DNA图谱 / 问答 / 问答详情

因式分解法的十字相乘法算法过程???

2023-07-06 08:49:47
共4条回复
gitcloud

例1 把2x^2;-7x+3分解因式.

分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分

别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.

分解二次项系数(只取正因数):

2=1×2=2×1;

分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3).

用画十字交叉线方法表示下列四种情况:

1 1

2 3

1×3+2×1

=5

1 3

2 1

1×1+2×3

=7

1 -1

2 -3

1×(-3)+2×(-1)

=-5

1 -3

2 -1

1×(-1)+2×(-3)

=-7

经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.

解 2x^2;-7x+3=(x-3)(2x-1).

一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:

a1 c1

a2 c2

a1a2+a2c1

按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

ax2+bx+c=(a1x+c1)(a2x+c2).

像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.

例2 把6x^2-7x-5分解因式.

分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种

2 1

3 -5

2×(-5)+3×1=-7

是正确的,因此原多项式可以用十字相乘法分解因式.

解 6x^2-7x-5=(2x+1)(3x-5)

指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.

对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是

1 -3

1 5

1×5+1×(-3)=2

所以x^2+2x-15=(x-3)(x+5).

例3 把5x^2+6xy-8y^2分解因式.

分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即

1 2

5 -4

1×(-4)+5×2=6

解 5x^2+6xy-8y^2=(x+2y)(5x-4y).

指出:原式分解为两个关于x,y的一次式.

例4 把(x-y)(2x-2y-3)-2分解因式.

分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.

问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?

答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.

解 (x-y)(2x-2y-3)-2

=(x-y)[2(x-y)-3]-2

=2(x-y) ^2-3(x-y)-2

=[(x-y)-2][2(x-y)+1]

=(x-y-2)(2x-2y+1).

1 -2

2 1

1×1+2×(-2)=-3

指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例5 x^2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

总结:①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax+b)(cx+d)

a b

c d

可可科科

ax^2+bx+c=0

a=1时,就把c分解后凑出相加等于b的数。

如:x^2-x-6=0,-6=-3*2,-3+2=-1,所以拆成(x-3)(x+2)=0

a≠1时:2x^2-13x+11=0

2只能拆成1*2,11只能拆成1*11或(-1)*(-11)

1/-1

2/-11 1*(-11)+2*(-1)=-13,所以拆成(x-1)(2x-11)=0

再如:6x^2+5x-6=0

6=2*3=1*6,-6=(-1)*6=(-6)*1=(-2)*3=(-3)*2这里就需要尝试了。

最后可得:

2/3

3/(-2),2*(-2)+3*3=5=b,(2x+3)(3x-2)=0

黑桃花

a b

c d

ac=“x^2”前面系数

bd=常数

可化为(a*x-b)(c*x-d)=0

clc1

1 -1

2 -11

=-2 -11

=-13

相关推荐

十字相乘分解因式的原理?

十字相乘法是因式分解几种方法中的一种特殊方法,在一定条件下,用十字相乘法来解题的速度比较快,节约时间而且避免了大量运算,不容易出错。一、十字相乘法概念十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。二、十字相乘法因式分解的一般步骤(1)把二次项系数和常数项分别分解因数;(2)尝试十字交叉图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字交叉图并写出因式分解的结果;(4)检验。二次项系数为1的多项式十字相乘法因式分解二次项系数为1的多项式十字相乘法因式分解二次项系数不为1的多项式十字相乘法因式分解二次项系数不为1的多项式十字相乘法因式分解​三、十字相乘法的口诀首尾分解,交叉相乘,求和凑中,平行书写。竖分常数交叉验,横写因式不能乱。(1)竖分常数交叉验:竖分二次项和常数项,即把二次项和常数项的系数竖向写出来;交叉相乘,和相加,即斜向相乘然后相加,得出一次项系数;检验确定,检验一次项系数是否正确。(2)横写因式不能乱即把因式横向写,而不是交叉写,这里不能搞乱。
2023-07-06 05:30:553

十字相乘法分解因式

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。    十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解. 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
2023-07-06 05:31:054

因式分解(十字相乘法)

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:31:3411

因式分解 十字相乘

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:32:013

怎么因式分解 怎么用十字相乘法

十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像 二次那样因式分解. 因式分解的步骤: 1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减) 2.完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行. 3.平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解. 4.十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法.(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。) 或者用试根法得出该因式的一个根,通常用0,+1,—1,+2,—2等试根;然后用三项因式去除试根得出的因式即可。
2023-07-06 05:32:093

因式分解技巧 十字相乘法公式

二次三项式,十字相乘,因式分解,窍门就是,结合分组分解法一同使用,正如x"+(a+b)x+ab=(x+a)(x+b)中间的一次项mx=(a+b)x,首先一分为二,拆开变成ax+bx,接下来把四个项,分两组提公因式,做起来就轻松多了;Q关键是一次项怎样一分为二,就由常数项的正负来决定,一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;Q如果常数项是正数,一次项就是拆开两个绝对值比原来小的两个项;就连完全平方的式子,这样做起来也会觉得更加可靠。例如x"+10x+25=x"+5x+5x+25=x(x+5)+5(x+5)=(x+5)"常数项都是+25,一次项就都是分开10=5+5,x"-10x+25=x"-5x-5x+25=x(x-5)-5(x-5)=(x-5)"类似的常数项为正数x"+10x+24=x"+4x+6x+24=x(x+4)+6(x+4)=(x+4)(x+6)常数项都是+24,一次项就都是分开10=4+6,x"-10x+24=x"-4x-6x+24=x(x-4)-6(x-4)=(x-4)(x-6)Q如果常数项是负数,一次项系数就是分开两个项的相差数;x"+10x-24=x"+12x-2x-24=x(x+12)-2(x+12)=(x-2)(x+12)常数项都是-24,一次项就都是分开10=12-2,x"-10x-24=x"-12x+2x-24=x(x-12)+2(x-12)=(x+2)(x-12)看到了吧,一次项和常数项,绝对值都是10x和24,分解因式却有4种结果,会不会看得晕头转向呢?怎么办?只要这样一步一步地写出来,就肯定不会出错了。x"±5x±6x"±10x±24x"±15x±54x"±20x±96x"±25x±150都是这样有4种结果,使用这个分解因式的方法,你自己也试一试吧。只要熟悉这个方法,就连二次项系数不是1也同样方便,例如4x"-31x-45对着31,我们恐怕不知道怎样分开两项可是看到-45,我们都会想到4X9=36,5X9=45,那么=4x"-36x+5x-45=4x(x-9)+5(x-9)=(x-9)(4x+5)或者=4x"+5x-36x-45=x(4x+5)-9(4x+5)=(x-9)(4x+5)
2023-07-06 05:32:232

怎么学会二次三项式分解因式,也就是十字相乘法(要简单的方法)

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。 x-3x+2=如下:  x-1  ╳  x-2  左边x乘x=x  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1c1  ╳  a2c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax+bx+c=(a1x+c1)(a2x+c2).
2023-07-06 05:32:391

十字相乘法分解因式。数学题。

7.(x+5)(x-2)8.-2 -39.2x+110.xy x+2y11.(x-4)(x+2)
2023-07-06 05:32:452

因式分解十字相乘法

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:33:062

谁能告诉我因式分解中的十字相乘法是怎么回事?

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。 十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法),然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。
2023-07-06 05:33:143

求因式分解的十字相乘法使用方法步骤

有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法.1×1=1(二次项系数)ab=ab(常数项)1×a+1×b=a+b(一次项系数)要把二次项系数不为1的二次三项式把分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同.对于分解的两个因数,还要看它们的和是不是等于一次项的系数p.例:十字相乘法(1)x2-6x-7(2)x2+6x-7(3)x2-8x+7(4)x2+8x+7(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6解:(1)x2-6x-7=(x-7)(x+1)(2)x2+6x-7=(x+7)(x-1)(3)x2-8x+7=(x-7)(x-1)(4)x2+8x+7=(x+7)(x+1)(5)x2-5x+6=(x-2)(x-3)(6)x2-5x-6=(x-6)(x+1)(7)x2+5x-6=(x+6)(x-1)(8)x2+5x+6=(x+2)(x+3)
2023-07-06 05:33:221

初中数学十字相乘法的算法!

十字相乘法  这种方法有两种情况。  ①x^2+(p+q)x+pq型的式子的因式分解   这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .  ②kx^2+mx+n型的式子的因式分解   如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).  图示如下:  ·a b   · ×  ·c d   例如:因为  ·1 -3   · ×  ·7 2   且2-21=-19,   所以7x^2-19x-6=(7x+2)(x-3).  十字相乘法口诀:首尾分解,交叉相乘,求和凑中
2023-07-06 05:33:311

如何用十字相乘法解不等式组

十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1)如果多项式的各项有公因式时,应先提取公因式;(2)如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3)对于二次三项式的因式分解,可考虑用十字相乘法分解;(4)对于多于三项的多项式,一般应考虑使用分组分解法进行。在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。
2023-07-06 05:33:381

三次三项式如何因式分解 可以用十字相乘法吗?请详解 谢谢

十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像 二次那样因式分解.因式分解的步骤:1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减)2.完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行.3.平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.4.十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法.(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。)或者用试根法得出该因式的一个根,通常用0,+1,—1,+2,—2等试根;然后用三项因式去除试根得出的因式即可。
2023-07-06 05:33:472

数学中的十字相乘是什么意思

印象中有2个地方用到 a/b=c/d 十字相乘法 变成A*D=B*C然后是二次方程求解因式分解那里用到,x x1 x x2
2023-07-06 05:34:351

请数学高手来解答!因式分解和十字相乘法。

(x^2+x-12)(x^2+x-2)+24=(x^2+x)^2-14(x^2+x)+48=(x^2+x-6)(x^2+x-8)当且仅当二次三项式方程有“有理数根”时,才能使用十字相乘法因式分解。 如果二次三项式方程虽然有实数根,但是没有有理数根(即虽然a,b,c为整数,且b^2-4ac≥0,但b^2-4ac不是完全平方数),那么肯定不能使用十字相乘法因式分解。 例如x^2-2x-1对应的二次三项式方程x^2-2x-1=0没有有理数根,其因式分解式 x^2-2x-1=(x-1+√2)(x-1-√2)  是不能使用十字相乘法得到的。必须用配方方法得到,即 x^2-2x-1=(x-1)^2-(√2)^2=(x-1+√2)(x-1-√2)。
2023-07-06 05:35:174

提取公因式十字相乘

⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:.a^2-b^2=(a+b)(a-b) ②完全平方公式:a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. 十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax-b)(cx-d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式.
2023-07-06 05:35:341

十字相乘法分解因式

(2)2x^2-7x+32x 1 x 3(2x-1)(x-3)-2x^2-3x+2 -2x 1 x 2-a^2+10a-9-a 1a -95x^2+7xy-6y^2 5x -3yx 2y (5)-2(a+b)^2+(a+b)+3-2(a+b) 3(a+b) 1(6)(x+y)^4+4(x+y)^2-5(x+y)^2 5(x+y)^2 -1x^3-7x^2+10x=x(x^2-7x+10)x -5x -2
2023-07-06 05:35:561

十字相乘法的具体过程

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。把2x^2;-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项:  3=1×3=1×3=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  11  ╳  23  1×3+2×1  =5  13  ╳  21  1×1+2×3  =7  1-1  ╳  2-3  1×(-3)+2×(-1)  =-5  1-3  ╳  2-1  1×(-1)+2×(-3)  =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解2x^2;-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1c1  ╳  a2c2  a1a2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常  叫做十字相乘法.  
2023-07-06 05:36:031

数学十字相乘法因式分解教程

十字相乘法因式分解讲解如下:十字分解法能用于二次三项式、一元二次式的分解因式,不一定是整数范围内。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1a2的积,把常数项c分解成两个因数c1c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。示例(1)例1因式分解:x2-x-56;分析:因为7x+(-8x)=-x;解:原式=(x+7)(x-8)。(2)例2因式分解:x2-10x+16;分析:因为-2x+(-8x)=-10x;解:原式=(x-2)(x-8)。十字相乘法十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数其实就是运用乘法公式运算来进行因式分解。十字相乘法是因式分解中十四种方法之一,另外十三种分别都是:提公因式法、公式法 、双十字相乘法、轮换对称法、拆添项法、配方法、因式定理法、换元法、综合除法、主元法、特殊值法、待定系数法、二次多项式。
2023-07-06 05:36:521

因式分解十字相乘法怎么做

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:37:072

因式分解十字相乘法

十字相乘法是因式分解中十四种方法之一。十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
2023-07-06 05:37:501

十字相乘法分解因式

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:38:282

一元二次方程因式分解法十字相乘

十字相乘法的方法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b.那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.如解:6x^2-7x-5=0,6x-7x-5=(2x+1)(3x-5),(2x+1)(3x-5)=0,解得x1=-1/2,x2=5/3
2023-07-06 05:38:511

求因式分解的十字相乘法使用方法步骤

例如:x^2+4x-12=0 分析: 在十字相乘法中,二次项系数a=十字左边的相乘; 一次项系数b=交叉相乘然后相加; 常数项c=十字右边的相乘。 这里a=1,b=4,c=-12 ,12=2*6 或 3*4 由此可知b=-2+6,即3*4舍去; 所以(如下): 左 x -2 右 x 6 最后分解因式为(x+6)(x-2)=0 则:x=-6,2
2023-07-06 05:39:141

数学 十字相乘法 计算

计算方程的解或者是范围时例如X的平方-3X-4=0可以分解为(X-4)(X+1)=0得解为4或者-11-411
2023-07-06 05:39:231

怎么利用十字相乘法来分解因式?

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .  上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法讲解:  x^2-3x+2=如下:  x -1  ╳  x -2  左边x乘x= x^2  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  x^2-3x+2=(x-1)*(x-2)编辑本段通俗方法方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写  1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b  第四次a=2 b=2 c=二次项系数÷a d=常数项÷b  第五次a=2 b=3 c=二次项系数÷a d=常数项÷b  第六次a=3 b=2 c=二次项系数÷a d=常数项÷b  第七次a=3 b=3 c=二次项系数÷a d=常数项÷b  ......  依此类推  直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)例  :(^2代表平方)  a^2x^2+ax-42  首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)  然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式。  再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2  首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。  然后,在确定是-7×6还是7×-6.  (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略)  得到结果与原来结果不相符,原式+a 变成了-a  再算:  (a×+7)×(a×+(-6))=a^2+a-42  正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.编辑本段例题解析例1  把2x^2-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!  2=1×2=2×1;  分解常数项:  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5 ≠-7  1 3  ╳  2 1  1×1+2×3=7 ≠-7  1 -1  ╳  2 -3  1×(-3)+2×(-1)=-5 ≠-7  1 -3  ╳  2 -1  1×(-1)+2×(-3)=-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax^2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种  2 1  ╳  3 -5  2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是  1 -3  ╳  1 5  1×5+1×(-3)=2  所以x+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即  1 2  ╳  5 -4  1×(-4)+5×2=6  解 5x+6xy-8y=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.  问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1 -2  ╳  2 1  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5  x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)  (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。  =(x-3)(x+5)  总结:①x+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么  kx^2+mx+n=(ax+b)(cx+d)  a b  ╳  c d  教学重点和难点  重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;  难点:灵活运用十字相乘法分解因式.编辑本段解决两者之间的比例问题原理  一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设总量为S, A所占的数量为M,B为S-M。  则:[A*M+B*(S-M)]/S=C  A/S*M/S+B/S*(S-M)/S=C  M/S=(C-B)/(A-B)  1-M/S=(A-C)/(A-B)  因此:M/S∶(1-M/S)=(C-B)∶(A-C)  上面的计算过程可以抽象为:  A ………C-B  ……C  B……… A-C  这就是所谓的十字相乘法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。即比例,以十字相乘法形式展现更加清晰使用时的注意事项  第一点:用来解决两者之间的比例问题。  第二点:得出的比例关系是基数的比例关系。  第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。例题  某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?  十字相乘法  解:去年毕业生一共7500人,7650÷(1+2%)=7500人。  本科生:-2%………8%  …………………2%  研究生:10%……… -4%  本科生∶研究生=8%∶(-4%)=-2∶1。  去年的本科生:7500×2/3=5000  今年的本科生:5000×0.98=4900  答:这所高校今年毕业的本科生有4900人。  鸡兔同笼问题  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?  十字相乘法  解:假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚  鸡:70……… …46  ……………………94  兔:140……… …24  鸡:兔=46:24=23:12  答:鸡有23只,兔有12只。编辑本段十字相乘法解一元二次方程例1  把2x^2-7x+3分解因式.  分析:先 分解二次项系数,  分别写在十字交叉线的左上角和左下角,  再分解常数项,  分别写在十字交叉线的右上角和右下角,  然后交叉相乘,  求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5  1 3  ╳  2 1  1×1+2×3=7  1 -1  ╳  2 -3  1×(-3)+2×(-1) =-5  1 -3  ╳  2 -1  1×(-1)+2×(-3) =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax^2+bx+c(a≠0),  如果二次项系数a可以分解成两个因数之积,  即a=a1a2,  常数项c可以分解成两个因数之积,  即c=c1c2,把a1,a2,c1,c2,  排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,  若它正好等于二次三项式ax2+bx+c的一次项系数b,  即a1c2+a2c1=b,  那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积,  即 ax2+bx+c=(a1x+c1)(a2x+c2).例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,  分解二次项系数6及常数项-5,  把它们分别排列,  可有8种不同的排列方法,  其中的一种 21╳3-5 2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x^2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,  运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,  往往要经过多次观察,  才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,  也可以用十字相乘法分解因式,  这时只需考虑如何把常数项分解因数.  例如把x^2+2x-15分解因式,  十字相乘法是1-3╳ 15 1×5+1×(-3)=2  所以x^2+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,  把-8y^2看作常数项,  在分解二次项及常数项系数时,  只需分解5与-8,用十字交叉线分解后,  经过观察,选取合适的一组,  即 12╳ 5-4 1×(-4)+5×2=6  解 5x^2+6xy-8y^2=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,  只有先进行多项式的乘法运算,  把变形后的多项式再因式分解.  问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1-2╳ 21  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,  这又是运用了数学中的“整体”思想方法.例5x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,  可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),  其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5)  总结:①x^2+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;  常数项是两个数的积;一次项系数是常数项的两个因数的和.  因此,可以直接将某些二次项的系数是1的二次三项式因式分解:  x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,  那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0  (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0  (1)解:(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)  (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x1=5,x2=-2是原方程的解。  (2)解:2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0 (转化成两个一元一次方程)  ∴x1=0,x2=-3/2是原方程的解。  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。  (3)解:6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)  ∴2x-5=0或3x+10=0  ∴x1=5/2,x2=-10/3 是原方程的解。  (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2 )=0  ∴x1=2,x2=2是原方程的解。  例题x^2-x-2=0  解:(x+1)(x-2)=0  ∴x+1=0或x-2=0  ∴x1=-1,x2=2  (附:^是数学符号)
2023-07-06 05:39:312

初一十字相乘法因式分解

答:1.原式=(2x+3)(x+2)2.原式=(3x-1)(x+6)3.原式=(6x+1)(x-3)4.原式=(x^2-9)(x^2-1)=(x+3)(x-3)(x+1)(x-1)5.原式=(x^2-4)(x^2-2)=(x+2)(x-2)(x^2-2)=(x+2)(x-2)(x+√2)(x-√2)如果没学根号就要上一步不要这步。6.原式=(5x-2y)(9x+y)7.原式=(2a-3b)(6a-5b)8.原式=(3(p-q)-1)^2=(3p-3q-1)^29.提公因,再十字相乘法。原式=(x+y)[7(x+y)^2-5(x+y)-2]=(x+y)[7(x+y)+2][(x+y)-1]=(x+y)(7x+7y+2)(x+y-1)
2023-07-06 05:40:141

十字相乘法的公式

最常考的是1用十字相乘法来分解因式。2用十字相乘法来解一元二次方程。都不难,别太担心
2023-07-06 05:40:304

一元二次方程因式分解法十字相乘

x2+(p+q)x+pq=(x+p)(x+q)。十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。
2023-07-06 05:40:451

用十字相乘法分解因式解方程。求详细过程。

2023-07-06 05:41:303

数学解不等式十字相乘法的顺序是什么样的

十字相乘法--借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有,则有,否则,需交换的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1)如果多项式的各项有公因式时,应先提取公因式;(2)如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3)对于二次三项式的因式分解,可考虑用十字相乘法分解;(4)对于多于三项的多项式,一般应考虑使用分组分解法进行。在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。
2023-07-06 05:41:461

因式分解的方法十字相乘法图解!!

十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。对于形如ax2+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b2-4ac进行判定。当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。1、十字分解法能用于二次三项式的分解因式(不一定是整数范围内)2、对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,使a1c2+a2c1正好等于一次项的系数b。
2023-07-06 05:41:574

十字相乘法口诀

十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法) 然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。 3.因式分解的一般步骤 (1) 如果多项式的各项有公因式时,应先提取公因式; (2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解; (3) 对于二次三项式的因式分解,可考虑用十字相乘法分解; (4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。 在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。 在我们做题时,可以参照下面的口诀: 首先提取公因式,然后考虑用公式; 十字相乘试一试,分组分得要合适; 四种方法反复试,最后须是连乘式。
2023-07-06 05:42:321

求十字相乘法法则

十字交叉法是进行二组分混和物平均量与组分量计算的一种简便方法。凡是一般的二元一次方程组(a1X + a2Y = a3( X +Y )关系式)的习题 ,均可用十字交叉法,但受我们所学知识的条件限制,这里只介绍其中的几种。<br>一、用组分的式量与混合气的平均式量做十字交叉,求组分体积比或含量。<br>例1:已知H2 和CO 的混合气,其平均式量是20,求混合气中H2 和CO 的体积比。(4∶9)<br>解: H2 2 28-20 4<br> ╲ ╱<br> —— 20 ——<br> ╱ ╲<br> CO 28 20-2 9<br>例2:已知CO、CO2 混合气的平均式量是32,耱混合气中CO 的体积百分数。(75%)<br>解: CO 28 12 3<br> ╲ ╱<br> —— 32 ——<br> ╱ ╲<br> CO2 44 4 1<br>二、用同位素的原子量或质量数与元素原子量作交叉,求原子个数比或同位素百分数。<br>例3:已知铜有63Cu 和65Cu 两种同位素,铜元素的原子量是63.5,求63Cu 和65Cu的原子个数比。(3∶1)<br>解: 63Cu 63 1.5 3<br> ╲ ╱<br> —— 63.5 ——<br> ╱ ╲<br> 65Cu 65 0.5 1<br>三、用组分的气体密度与混合气的密度作十字交叉,求组分的体积比或体积分数。<br>例4:标况下,氮气的密度为1.25 g•L-1,乙烷的密度为1.34 g•L-1,两种气体混合后,其密度为1.30 g•L-1,求混合气中氮气和乙烷的体积比(4∶5)<br>解: 氮气 1.25 0.04 4<br> ╲ ╱<br> —— 1.30 ——<br> ╱ ╲<br> 乙烷 1.34 0.05 5<br>四、用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比<br>例5:用60%和20%的两种NaOH 溶液混合配成30%的NaOH 溶液,则所用两种NaOH 溶液的质量比为多少(1∶3)<br>解: 60% 60% 10% 1<br> ╲ ╱<br> —— 30% ——<br> ╱ ╲<br> 20% 20% 30% 3<br>五、用两种物质中同一元素的质量分数求两物质的质量比<br>例6:FeO 中和FeBr2 的混合物中Fe 的质量百分率为50%,求两物质的质量比(13∶15)<br>解: FeO 7/9 13/54 13<br> ╲ ╱<br> —— 1/2 ——<br> ╱ ╲<br> FeBr2 7/27 5/18 15
2023-07-06 05:42:403

十字相乘法怎么算啊?

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。一个例题~例1把2x^2;-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项:  3=1×3=1×3==(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  11  ╳  23  1×3+2×1  =5  13  ╳  21  1×1+2×3  =7  1-1  ╳  2-3  1×(-3)+2×(-1)  =-5  1-3  ╳  2-1  1×(-1)+2×(-3)  =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
2023-07-06 05:43:242

数学十字相乘法的公式是什么?

x^2+(p+q)x+pq=(x+p)(x+q) abx^2+(ad+bc)x+cd=(ax+c)(bx+d) 字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
2023-07-06 05:43:323

十字相乘法分解因式100道题

1- 14 x2 4x –2 x2 – 2 ( x- y )3 –(y- x) x2 –y2 – x + y x2 –y2 -1 ( x + y) (x – y ) x2 + 1 x2 -2-( x -1x )2 a3-a2-2a 4m2-9n2-4m+1 3a2+bc-3ac-ab 9-x2+2xy-y2 2x2-3x-1 -2x2+5xy+2y2 10a(x-y)2-5b(y-x) an+1-4an+4an-1 x3(2x-y)-2x+y x(6x-1)-1 2ax-10ay+5by+6x 1-a2-ab-14 b2 a4+4 (x2+x)(x2+x-3)+2 x5y-9xy5 -4x2+3xy+2y2 4a-a5 2x2-4x+1 4y2+4y-5 3X2-7X+2 8xy(x-y)-2(y-x)3 x6-y6 x3+2xy-x-xy2 (x+y)(x+y-1)-12 4ab-(1-a2)(1-b2) -3m2-2m+4 a2-a-6 2(y-z)+81(z-y) 9m2-6m+2n-n2 ab(c2+d2)+cd(a2+b2) a4-3a2-4 x4+4y4 a2+2ab+b2-2a-2b+1 x2-2x-4 4x2+8x-1 2x2+4xy+y2 - m2 – n2 + 2mn + 1 (a + b)3d – 4(a + b)2cd+4(a + b)c2d (x + a)2 – (x – a)2 –x5y – xy +2x3y x6 – x4 – x2 + 1 (x +3) (x +2) +x2 – 9 (x –y)3 +9(x – y) –6(x – y)2 (a2 + b2 –1 )2 – 4a2b2 (ax + by)2 + (bx – ay)2 x2 + 2ax – 3a2 3a3b2c-6a2b2c2+9ab2c3 xy+6-2x-3y x2(x-y)+y2(y-x) 2x2-(a-2b)x-ab a4-9a2b2 ab(x2-y2)+xy(a2-b2) (x+y)(a-b-c)+(x-y)(b+c-a) a2-a-b2-b (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 (a+3)2-6(a+3) (x+1)2(x+2)-(x+1)(x+2)2 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 我搜到的就是没答案。。哎。。
2023-07-06 05:43:461

求因式分解十字相乘法

x^2-x-2=(x-2)(x+1)2x^2-5x+2=(2x-1)(x-2)2x^2+5x+2=(2x+1)(x+2)
2023-07-06 05:43:541

利用十字相乘法来解决因式分解,结果的因式如何确定正负号?

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.   十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .  上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法讲  x^2-3x+2=如下:  x -1  ╳  x -2  左边x乘x= x^2  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  x^2-3x+2=(x-1)*(x-2)编辑本段通俗方法方法  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写  1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b  第四次a=2 b=2 c=二次项系数÷a d=常数项÷b  第五次a=2 b=3 c=二次项系数÷a d=常数项÷b  第六次a=3 b=2 c=二次项系数÷a d=常数项÷b  第七次a=3 b=3 c=二次项系数÷a d=常数项÷b  .  依此类推  直到(ad+cb=一次项系数)为止.最终的结果格式为(ax+b)(cx+d)例  :(^2代表平方)  a^2x^2+ax-42  首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)  然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式.  再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2  首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者.  然后,在确定是-7×6还是7×-6.  (a×+(-7))×(a×+6)=a^2-a-42(计算过程省略)  得到结果与原来结果不相符,原式+a 变成了-a  再算:  (a×+7)×(a×+(-6))=a^2+a-42  正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.编辑本段例题解析例1  把2x^2-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!  2=1×2=2×1;  分解常数项:  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5 ≠-7  1 3  ╳  2 1  1×1+2×3=7 ≠-7  1 -1  ╳  2 -3  1×(-3)+2×(-1)=-5 ≠-7  1 -3  ╳  2 -1  1×(-1)+2×(-3)=-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax^2+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种  2 1  ╳  3 -5  2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是  1 -3  ╳  1 5  1×5+1×(-3)=2  所以x+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即  1 2  ╳  5 -4  1×(-4)+5×2=6  解 5x+6xy-8y=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.  问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1 -2  ╳  2 1  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5  x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)  (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2.  =(x-3)(x+5)  总结:①x+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么  kx^2+mx+n=(ax+b)(cx+d)  a b  ╳  c d  教学重点和难点  重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式分解因式;  难点:灵活运用十字相乘法分解因式.编辑本段解决两者之间的比例问题原理  一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B.平均值为C.求取值为A的个体与取值为B的个体的比例.假设总量为S, A所占的数量为M,B为S-M.  则:[A*M+B*(S-M)]/S=C  A/S*M/S+B/S*(S-M)/S=C  M/S=(C-B)/(A-B)  1-M/S=(A-C)/(A-B)  因此:M/S∶(1-M/S)=(C-B)∶(A-C)  上面的计算过程可以抽象为:  A ………C-B  ……C  B……… A-C  这就是所谓的十字相乘法.X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值.即比例,以十字相乘法形式展现更加清晰使用时的注意事项  第一点:用来解决两者之间的比例问题.  第二点:得出的比例关系是基数的比例关系.  第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上.例题  某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年(2006)毕业的本科生有多少人?  十字相乘法  去年毕业生一共7500人,7650÷(1+2%)=7500人.  本科生:-2%………8%  …………………2%  研究生:10%……… -4%  本科生∶研究生=8%∶(-4%)=-2∶1.  去年的本科生:7500×2/3=5000  今年的本科生:5000×0.98=4900  答:这所高校今年毕业的本科生有4900人.  鸡兔同笼问题  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?  十字相乘法  假设全为鸡脚则有70只脚,假设全为兔脚则有140只脚  鸡:70……… …46  ……………………94  兔:140……… …24  鸡:兔=46:24=23:12  答:鸡有23只,兔有12只.编辑本段十字相乘法解一元二次方程例1  把2x^2-7x+3分解因式.  分析:先 分解二次项系数,  分别写在十字交叉线的左上角和左下角,  再分解常数项,  分别写在十字交叉线的右上角和右下角,  然后交叉相乘,  求代数和,使其等于一次项系数.  分解二次项系数(只取正因数):  2=1×2=2×1;  分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1=5  1 3  ╳  2 1  1×1+2×3=7  1 -1  ╳  2 -3  1×(-3)+2×(-1) =-5  1 -3  ╳  2 -1  1×(-1)+2×(-3) =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1).  一般地,对于二次三项式ax^2+bx+c(a≠0),  如果二次项系数a可以分解成两个因数之积,  即a=a1a2,  常数项c可以分解成两个因数之积,  即c=c1c2,把a1,a2,c1,c2,  排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,  若它正好等于二次三项式ax2+bx+c的一次项系数b,  即a1c2+a2c1=b,  那么二次三项式就⒂可以分解为两个因式a1x+c1与a2x+c2之积,  即 ax2+bx+c=(a1x+c1)(a2x+c2).例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,  分解二次项系数6及常数项-5,  把它们分别排列,  可有8种不同的排列方法,  其中的一种 21╳3-5 2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x^2-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,  运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,  往往要经过多次观察,  才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,  也可以用十字相乘法分解因式,  这时只需考虑如何把常数项分解因数.  例如把x^2+2x-15分解因式,  十字相乘法是1-3╳ 15 1×5+1×(-3)=2  所以x^2+2x-15=(x-3)(x+5).例3  把5x^2+6xy-8y^2分解因式.  分析:这个多项式可以看作是关于x的二次三项式,  把-8y^2看作常数项,  在分解二次项及常数项系数时,  只需分解5与-8,用十字交叉线分解后,  经过观察,选取合适的一组,  即 12╳ 5-4 1×(-4)+5×2=6  解 5x^2+6xy-8y^2=(x+2y)(5x-4y).  指出:原式分解为两个关于x,y的一次式.例4  把(x-y)(2x-2y-3)-2分解因式.  分析:这个多项式是两个因式之积与另一个因数之差的形式,  只有先进行多项式的乘法运算,  把变形后的多项式再因式分解.  问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.  解 (x-y)(2x-2y-3)-2  =(x-y)[2(x-y)-3]-2  =2(x-y) ^2-3(x-y)-2  1-2╳ 21  1×1+2×(-2)=-3  =[(x-y)-2][2(x-y)+1]  =(x-y-2)(2x-2y+1).  指出:把(x-y)看作一个整体进行因式分解,  这又是运用了数学中的“整体”思想方法.例5x^2+2x-15  分析:常数项(-15)<0,可分解成异号两数的积,  可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),  其中只有(-3)(5)中-3和5的和为2. =(x-3)(x+5)  总结:①x^2+(p+q)x+pq型的式子的因式分解  这类二次三项式的特点是:二次项的系数是1;  常数项是两个数的积;一次项系数是常数项的两个因数的和.  因此,可以直接将某些二次项的系数是1的二次三项式因式分  x^2+(p+q)x+pq=(x+p)(x+q)  ②kx^2+mx+n型的式子的因式分解  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,  那么 kx^2+mx+n=(ax+b)(cx+d) a b╳c d  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0  (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0  (1)(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)  (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x1=5,x2=-2是原方程的解.  (2)2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0 (转化成两个一元一次方程)  ∴x1=0,x2=-3/2是原方程的解.  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.  (3)6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)  ∴2x-5=0或3x+10=0  ∴x1=5/2,x2=-10/3 是原方程的解.  (4)x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2 )=0  ∴x1=2,x2=2是原方程的解.  例题x^2-x-2=0  (x+1)(x-2)=0  ∴x+1=0或x-2=0  ∴x1=-1,x2=2  (附:^是数学符号)
2023-07-06 05:44:154

求高手叫因式分解中的十字相乘发!特别详细 例题指导!

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。5、十字相乘法解题实例:1)、 用十字相乘法解一些简单常见的题目例1把m +4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m +4m-12=(m-2)(m+6)例2把5x +6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题解: 因为 1 25 ╳ -4所以5x +6x-8=(x+2)(5x-4)例3解方程x -8x+15=0分析:把x -8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。解: 因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程 6x -5x-25=0分析:把6x -5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解: 因为 2 -53 ╳ 5所以 原方程可变形成(2x-5)(3x+5)=0所以 x1=5/2 x2=-5/32)、用十字相乘法解一些比较难的题目例5把14x -67xy+18y 分解因式分析:把14x -67xy+18y 看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y 可分为y.18y , 2y.9y , 3y.6y解: 因为 2 -9y7 ╳ -2y所以 14x -67xy+18y = (2x-9y)(7x-2y)
2023-07-06 05:44:236

十字相乘法分解因式正负规律

十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1u2022a2,把常数项c分解成两个因数c1,c2的积c1u2022c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。例:x2+2x-15分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。=(x-3)(x+5)
2023-07-06 05:45:391

十字相乘法分解因式的公式

初 二 代 数第八章 因式分析[重点、难点点拨]一、知识要点 1.因式分解——把一个多项式化为几个整式的积的 形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 2.因式分解的方法 (1)提取公因式——如果多项式的各项有公因式,可 把这个公因式提到括号外面,将多项式写成因式乘积的形 式,这种分解因式的方法叫做提取公因式法。 提取公因式法是因式分解的最基本、最常用的方法,它的理论依据就是乘法的分配律,能找出多项式各项的公 因式是这种方法的关键,并要注意养成首先作提公因式分解的习惯。 (2)运用公式法——如果把乘法公式反过来,就可以用把某些多项式分解因式,这种分解因式的方法叫做运用公式法。(3)分组分解法——利用分组来分解因式的方法叫做分组分解法。 被分解的多项式中,如果项数超过三项,进行因式分解时所采用的方法常是分组分解,一般来说,分组分解法有两种类型:第一种是分组后各组有公因式,可以进一步提取公因式进行分解;第二种是分组后可以应用公司进行分解。(4)十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。 十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。3.因式分解的一般步骤(1) 如果多项式的各项有公因式时,应先提取公因式;(2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解;(3) 对于二次三项式的因式分解,可考虑用十字相乘法分解;(4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。 在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。在我们做题时,可以参照下面的口诀:首先提取公因式,然后考虑用公式;十字相乘试一试,分组分得要合适;四种方法反复试,最后须是连乘式。二、学习要求1、 正确理解因式分解的意义,会判断一个变形是不是因式分解,会判断分解所得的因式是否能再继续分解,从而得到因式分解的正确结果。要了解因式分解与整式乘法的区别和联系。2、会正确判定多项式各项的公因式,会用提公因式的方法分解因式,并养成首先运用提公因式法分解因式的习惯。3、熟记五个乘法公式,理解乘法公式逆向应用就是因式分解的公式。会运用换元的思想把某个代数式看做一个字母,会判断一个多项式是否符合各个公式的结构特点,并会把公式结构特点的多项式依照公式进行因式分解。4、会运用十字相乘的方法,把某些二次三项式(或可以看做二次三项式的多项式)进行因式分解。5、会运用先分组,再提公因式法或运用公因式法和十字相乘法进行因式分解。※ 6、会综合运用各种方法,做较复杂的因式分解。※ 7、会运用因式分解解决一些简单的数学问题。[重点、难点例题分析]例1 下列各式中,哪些是因式分解,哪些不是因式分解?(1)(2)(3)(4)(5)(6)(7)(8)分析:由于因式分解的对象是多项式,而 是单项式,所以(1)不是;由于因式分解是把一个多项式化为几个整式的积的形式,而 恰恰相反,它是把m与x+y-z的积化为一个多项式,所以(2)不是;由于(3)的结果也不是整式的积的形式,而是将原多项式进行了部分的分解,所以(3)不是;(4)中等号右边的 还可以提公因式x,它还没有分解完,所以(4)不是;(5)采用的是提公因式法,但它提取的是 ,这不是整式,而我们要求提取的公因式应为整式,即单项式或多项式,所以(5)也不是;(6)、(7)、(8)均符合因式分解的定义,并且将等式右边的乘积算出来,其结果等于原式,所以(6)、(7)、(8)是因式分解。注:(1)因式分解是在整式范围内进行的。另外,要注意在什么数的范围内进行因式分解,若题目没有说明,一般指在有理数范围内进行。(2)因式分解不能只分解多项式的某些项,变形的结果必须是化成几个整式的积的形式。(3)一定要把多项式的每个因式分解到不能再分为止。(4)因式分解与整式乘法是一对互逆的运算,多项式的因式分解是把和差化为积的形式;而整式乘法是把积化为和差的形式,虽然都是恒等变形,但它们是互逆的两种过程。例2 用提公因式分解下列因式。(1)(2)(3)(4)(5)解:(1)分析:当多项式的某一项和公因式相同时,注意不要漏掉1,即 。(2)分析:这个多项式的第一项为负,而括号内多项式的首项应为正,所以公因式为-xy,注意括号内中的每一项都要变号。(3) ]注:把(x-y)当作一个因式,另一个因式要整理,去掉中括号,因式分解要求最后结果应是最简形式,能合并的一定要合并。(4)分析:∵ ∴公因式为 。∴(5)分析:∵,∴公因式为(x-y).∴由(4)、(5)可知:当公因式是多项式时,要注意符号问题,若需要改变括号内的字母顺序,应尽量改变偶次项括号内的字母顺序,若均为奇次项,则应保持首项系数为正。当n为偶数时,当n为奇数时,注:①在确定各项的公因式时要注意,公因式的系数应取各项系数的最大公约数,字母取各项都含有的相同的字母,各字母的指数取次数最低的。②提出公因式后,剩下的项组成的另一个因式的项数应和原多项式的项数相同。例3 用公因式法分解下列因式。注:(1)运用公式法进行因式分解的依据是乘法公式的逆变形。(2)运用公式法进行因式分解的关键是要弄清各个公式的形式结构和特点,熟练地掌握公式。在做题时,可以先将多项式化为公式的基本形式,如:可化为( )2 -( )2 ,运用平方差公式;可化为 ,运用完全平方公式;可化为 ,运用立方和或立方差公式。 (3)在运用公式法做因式分解时,公式中的字母a、b可为任意数、单项式或多项式等。解:(1)分析:这题显然不能直接使用公式,由于两项均为4次方。因此需要添一项凑出一个完全平方式,这里注意应凑成 ,以利于进一步的分解。(2)分析:这题可以通过拆项的方法进行因式分解,由三项的系数特征可知应将 拆为 后再分组。例11 已知多项式 有一个因式是 ,求k的值并把原式分解因式。 分析:由于 是一个三次多项式,而已知有一个一次多项式因子,可知另一个因子必是二次多项式,不妨设为 ,用待定系数法可确定a、b的值。[重点、难点练习题]一、 用提取公因式法分解下列各式二、用公式法分解下列各式三、用十字相乘法分解下列各式四、用分组分解法分解下列因式五、分解下列因式六、分解下列因式[全方位单元综合练习题]一、 判断题(对的在括号里打"√",错的打"×")6、因式分解过程正好与整式乘法过程相反。 ( )7、任意一个二次多项式都可以分解为两个一次因式的乘积。( )8、两个偶数的平方差一定是4的倍数。 ( )二、 选择题(每题只有一个正确答案,把正确答案的序号填在括号里)四、将下列各式分解因式五、将下列各式分解因式
2023-07-06 05:45:487

十字相乘法怎么做

十字相乘法,要按某个字母降幂排列,分解第一项和第三项合成第二项。看图:
2023-07-06 05:46:142

新水浒传董平人物形象分析

新水浒传董平 《水浒传》作为中国四大名著之一,在1998年的时候就被张绍林导演拍成了电视剧,后又翻拍了新水浒传,所谓经典就是用来不停翻拍的。在新版水浒中董平是由于博饰演,是一个名不见经传的演员,演过《男男女女》、《旧约》等电视剧。董平在水浒传中本来就不是一个有名的角色,所以扮演者也没有很大的名气。 董平剧照 将小说改编成电视剧,为了剧情的丰满和人物角色的塑造,编剧就会适当的做一些改编。在新版水浒传中,董平的人设也有所改变。董平在新水浒转镜头也不是很多,但遭网友热议的是在攻打东昌府的时候,董平和张清的交战。有着双枪风流将军的董平竟然几个回合下来就败下阵来,这似乎并不符合原著的人设安排。 董平好歹算是马军五虎将之一,在梁山好汉中排名第十五,武艺高强那是毋庸置疑的。竟然几回合就被张清打败,这似乎不符合常情。如果张清几回合就能打败董平那张清是有多厉害,张清在梁山一百零八将中排第十六还在董平的后面。新版水浒这样弱化董平的武艺,强化张清的能力是在不符合原著内容。但是这样也是为了后来剧情的发展。 还有一点就是董平是难得一见的帅哥,丰神俊貌,仪表堂堂,身材挺拔,而新版水浒中董平的扮演者于博在外型上还是难以达到书中所描述的董平的高度,虽然也是帅,但是不够惊艳不够风流。 董平人品 董平虽然武艺高强,使得一手好双枪,在梁山好汉之中排位也是非常靠前。《水浒传》中描述他是心思机敏、三教九流无所不通,又是高雅风流,丝竹管弦无所不会,可是其人品却是实在不敢恭维。 董平剧照 董平爱上程太守的闺女,便向程太守索要。这闺女可是程太守的掌上明珠,太守怎可轻易许配给人,自是拒绝了董平。董平便怀恨在心,随后就出卖了东平府。连程太守都残忍的杀害了,强行夺取了程小姐。程太守可是心 *** 的亲身父亲,他都可以因一点私人仇恨就随便杀害,更何况别人。还有这程小姐跟了杀父仇人这日子以后是要怎么过?估计也是难逃被抛弃的命运。 从这就可以看出董平非常的阴险歹毒,在他身上完全找不到一个英雄人物的仗义与正气。他的性格狭隘,冲动好事。在他还未入梁山之前,宋江借口向东平府借粮食,董平一听是来借粮食的就叫侍卫将借粮之人拖出去乱棍打死。但凡有一点容人之量或是大将风范都不会说出这样的话。虽然因为程太守说了“两国争战,不斩来使”才让借粮之人得以活命。从这件事也可以看出董平此人无论立多少功,有多大的成就,单从人品来说他就称不上是一个英雄。当然水浒传中对他的着墨也是非常少的,可能也是由于这个人物在性格和人品上没有过多值得学习的地方。 董平的绰号 董平有一绰号叫“双枪将”,这个名字是从他所使用的兵器而来。董平双枪使用的出神入化,说到双枪这个兵器你就会想到董平。这跟他枪使的好有关,也是因为在历史上使用双枪的人物是在太少。要不就是打个酱油的英雄角色要不就是一些虾兵蟹将,所以董平在这个领域算得上诗歌高手,才有双枪将一说。 董平的绰号 还有另一种说法就是在双枪将前面加一个形容词,不用说也能知道是什么词。“风流双枪将”,董平也是个风流才子,有着风流才子必备条件:长相。他长得仪表堂堂,玉树临风,而且还非常有才,三流九教无所不通,丝竹管弦无所不会。这样的硬件条件,不风流都是暴殄天物。所以董平也有风流双枪将的绰号。 还有一个绰号是满梁山都喊的,那就是“董一撞”。由于董平初上梁山之时非常急切的想要立功,就经常干什么事都打头阵,因此也屡屡立功。梁山好汉们就称呼他为董一撞。这也是形容董平英勇无敌,骁勇善战,可以在千军万马中横冲直撞,如入无人之境。在文中就有诗赞美他:总饶铁骑千层,万马怎挡董一撞! 但是为后人流传的还是风流才子双枪将这个绰号,也最能表达董平的人物特征。董平最后的结局并非很好,甚至可以说是惨烈,在征战方腊时在战场上被敌人拦腰斩断。他的所作所为也将消失在历史的长河之中。 双枪将董平厉害吗 关于董平有一段评价一直流传于后世:“英勇双枪将,风流万户侯”。从字面意思上来说也可以知道董平是个很厉害的角色。用英勇来形容一点也不为过,他骁勇善战、足智多谋,唯一的缺陷就是性格冲动,而冲动是魔鬼,最后他的确也是死在自己的冲动性格上。 董平剧照 董平的绰号是从他的武器双枪而来,这也说明董平在双枪领域绝对是一个标杆人物。他的一手双枪使用的出神入化,难逢敌手。在梁山好汉中同样使用枪的还有豹子头林冲,当然林冲使用的是枪而非双枪。董平和林冲比的话还是稍有逊色,毕竟林冲是八十万禁军教头,是以武功闻名的。 自古以来正史记载的使用双手兵器的战将不是很多,但基本都是勇力过人,天生神力。历史上有过记载的像汉朝末年董卓就是使用双鞭,董卓可以算得上那个是杰出的英雄豪杰了。但每个兵器都有其利弊之处,像董平擅长使用双枪,双枪的攻击范围大可是因为枪的长度过于长所以比起短兵器就不够灵活,但董平能够使得一手双龙戏水枪就是因为他克服了双枪不够灵活的缺点。 董平也非常的擅长马战,基本在马上能伤到他的人非常之少,他最后战死沙场也是因为他任性冲动的选择了步战,最后落得被拦腰斩断的下场。从武器领域来说董平还是一个很厉害的角色,当然从梁山好汉的排名来说董平也绝对可以称得上厉害。 水浒传董平性格 董平,梁山泊马军五虎大将之五,在梁山一百零八将中排名第十五。是河东上党郡人氏,也就是今天的山西省,他在上梁山前任职东平府兵马都监。董平相貌俊朗,仪表堂堂,为人心灵机巧,三教九流,无所不通,丝竹管弦,没有他不会的,非常的高雅风流。尤其是他的武艺非常的高强,尤其一手双龙戏水枪使得出神入化。 董平剧照 虽然董平骁勇善战,但他在性格上比较冲动好战。当初宋江攻打东平府时,是使用的计谋将董平引诱到偏僻的小村庄里,假如董平能够谨慎小心也不会轻易就上了宋江的当。宋江用绊马索将董平从马上弄下,董平本就是擅长马上作战,摔下马之后董平就不敌宋江一伙。董平为了感谢宋江的不杀之恩就决定加入梁山。其实宋江本就没有想过要杀董平,这一切都是要诱导董平上梁山,因为宋江在和董平对战时就已经发现了董平的骁勇善战。而董平却不知道这一切都是一个计谋,心甘情愿的和宋江上了梁山,这也说明董平在计谋上还是有所欠缺。 再说董平上了梁山之后非常急切的想要立功,这也从一方面说明董平是一个很有野心很有抱负的人。而且他不怕死,什么时候都敢打头阵,别人不敢去的地方他敢,别人不敢做的事他也敢。所以他也很快得到就建功立业,整个梁山都知道他的绰号董一撞,这也是靠着他敢打敢杀的劲拼出来的。但最后他也是死在自己冲动好战的性格之下。 新水浒董平扮演者 新版水浒传中的董平是由内地青年演员于博饰演。于博毕业于北京电影学院,科班出生的演员。曾经出演过男男女女、旧约、丑角登场等电视机剧,其中最出名的也就是水浒传了。 新版董平扮演者照片 新版水浒传在年2011年8月份时在安徽、东方、山东、天津四大卫视同时上映。上映之后收视一路飘红,相当不错。可是由于剧情改编和人物造型问题受到的非议也不少。其中有几个角色受到的吐槽较多,比如温情版的李逵,李逵在书中可是性烈如火的人物恪电视剧只能够的他却标新了温柔多情的一面,再比如纯洁的潘金莲,诗人对于潘金莲的印象都是妖颜魅惑的。 在新版水浒中董平这个角色出来时大家还是眼前一亮的,本身新水浒董平扮演者于博就是一个帅气的小伙子,在者新水浒里武术编排非常的新颖,在巫术设计上不拘泥于传统的大戏套路,毕竟董平的双枪是一种比较特殊的武器,董平的打法总能让对手感觉到变化莫测,也让观众看得和过瘾。 在北影毕业的新水浒董平扮演者于博有着非常扎实的表演功底和专业素养,他将有情有义、骁勇善战的董平表演的活灵活现,非常的深入人心。而且赋予了董平于博自身认知的魅力,全新的诠释人物精神与内涵。但似乎水浒传之后娱乐圈很少能见到于博的踪影,于博本身就未大红大紫,再加之娱乐圈更新换代速度之快,竞争压力之大,使得于博在娱乐圈的发展受到了限制。
2023-07-06 05:41:111

求异形的电影...

这是所有关于异形的电影: 异形大战铁血战士 (2004)(影片) 异形3 (1992)(影片) 异形4:复活 (1997)(影片) 异形终结 (1995)(影片) 异形魔怪4 (2004)(影片) 异形战场 (2004)(影片) 深海异形 (2005)(影片) 异形2 (1986)(影片) 异形 (1979)(影片) 异形 (1992)(影片) 异形魔怪 (1990)(影片) 异形5(影片) 异形总动员 (1999)(影片) 外星帝国 (1998)(影片) 异形终结者 (1995)(影片) 异形猎手 (2003)(影片) 异形附身 (1987)(影片) 异形寄生 (2004)(影片) 人体异形 (1978)(影片) 神鬼关头:异形复仇 (1998)(影片) 我的继母是异形 (1993)(影片) 异形帝国 (1988)(影片) 异形杀机 (1994)(影片) 异形基地 (1993)(影片) 异形入侵 (1982)(影片) 异形杀机 (1998)(影片) 异形大追击 (1989)(影片) 魔域异形 (1991)(影片) 异形怪客 (1991)(影片) 异形人魔 (1998)(影片) 异形猎杀令 (1995)(影片) 异形总司令 (1997)(影片) 异形毁灭者 (1993)(影片) 雨林终结者 (1991)(影片) 沼泽异形 (1982)(影片) 异形人魔 (1997)(影片) 异形怪体(影片) 异形X (2004)(影片)
2023-07-06 05:41:125

狱乐营 烈火青春 -狱女红豆 狱琪儿种子下载,感激不尽

狱乐营烈火青春-狱女红豆狱琪儿种子下载地址:麻烦选为满意答案,谢谢!
2023-07-06 05:41:121

台湾一清二清怎么回事

台湾一清二清就是台湾取缔黑帮的运动。1984由台湾戒严时的警备总部主导,依据“台湾省戒严时期取缔流氓办法”执行一清专案,锁定的首要黑帮为日渐坐大的“竹联帮”,接着连续实施“二清专案”和“三清专案”。针对当时台湾主要的帮派及流氓进行扫荡,增加了当时台湾人民对台湾当局治安管制的信心。此次扫荡行动中竹联帮的首脑陈启礼、吴敦亦被捕,由于陈启礼是台湾公家秘密派到美国刺杀刘宜良的主嫌,犯案回台湾后即成为一清专案的重要对象,使得一清专案更受瞩目。一清专案锁定对象以黑道竹联帮为主,4000名检肃对象中,竹联帮份子就占三分之一。全台各帮派组织领导者被扫荡入狱,在狱中管理却问题丛生,一群本省人角头老大,受到外省人为主的竹联帮欺凌,深感无援,唯有相互结盟,在台北看守所以“替天行道”为号召,创立了“天道盟”(1986年10月31日),此后并成为台湾三大帮派之一。扩展资料:1984年初,竹联帮在复出的陈启礼手中急速地扩充,但也造成一些堂口间因利益冲突的内斗。6月,四海帮为了夺回被竹联帮抢占的地盘,联合台南的黄埔帮北上结合台北其他帮派,与竹联帮爆发"江南案"之前最大规模的街头冲突“荔舫餐厅事件”。事后,竹联与四海两帮的冲突更由街头提升至金融与政治层面。首先是两帮介入的股市战,造成当时全台的金融风暴;在这次金融风暴的后期,两帮联手黑箱操作股市获取不法利益。事件引起政府注意,刑警大队队长曾文奉命调查金融风暴的内幕,当他查出真相后,却接到一张调职令,对当局极度失望的他愤然辞职,在找陈启礼报仇时却命丧安全局局长汪敬煦之手。金融风暴后,官方和黑帮的关系达到了水乳交融的境界;就在陈启礼出狱后,介由竹联帮兄弟帅岳峰透过已故导演白景瑞的关系搭上军情局的线,到军情局接受训练,并取得化名,想把竹联帮转化成帮助政府的助力。参考资料来源:百度百科-一清专案参考资料来源:百度百科-竹联帮
2023-07-06 05:41:052

中国石化加油卡初始密码?

中石化的加油卡是没有初始密码的。只有在办理的时候自己要求要密码,才会给你加密,否则就是没有密码。另外,如果遗忘加油卡的使用密码,可持卡到本省内任意售卡网点办理密码重装,能直接输入新的密码覆盖原来的旧密码。且办理密码解锁和密码重装业务,一定要携带本人有效证件或者单位证明,再由发卡网点经办人员验证无误才可办理。假如想要给自己的加油卡设置密码,可以前往就近的办卡网点或者充卡点进行密码设置,也可以设置限制车辆和每天加油的次数和升数,来保证加油卡的用卡安全。拓展资料:一、加油卡输错3次锁多久加油卡输错3次是不会自动解锁的。这时车友就需要持卡到任意售卡网点进行密码解锁,也可以出具相关证明前往相关售卡网点进行换卡操作。个人换卡只需要携带本人身份证即可,而要是公司单位换卡就需要出示公司的相关证明已经办卡人身份证原件。需要注意的是输入密码错误三次之后就不要再接着尝试了,否则卡将被永久性锁住。二、中石化加油卡密码管理加油卡密码可分为客服系统查询密码和加油卡使用密码。1、客服系统查询密码:您开户时登记证件号码的后六位数字为您在客服系统中的初始查询密码,您可以通过客服电话进行查询密码的更改。2、加油卡使用密码:您可为加油卡设定密码以防范卡遗失或被盗后产生意外损失,加油卡可在开户时选择设置密码,也可在日后使用过程中添加密码。在使用过程中您如需要对加油卡使用密码进行修改或调整,可通过以下操作:(1) 更换密码:如您在使用加油卡过程中需要更改密码时可到本省内的任意售卡网点办理更换密码手续,先输入正确的旧密码通过验证后,再输入新密码代替旧密码。(2) 密码解锁:用户持卡消费时,如果输入三次密码均错误时会造成加油卡自锁而不能继续使用,用户可持卡到任意售卡网点进行密码解锁。(3) 密码重装:如您遗忘加油卡使用密码时,可持卡到本省内任意售卡网点使用此功能,直接输入新的密码覆盖原有的旧密码。办理密码解锁和密码重装业务时,您必须持本人有效证件或单位证明,由发卡网点经办人员验证无误后方可办理。
2023-07-06 05:41:0510

炼狱玫瑰电影

狱乐营 炼狱玫瑰 -周博饰黄玫瑰.rmvb记得采纳啊
2023-07-06 05:41:041