因式分解的方法 (1)提取公因式——如果多项式的各项有公因式,可 把这个公因式提到括号外面,将多项式写成因式乘积的形 式,这种分解因式的方法叫做提取公因式法。 提取公因式法是因式分解的最基本、最常用的方法,它的理论依据就是乘法的分配律,能找出多项式各项的公 因式是这种方法的关键,并要注意养成首先作提公因式分解的习惯。 (2)运用公式法——如果把乘法公式反过来,就可以用把某些多项式分解因式,这种分解因式的方法叫做运用公式法。(3)分组分解法——利用分组来分解因式的方法叫做分组分解法。 被分解的多项式中,如果项数超过三项,进行因式分解时所采用的方法常是分组分解,一般来说,分组分解法有两种类型:第一种是分组后各组有公因式,可以进一步提取公因式进行分解;第二种是分组后可以应用公司进行分解。(4)十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。 十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1) 如果多项式的各项有公因式时,应先提取公因式;(2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3) 对于二次三项式的因式分解,可考虑用十字相乘法分解;(4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。 在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。二、学习要求1、 正确理解因式分解的意义,会判断一个变形是不是因式分解,会判断分解所得的因式是否能再继续分解,从而得到因式分解的正确结果。要了解因式分解与整式乘法的区别和联系。2、会正确判定多项式各项的公因式,会用提公因式的方法分解因式,并养成首先运用提公因式法分解因式的习惯。3、熟记五个乘法公式,理解乘法公式逆向应用就是因式分解的公式。会运用换元的思想把某个代数式看做一个字母,会判断一个多项式是否符合各个公式的结构特点,并会把公式结构特点的多项式依照公式进行因式分解。4、会运用十字相乘的方法,把某些二次三项式(或可以看做二次三项式的多项式)进行因式分解。5、会运用先分组,再提公因式法或运用公因式法和十字相乘法进行因式分解。※ 6、会综合运用各种方法,做较复杂的因式分解。※ 7、会运用因式分解解决一些简单的数学问题。[重点、难点例题分析]例1 下列各式中,哪些是因式分解,哪些不是因式分解?(1)(2)(3)(4)(5)(6)(7)(8)分析:由于因式分解的对象是多项式,而 是单项式,所以(1)不是;由于因式分解是把一个多项式化为几个整式的积的形式,而 恰恰相反,它是把m与x+y-z的积化为一个多项式,所以(2)不是;由于(3)的结果也不是整式的积的形式,而是将原多项式进行了部分的分解,所以(3)不是;(4)中等号右边的 还可以提公因式x,它还没有分解完,所以(4)不是;(5)采用的是提公因式法,但它提取的是 ,这不是整式,而我们要求提取的公因式应为整式,即单项式或多项式,所以(5)也不是;(6)、(7)、(8)均符合因式分解的定义,并且将等式右边的乘积算出来,其结果等于原式,所以(6)、(7)、(8)是因式分解。注:(1)因式分解是在整式范围内进行的。另外,要注意在什么数的范围内进行因式分解,若题目没有说明,一般指在有理数范围内进行。(2)因式分解不能只分解多项式的某些项,变形的结果必须是化成几个整式的积的形式。(3)一定要把多项式的每个因式分解到不能再分为止。(4)因式分解与整式乘法是一对互逆的运算,多项式的因式分解是把和差化为积的形式;而整式乘法是把积化为和差的形式,虽然都是恒等变形,但它们是互逆的两种过程。例2 用提公因式分解下列因式。(1)(2)(3)(4)(5)解:(1)分析:当多项式的某一项和公因式相同时,注意不要漏掉1,即 。(2)分析:这个多项式的第一项为负,而括号内多项式的首项应为正,所以公因式为-xy,注意括号内中的每一项都要变号。(3) ]注:把(x-y)当作一个因式,另一个因式要整理,去掉中括号,因式分解要求最后结果应是最简形式,能合并的一定要合并。(4)分析:∵ ∴公因式为 。∴(5)分析:∵,∴公因式为(x-y).∴由(4)、(5)可知:当公因式是多项式时,要注意符号问题,若需要改变括号内的字母顺序,应尽量改变偶次项括号内的字母顺序,若均为奇次项,则应保持首项系数为正。当n为偶数时,当n为奇数时,注:①在确定各项的公因式时要注意,公因式的系数应取各项系数的最大公约数,字母取各项都含有的相同的字母,各字母的指数取次数最低的。②提出公因式后,剩下的项组成的另一个因式的项数应和原多项式的项数相同。例3 用公因式法分解下列因式。注:(1)运用公式法进行因式分解的依据是乘法公式的逆变形。(2)运用公式法进行因式分解的关键是要弄清各个公式的形式结构和特点,熟练地掌握公式。在做题时,可以先将多项式化为公式的基本形式,如:可化为( )2 -( )2 ,运用平方差公式;可化为 ,运用完全平方公式;可化为 ,运用立方和或立方差公式。 (3)在运用公式法做因式分解时,公式中的字母a、b可为任意数、单项式或多项式等。解:(1)分析:这题显然不能直接使用公式,由于两项均为4次方。因此需要添一项凑出一个完全平方式,这里注意应凑成 ,以利于进一步的分解。(2)分析:这题可以通过拆项的方法进行因式分解,由三项的系数特征可知应将 拆为 后再分组。例11 已知多项式 有一个因式是 ,求k的值并把原式分解因式。 分析:由于 是一个三次多项式,而已知有一个一次多项式因子,可知另一个因子必是二次多项式,不妨设为 ,用待定系数法可确定a、b的值。[重点、难点练习题]一、 用提取公因式法分解下列各式二、用公式法分解下列各式三、用十字相乘法分解下列各式四、用分组分解法分解下列因式五、分解下列因式六、分解下列因式[全方位单元综合练习题]一、 判断题(对的在括号里打"√",错的打"×")6、因式分解过程正好与整式乘法过程相反。 ( )7、任意一个二次多项式都可以分解为两个一次因式的乘积。( )8、两个偶数的平方差一定是4的倍数。 ( )二、 选择题(每题只有一个正确答案,把正确答案的序号填在括号里)四、将下列各式分解因式五、将下列各式分解因式
2023-07-06 05:45:487

十字相乘法怎么做

十字相乘法,要按某个字母降幂排列,分解第一项和第三项合成第二项。看图:
2023-07-06 05:46:142

请问各位高手ボイコット 圣火ランナー 火消しに是什么意思啊??

ボイコット:抵制,杯葛圣火ランナー:火炬手,圣火传递者火消しに:熄火,圣火熄灭。
2023-07-06 05:32:251

张安乐的移居大陆

随着年龄增长发生在“白狼”身旁的一些事情,与他原意有违,一连串的打击,使他开始厌恶汲汲营利的江湖,他下决心,以离开台湾来摆脱种种不愉快。1984年11月29日,美国警方宣布侦破 “江南案”,“竹联帮”分子陈启礼等三人受台湾“国安局”指使,从事政治暗杀。随后,“白狼”将陈启礼的一卷录有犯案经过录音带交给美国联邦调查局,作为威胁台湾“政府”释放陈启礼的“武器”,同时他也展开“营救”竹联兄弟的行动,并在美国国会就“江南案”举行大审“竹联帮”听证会上,以流利的英文独辩群雄,一夕之间,他名噪美台两地,成为海内外媒体报道的“风云人物”。“其实人是两面人,如果没有年轻时的那段经历,我号召不了那么多人,如果我只是一个大学教授,声音走不出来,但是也是因为过去的经历,所以人家总可以抹黑,说我是黑道,这个东西有得必有失。”由于身份曝光,“白狼”遭到美国警方逮捕。1986年开始,在美入狱十年。事隔多年,今天的张安乐没有太多地谈及当时的感受,只是说,当时若不去美国,则可以更早地步入大陆。“当时,很多人都通过走‘海归派"这条道路去大陆,我也这样选择,但事与愿违,我到大陆已经是1996年了。这样想想,反而晚了几年。”1997年,针对岛内民众及舆论对台湾黑金政治以及社会治安的不满,台湾当局发起“治平专案”,重点打击有影响力黑道人士,台湾三大帮派“竹联帮”、“四海帮”、“天道盟”主要领头人均在追缉之列,大批大佬被捕后送往绿岛监狱服刑。台湾法务部门网站公开资料显示,治平专案为台湾“内政部”策划实施的检肃黑道帮派工作,有效遏止黑道帮派组织犯罪。依台湾警方当时统计,台湾全省有黑道背景的“民意代表”超过150人,地方议会有黑道背景的超过总数的1/3,成为当时台湾政坛最大包袱,被称为“黑金政治”,饱受抨击。时任台湾地区领导人李登辉在压力之下启动“治平专案”,针对黑道势力进行打击。张安乐回忆说,当年台湾发生一起血案,“第二天为转移焦点,他们通过一个所谓的组织犯罪条例,要求他们三个月之内回去自首,很荒谬啊,没有理会,半年后就被通缉。” 在台商朋友的建议下来到深圳经商,他从此在深圳定居至今。“那个时候,我一个朋友先过来了,他打电话给我,说要不要过来投资,我说好,就过来了。因为我跟他从小一起长大,所以没考虑就答应了。”到大陆后,没想到一呆就是十多年。台湾某报刊曾跨海来深圳专访张安乐。他们描述眼前这位当年的 “大哥大”,黄昏时站在深圳的办公室窗前,看着窗外出神,目光深处隐藏着不为人知的心事与乡愁。他也许在想,不知哪一天他才能回到家乡。虽然深圳湾的对岸就是香港,香港到台北只有一个小时的航程,但他回不去。有家回不去,但张安乐在大陆并没有感到陌生,反而有种亲切的感觉。他说:“我是学历史的,到了大陆来,以前在书上学的都到眼前来了,讲不出的那种感情,回到自己家一样。”移居大陆的日子,张安乐生活重心就是过日子、看看书,对于当前的生活状态,他形容说是一种 “清教徒式的当活”,“养心莫若寡欲,至乐无如读书”是他目前心底最真实的想法。虽然生活过得很平淡,但在好朋友的帮助下,张安乐在大陆的事业蒸蒸日上。在大陆从商十余年,他创办的韬略集团先后在深圳、江门、东莞、南昌设立包括资讯、运动器材、消防器材等多家企业、工厂,至今已拥有了数千名员工。其中,最早创立的江门市运动器材有限公司已发展为全世界最大的头盔制造厂,专业生产马盔、溜冰头盔、自行车赛头盔,每年的销售量占到全球市场份额的45%以上。对于大陆的投资环境,不愿多谈自己“贡献”的张安乐却是滔滔不绝,他说,台商到大陆来投资是大势所趋,“因为大陆已经变成全球最大的民生工业的工厂了,不管是当时在大陆设厂的条件,还是大陆的政策都很适合我们到这边发展。”在大陆定居十多年,张安乐亲眼目睹了大陆的变化。他说大陆经济崛起带给了人们很多的向往与企盼。因为看好大陆经济的发展,张安乐一直致力于大陆与台湾、大陆与世界的经济接轨事宜,而他致力的方式就是在加强两岸文化传承的同时,推动两岸经贸的交流与往来。这些年来,他经常组织岛内的文化、经贸人士到大陆沿海、中部、西部地区,参观当地的历史、人文等,进行大陆寻根之旅,“看中国的昨天、今天、明天,加强他们认祖归宗的感觉。”在张安乐看来,中国的历史文化非常重要,可以加强两岸的真正融合。因为学历史的人一般都有种大历史观,能在纷杂的世界之中看到大潮流、大趋势。他说,历史对他影响很大,因为它很宏观,可以看出一个大方向。“譬如两岸问题,从历史的角度来看,顺应自然,水到渠成,只要两岸经贸继续交流下去,经济起飞则政治情势会趋于稳定,因为经济上的起飞会带动政治上的发展。所以将来我会做两岸三地之间的贸易,我想历史对我未来的规划而言,是有所帮助的。”学历史的他越发关心两岸未来的发展。“我是跳开台湾来看问题,是用两岸关系来看两岸未来的发展。”“希望两岸早日直航,方便所有对台湾经济有卓越贡献的台商,给他们一个最基本的家庭团聚,做生意的方便;第二希望两岸早日走向和平统一,大家都知道统一是必然的,我认为两岸最好的方式就是‘和平统一共繁荣,一国两制相互尊重",共同推进两岸的发展,使中华民族立于世界之林。”
2023-07-06 05:32:301

求三阶魔方CFOP玩法,要清楚点

三阶魔方的分段,30秒以内算是专业级,30-40是业余高级,40-50业余中级,50-60业余初级CFOP,是C,F,O,P四部分的总称C=Cross,就是架十字F= First 2 layers ,完成前两层,41个标准公式,是CFOP提速关键O=Orientation last layer ,顶层颜色统一,共57个公式P=Position last layer 角块棱块归位,共21个公式入门玩法就是层先,而CFOP是直接拼两层,而不是先拼一层再拼一层,省去了很多多余的步骤,OP也是一部完成,略去了多余的无谓的循环,所以会使你大幅提速,代价是你要熟悉并掌握所有F2L41个,0LL57个,PLL21个公式的标准情况仅仅学会CFOP119个公式的标准形态稍加练习即可进30秒,码字不易望采纳
2023-07-06 05:32:313

魔方除了cfop,还有更高级的玩法吗?

瞧你这问题问的- -cfop高级么- -cfop只不过是一个比较成熟的玩法而已,而且cfop给你的只有标准公式加上四向公式恐怕有600条左右的公式量。简而言之是一个靠公式堆出来的玩法。另外还有非标。从这个角度上讲,这方法真心不高级。另外之所以说成熟,只是因为相对来说只需要转动FRU三个面,所以相对顺手速度快。但是旋转次数多是个硬伤。靠公式堆出来的有CFA这样的非常规方法,不是人类能学的。说桥式低级的自重。桥式现在开发的少,相比于CFOP来说,桥式的优势在于旋转次数少,还原方法灵活,公式相对较少。这是一个大优势。而且桥式的跳步概率非常大。6e4c经常稀里糊涂的就跳步了。桥式的缺点是公式不顺手。但是桥式也有世界级高手,别小看桥式个人感觉最先进的是机器人用的最小步骤还原法,用超低手速(和机械制造原理有关?)就能达到10秒左右的水平,实在是非人类能及。不知道你这么盲目追求高级玩法干啥。武功没有高低之分。层先我见过sub25的。层先七步啊!这得多凶残的手速啊!(去魔方吧问问就知道了。)观察不行肿么办?对症下药,用最不需要观察的层先,把手速练到极限,也很牛……要是观察非常犀利,记忆力强,但是手速杯具,毫无疑问用桥式。桥式的费观察省手速+易跳步向来是慢手流的最爱。要是一般人,那就先学CFOP做基础。相比之下由于公式系统成熟,最适合懒人和观察不够犀利但又不是观察不了的人学习。目前SUB30,各种方法我也在尝试。部分CFOP的思想是可以借鉴到桥式里的,尤其是OLL21-27七个翻角公式,和桥式中的4C有共通之处,其中顺手的几条我是拿过去了。唯一的蛋疼之处是桥式的4C要求一次还原位置和方向,而CFOP则是把这两部分开了,所以没法直接借鉴。
2023-07-06 05:32:234

cf生化僵尸头上的标记是啥

cf生化僵尸头上的标记是追踪标志。这是沙漠玫瑰的属性之一。这个功能也是沙漠玫瑰的点睛之笔,可以铸就她成为新一代的生化传奇角色!如在人类阵营下击杀一名生化幽灵,可为其套上伤害加深标记(攻击该玩家时伤害增加10%),在生化阵营下被击杀时可为其套上伤害削弱标记(被该玩家攻击时受到的伤害会减少10%)。伤害加深标记为红色,伤害削弱标记为蓝色。此个功能的推出进一步提升了个人的操作上限,这个功能的推出更大作用上是提供给玩家一个视野,隔着掩体全地图都可以看到指定印记的所处位置,人类的输出环境和僵尸破点环境都会更好一些。沙漠玫瑰其他属性在挑战以及生化模式中可以使用强化投掷匕首(前备只有5发),一次会发射5个,在用强化匕首击杀生化角色后会立即重置使用次数。在无攻击力加成的情况下,脸贴脸打头,投掷两次即可击杀一个4000血的异形终结者,伤害很高。但由于每次发射5枚飞刀,如距离较远伤害会变得较低,所以尽量保证在距离较近的情况下使用,会有奇效。
2023-07-06 05:32:221

ANC是什么的缩写,什么意思

非洲民族议会(African National Council)南非政党和黑人民族主义组织,成立于1912年,原名南非原住民民族议会,其主要目的是维护开普省有色人种(种族溷生)和黑人的投票权。1923年更名为非洲民族议会。从1940年代起,它的斗争矛头指向消除南非白人当局的种族歧视和种族隔离政策。1960&#8764;1990年该组织被南非白人政府取缔;在这三十年里它转入地下并在南非境外展开活动。1990年取消禁令,非洲民族议会的主席曼德拉于1994年当选南非首届多种族政府的首脑。建立原因:1920年代后期,该党的领导层因是否与共产党(成立于1921年)合作而分裂,接着保守派的胜利削弱了这个党,整个30年代里党组织涣散了。然而到了40年代,非洲民族议会在年轻一代领导人的领导下复兴,这些领导人具有更强烈的反对南非种族隔离的战斗精神。1944年建立的非洲民族议会青年团吸引了像西苏鲁(Walter Sisulu)、坦博(Oliver Tambo)、曼德拉等一批人物,他们激励运动,向党的温和派领导发起挑战。1952年后,在卢图利(Albert Luthuli)主席的领导下,非洲民族议会开始发动非暴力的抗议、罢工、杯葛和游行示威,反对1948年上台的国民党政府实行的种族隔离政策。党员人数迅速增加。反对《通行证法》(Pass Laws, 要求黑人携带通行证以表明他们的雇员身分)及其他政府政策的运动在1952年的蔑视运动中达到顶峰。在这个过程中,非洲民族议会的领袖们成了警察骚扰的对象:1956年它的许多领袖被捕,并被指控犯有叛国罪(称为1956u223c1959年的叛国审判)。
2023-07-06 05:32:183