DNA

DNA图谱 / 问答 / 标签

基因探针的DNA探针

DNA探针是以病原微生物DNA或RNA的特异性片段为模板,人工合成的带有放射性或生物素标记的单链DNA片段,可用来快速检测病原体。DNA探针将一段已知序列的多聚核苷酸用同位素、生物素或荧光染料等标记后制成的探针。可与固定在硝酸纤维素膜的DNA或RNA进行互补结合,经放射自显影或其他检测手段就可以判定膜上是否有同源的核酸分子存在。DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记法等,能用于同位素和非同位素标记。DNA探针可以用来诊断寄生虫病,现场调查及虫种鉴定,可用于病毒性肝炎的诊断,遗传性疾病的诊断,可用于检测饮用水病毒含量。具体方法:用一个特定的DNA片段制成探针,与被测的病毒DNA杂交,从而把病毒检测出来。与传统方法相比具有快速、灵敏的特点。传统的检测一次,需几天或几个星期的时间,精确度不高,而用DNA探针只需一天。据报道,能从1t水中检测出10个病毒来,精确度大大提高。

高中生物DNA探针含义是什么?运行原理?

DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。  对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。 DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记法等,能用于同位素和非同位素标记.   DNA探针可以用来诊断寄生虫病,现场调查及虫种鉴定,可用于病毒性肝炎的诊断,遗传性疾病的诊断,可用于改造变异的基因,可用于检测饮用水病毒含量。具体方法:用一个特定的DNA片段制成探针,与被测的病毒DNA杂交,从而把病毒检测出来。与传统方法相比具有快速、灵敏的特点。传统的检测一次,需几天或几个星期的时间,精确度不高,而用DNA探针只需一天。据报道,能从1t水中检测出 10个病毒来,精确度大大提高。   DNA探针是一个单链的RNA,通过这条特定的RNA,让RNA上的碱基和目标DNA的碱基配对(目标DNA已经解旋,并分成两条链),

DNA探针的工作原理是什么?

DNA探针原理  DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。

DNA分子杂交技术用什么做探针

DNA分子杂交技术用什么做探针DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。

DNA分子作为探针的原理是什么

是dna与dna配对的 一般是采用含有特异的dna序列的一小段作为探针 1979年Riggs及Comings都提出用某一段已知的DNA作为探针,称为互补DNA(complement DNAs),放射标记后,与羊水细胞的DNA杂交,并用放射自显影法得出结果,诊断胎儿的遗传性疾病 DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。 现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。 对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。 DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记法等,能用于同位素和非同位素标记.

DNA探针的DNA探针的优点

对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。 DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记方法等,能用于同位素和非同位素标记.

dna测序用dna探针

解析: “ 基因探针 ” 的工作的原则是按照碱基互补配对的原则,待测的 DNA 分子首先要解旋变为单链,才可检测。 答案: B

真核基因DNA重排对基因表达的调控

基因重排调节基因活性的典型例子是免疫球蛋白结构基因和T细胞受体基因的表达,前者是有B淋巴细胞合成的,而后者则由T淋巴细胞合成。免疫球蛋白的肽链主要由可变区(V区)、恒定区(C区)以及两者之间的连接区(J区)组成,V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发育分化时通过染色体内DNA重组把4个相隔较远的基因片段连接在一起,从而产生了具有表达活性的免疫球蛋白基因。

真核生物基因表达的dna水平调控包括什么方式

1、转录起始水平。这一环节是调控的最主要环节,由对基因转录活性的调控来完成,包括基因的空间结构、折叠状态、DNA上的调控序列、与调控因子的相互作用等。a.活化染色质:在真核生物体内,RNApol与启动子的结合受染色质结构的限制,需通过染色质重塑来活化转录。常态下,组蛋白可使DNA链形成核小体结构而抑制其转录,转录因子若与转录区结合则基因具有转录活性。因而基础水平的转录是限制性的,核小体的解散时必要前提,组蛋白与转录因子之间的竞争结果可以决定是否转录。组蛋白的抑制能力可因其乙酰化而降低。另外,由于端粒位置效应或中心粒的缘故,抑或是收到一些蛋白的调控,真核生物细胞可能出现10%的异染色质,异染色质空间上压缩紧密,不利于转录。b.活化基因:真核生物编码蛋白的基因含启动子元件和增强子元件(启动子:在DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列。增强子:指能使与它连锁的基因转录频率明显增加的DNA序列。),转录因子与启动子元件相互作用调节基因表达;转录激活因子与增强子元件相互作用,再通过与结合在启动子元件上的转录因子相互作用来激活转录。两种元件以相同的机制作用于转录。真核生物RNApol对启动子亲和力很小或没有,转录起始依赖于多个转变路激活因子的作用,而若干个调节蛋白与特定DNA序列的结合大大提高了活化的精确度,无疑是这一作用机制的一大优势。在这一作用中,增强子与适当的调节蛋白作用以增加临近启动子的转录是没有方向性的,典型的增强子可以出现在转录起始位点上游或下游。RNApol与启动子的结合一般需要三种蛋白质的作用,即基础转录因子(又名通用转录因子)、转录激活因子和辅激活因子。能直接或间接地识别或结合在各类顺式作用元件上,参与调控靶基因转录的蛋白质又名转录因子。基础转录因子与RNApol结合成全酶复合物并结合到启动子上,转录激活因子可以以二聚体或多聚体的形式结合到DNA靶位点上,远距离或近距离作用域启动子。在远距离作用时,往往还会有绝缘子参与,以阻断邻近的增强子对非想关基因的激活;在近距离作用时,结构转录因子可以改变DNA调控区的形状,使其他蛋白质相互作用、激活转录。2、转录后水平。真核生物mRNA前体须经过5"-加帽、3"-加尾以及拼接过程、内部碱基修饰才能成为成熟度的mRNA,加帽位点与加尾位点、拼接点的选择就成了调控的手段。a.5"-加帽:几乎所有的真核生物和病毒mRNA的5"端都具有帽子结构,其作用为保护mRNA免遭5"外切酶降解、为mRNA的核输出提供转运信号和提高翻译模板的稳定性和翻译效率。实验证实,对于通过滑动搜索起始的转录过程来说,mRNA的翻译活性依赖于5"端的帽子结构。b.3"-加尾:3"UTR序列及结构调节mRNA稳定性和寿命

DNA复制与RNA转录各有何特点

一、DNA复制的特点1、需要引物:DNA聚合酶必须以一段具有3"端自由羟基(3"-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。2、半保留复制:是以最开始的双链分子中的一条作为模板进行DNA复制,产生两个完全一致的DNA分子。3、DNA复制不能沿滞后链进行:从头到尾的DNA链,直到已经复制了足够长度的DNA分子,否则DNA复制不会继续沿着模本链进行复制,DNA复制于是从新合成复制叉处分开。4、双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。5、有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。二、DNA转录的特点1、以特定的DNA片段作为模板:转录中,一个基因会被读取并复制为mRNA。以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。2、转录产生引物:在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。3、转录仅以DNA的一条链作为模板:被选为模板的单链叫模板链,又称无义链;另一条单链叫非模板链,又称编码链、有义链、信息链。扩展资料DNA复制与转录的区别:1、过程不同复制的过程:DNA解旋,以两条链为模板,按碱基互补配对原则,合成两条子链,子链与对应母链螺旋化。转录的过程:DNA解旋,以其一条链为模板,按碱基互补配对原则,形成mRNA单链,进入细胞质与核糖体结合。2、发生的过程不同对具有细胞结构的生物而言,DNA复制发生于细胞分裂过程中,转录则发生于细胞分裂、分化等过程。3、形式不同DNA复制是边解旋边复制,半保留复制。转录是边解旋边转录,DNA双链全保留。转录是以DNA的一条链为模板合成RNA的过程,并不是一个DNA分子通过转录可生成一个RNA分子,实际上,转录是以基因的一条链为模板合成RNA的过程。参考资料来源:百度百科-DNA复制参考资料来源:百度百科-转录

转录和DNA复制有什么相同点和不同点?

一、DNA复制与转录的不同:1、过程不同DNA 复制的过程为解旋、配对、合成:DNA解旋,以两条链为模板,按碱基互补配对原则,合成两条子链,子链与对应母链螺旋化。而转录的过程是解旋、配对、形成单链,DNA解旋,以其一条链为模板,按碱基互补配对原则,形成mRNA单链,进入细胞质与核糖体结合。2、发生的过程不同对具有细胞结构的生物而言,DNA复制发生于细胞分裂过程中,转录则发生于细胞分裂、分化等过程。3、形式和特点不同DNA复制是边解旋边复制,半保留复制。转录是边解旋边转录,DNA双链全保留。转录是以DNA的一条链为模板合成RNA的过程,并不是一个DNA分子通过转录可生成一个RNA分子,实际上,转录是以基因的一条链为模板合成RNA的过程。二、相同点1、进行的过程都需要模板;2、除了模板之外,都需要原料、特定的酶的催化和能量;3、DNA复制和转录均在细胞内进行,都是生物遗传物质传递的重要组成部分。参考资料来源:百度百科-DNA复制参考资料来源:百度百科-转录

什么是外显子 (dna)

断裂基因中的编码序列。外显子(expressedregion)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。外显子是最后出现在成熟RNA中的基因序列,又称表达序列。既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。术语外显子也指编码相应RNA外显子的DNA中的区域。所有的外显子一同组成了遗传信息,该信息会体现在蛋白质上。

DNA上的外显子是(  )。

【答案】:CDNA上的外显子是被转录也被翻译的序列;内含子是被转录但不被翻译的序列。

为什么研究DNA序列要编码区和非编码编区分开

●二者都是对于基因而言的,编码的部分为外显子,不编码的为内含子,内含子没有遗传效应。 ●外显子就是在成熟mRNA中保留下的部分,也就是说成熟mRNA对应于基因中的部分。 ●内含子是指在mRNA加工过程中被剪切掉的部分,在成熟mRNA中不存在的部分。 ●所谓mRNA就是信使mRNA,是将来可以翻译成蛋白质的一种核糖核酸。生物体的各种表型效应都是由于基因的最终产物蛋白质引起的。 ●虽然以前认为内含子是没有什么功能的,但现在的研究认为内含子可能有一定的功能,比如在mRNA加工过程中起帮助作用、可能对机体有一定的调控作用,并且内含子只是对一个特定的基因而言是它的内含子,此内含子对于其它的基因而言,也有可能是外显子或者外显子的一部分。 ●总之,一切概念和机制都在发展中内含子:DNA分为编码区和非编码区。 编码区又分为外显子和内含子。 一般由外显子控制遗传和蛋白质的合成。 目前生物学界对内含子的作用还不大清楚,正在研究之中。

DNA上有很多编码区?每一段编码区就是对应一种产物,还是每种产物对应的DNA片段都在编码区?

对的,DNA上有很多编码区,基因是有遗传效应的DNA片,基因有编码区和非编码区,DNA上有许多的基因。基因表达过程中,编码区转录成mRNA前体hnRNA,前体切除内含子后留下外显子成为成熟的mRNA,编码对应的蛋白质。一个编码区并不总是对应一个蛋白质或酶,因为有时两个或两个以上的基因会公用同一段DNA,即重叠基因。基因产物包括蛋白质和RNA,RNA除了由DNA转录之外,RNA本身也可以复制

DNA上的外显子(exon)是指

【答案】:DDNA上的外显子是指DNA上既被转录也被翻译的序列。目前新定义为-DNA内含子指隔断基因线性表达的序列。DNA外显子是指蛋白质编码的可转录的序列。

请问内含子是否具有遗传效应的DNA片段?

在DNA中内含子不具有遗传效应,因为在DNA转录中形成的RNA必须经过剪切内含子才能具有生物活性,内含子不控制性状,所以在DNA中内含子不具有遗传效应

请问内含子是否具有遗传效应的DNA片段?

在DNA中内含子不具有遗传效应,因为在DNA转录中形成的RNA必须经过剪切内含子才能具有生物活性,内含子不控制性状,所以在DNA中内含子不具有遗传效应

DNA上的内含子(intron)是

【答案】:B在DNA链中,凡编码蛋白质的序列称外显子(Exon),可被转录但不编码蛋白质的序列称内含子(Intron)。

以mRNA为模板合成cDNA的酶是什么

  以mRNA为模板合成cDNA酶的是反转录酶。  反转录酶(也可写成逆转录酶)又称为依赖RNA的DNA聚合酶。1970年Temin等在致癌RNA病毒中发现了一种特殊的DNA聚合酶,该酶以RNA为模板,以dNTP为底物,tRNA(主要是色氨酸tRNA)为引物,在tRNA3"-OH末端上,根据碱基配对的原则,按5"-3"方向合成一条与RNA模板互补的DNA单链,这条DNA单链叫做互补DNA(complementaryDNA,CDNA)。  逆转录酶(M-MLV)从MoloneyMurineLeukemiaVirus分离出来,可用于合成第一链cDNA、制作cDNA探针、RNA转录、测序和RNA的逆转录反应。本酶是通过点突变使RNaseH活性缺失,所以它具有的DNA聚合酶的活性与野生型相同,同时其延伸能力也有显著提高。逆转录酶(M-MLV)一个活性单位定义为在37℃,10min条件下,使1nmol的脱氧核糖核酸掺入酸性沉淀物质所需的酶量。

逆转录酶与DNA聚合酶的区别

rna为单链,nda为双链,首先mRNA在逆转录酶的作用下复制出单链dna,这条单链再在dna聚合酶的作用下合成另外互补的单链dna。 事实上两者没有包含被包含的关系,如果非要有的话那是dna聚合酶范围大。逆转录酶是一种特殊的DNA聚合酶,是以RNA为模板的DNA聚合酶。而通常DNA聚合酶是以DNA为模板的聚合酶。

RNA通过逆转录酶逆转录成DNA的过程是怎样的啊?

转录过程 包括启动、延伸和终止。  启动 RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。  延伸 σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。  终止 转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

RNA逆转录到DNA需要什么酶

主要是逆转录酶,个别还需要RNA酶。逆转录(reverse transcription)是以RNA为模板合成DNA的过程,即RNA指导下的DNA合成。此过程中,核酸合成与转录(DNA到RNA)过程与遗传信息的流动方向(RNA到DNA)相反,故称为逆转录。逆转录过程是RNA病毒的复制形式之一,需逆转录酶的催化。 逆转录过程的揭示是分子生物学研究中的重大发现,是对中心法则的重要修正和补充。人们通过体外模拟该过程,以样本中提取的mRNA为模板,在逆转录酶的作用下,合成出互补的cDNA,构建cDNA文库,并从中筛选特异的目的基因。该方法已成为基因工程技术中最常用的获得目的基因的策略之一。

dna聚合酶,rna聚合酶,反转录酶的区别

DNA聚合酶 , 以DNA为复制模板,从将DNA由5"端点开始复制到3"端的酶。DNA聚合酶的共同特点是:(1)需要提供合成模板;(2)不能起始新的DNA链,必须要有引物提供3"-OH;(3)合成的方向都是5"→3"(4)除聚合DNA外还有其它功能。所有原核和真核的DNA聚合酶都具有相同的合成活性,都可以在3"-OH上加核苷酸使链延伸,其速率为1000 Nt/min。加什么核苷酸是根据和模板链上的碱基互补的原则而定的。RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。RNA聚合酶(RNA polymerase)的作用是转录RNA。有的RNA聚合酶有比较复杂的亚基结构。如大肠杆菌RNA聚合酶有四条多肽链,另有一个促进新RNA分子合成的σ因子,因此它的组成的是α2ββσ。这种结构称为全酶(holoenzyme),除去了σ因子的酶称为核心酶。噬菌体RNA聚合酶则没有亚基真核生物的RNA聚合酶分三类。RNA聚合酶Ⅰ存在于核仁中,转录rRNA顺序。RNA聚合酶Ⅱ存在于核质中,转录大多数基因,需要“TATA”框。RNA聚合酶Ⅲ存在于核质中,转录很少几种基因如tRNA基因如5SrRNA基因。有些重复顺序如Alu顺序可能也由这种酶转录。上面提到的“TATA”框又称Goldberg –Hogness顺序,是RNA聚合酶Ⅱ的接触点,是这种酶的转录单位所特有的。它在真核生物的转录基因的5"端一侧,在转录起点上游20至30个核苷酸之间有一段富含AT的顺序。如以转录起始点为0,则在-33到27个核苷酸与-27至21核苷酸之间,有一个“TATA”框。一般是7个核苷酸。原核生物中也类似“TATA”框的结构。RNA聚合酶作用在“TATAAT”(Pribnow)盒和“TTGA-CA”框附近。 反转录酶:RNA指导的DNA聚合酶,具有三种酶活性,即RNA指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。在分子生物学技术中,作为重要的工具酶被广泛用于建立基因文库、获得目的基因等工作。在基因工程中起作用。

逆转录需要DNA聚合酶吗

需要逆转录是把RNA->DNA 的过程第一步 单链RNA->单链DNA 需要逆转录酶第二部 单链DNA->双链DNA 需要DNA聚合酶这两个酶作用底物不同,反应条件也不一样 没什么关系

以mRNA为模板合成cDNA的酶是 ( ) DNA连接酶 B. TaqDNA聚合酶 C. 末端转移酶 D. RNA酶 E. 逆转录酶

是逆转录酶。由于这一反应中的遗传信息的流动方向正好与绝大多数生物转录生成方向(即DNA模板转录生成RNA的方向)相反,所以此反应称为逆转录作用。逆转录酶具有三种酶活性:①RNA指导的DNA合成反应;②DNA指导的DNA合成的反应;③RNA的水解的反应。扩展资料:①RNA指导的DNA聚合酶活性;以RNA为模板,催化dNTP聚合成DNA的过程。此酶需要RNA为引物,多为色氨酸的tRNA,在引物tRNA3′-末端以5′→3′方向合成DNA。反转录酶中不具有3′→5′外切酶活性,因此没有校正功能,所以由反转录酶催化合成的DNA出错率比较高 。②RNase H活性;由反转录酶催化合成的cDNA与模板RNA形成的杂交分子,将由RNase H从RNA5′端水解掉RNA分子 。③DNA指导的DNA聚合酶活性;以反转录合成的第一条DNA单链为模板,以dNTP为底物,再合成第二条DNA分子。

RNA到DNA 逆转录中是否只能发生在含有逆转录酶的病毒中?

逆转录又称反转录,这一现象很常见。当然不是只能发生在病毒中。具体可百度百科“反转录酶”,是广泛存在的。但是RNA的自身复制这一现象目前来说只发现在病毒中

如何利用逆转录酶合成双链dna,并整合到寄主细胞的基因组中

如何利用逆转录酶合成双链dna,并整合到寄主细胞的基因组中1)反向转录法:这种方法主要用于分子量较大而又不知其序列的基因,它以目的基因的mRNA为模板,设计上下游引物,借助反转录酶合成碱基互补的DNA片段,即cDNA,再在DNA聚合酶的作用下合成双链cDNA,亦即目的基因的双链DNA。 2)基因组扩增法:利用基因组抽提试剂盒,可以从细胞、植物、血液、动物组织中直接分离基因组,设计特异扩增的引物,利用抽提的基因组为模版,直接PCR扩增,以获取目的基因。 3)人工合成:依照某一蛋白质的氨基酸序列,或基因序列,设计全长引物,利用OVERLAP方法形成模版DNA,再利用PCR扩增的方法得到双链DNA,然后将PCR产物转化克隆至克隆载体或者表达载体中。化学合成全基因目前是准确率最高,速度最快的方法,同时可以依据密码子在不同宿主细胞的偏爱性和不同的实验需求,设计基因序列,提高表达水平。

DNA与蛋白质的分离

等电聚焦电泳是按蛋白质等电点对蛋白质进行分离的一种电泳技术。不同蛋白质等电点不同,当蛋白质混合物在具有pH梯度(从高到低)的凝胶介质中进行电泳时,便以不同速度移动,并停留在等于其等电点的pH凝胶处,使相同等电点的蛋白质形成很窄的条带,从而使等电点不同的蛋白质得以分离。等点聚焦电泳的用途:(1)按等电点的不同分离蛋白质(2)鉴定蛋白质的等电点核酸的密度梯度离心常用介质为氯化铯。核酸样品经过氯化铯密度梯度离心后,各成分按自身密度不同分别处于离心管的不同位置。就不同大分子来讲RNA密度>DNA密度>蛋白质密度,因此,离心后RNA位于离心管的最下方,蛋白质位于最上层,DNA居于中间。就不同构象的DNA而言,其分子密度超螺旋DNA>环状DNA>线形DNA;对于同种DNA分子来讲,单链DNA密度大于双链DNA密度;对于G-C含量不同的DNA,G-C含量越高,核酸分子密度越大。以个人的看法:没什么可比性。如果一定要比较的话,相同点:(1)均是分离生物大分子的技术;(2)都是制成分离梯度(3)分离结构是相同状态的大分子处于同一条带上,外观相似是不同的条带分布在介质中。不同点:(1)原理不同(2)针对不同的生物大分子的分离技术

质粒DNA电泳图与基因组DNA电泳图有什么区别?

质粒DNA电泳会有三条带,最远的是线形DNA(lDNA): 质粒的两条链均断裂;线性分子;中间的是开环DNA(ocDNA): 质粒的一条链断裂;松弛的环状分子;共价闭合环状DNA(cccDNA): 质粒的两条链没有断裂;超螺旋这是由于在质粒提取过程中,机械力、酸碱度、试剂等的原因,使质粒DNA链发生断裂。而质粒DNA相对于基因组DNA小很多,所以比较容易区分开基因组DNA电泳一般是1条带,虽然在你抽提过程中也会发生断裂,形成几十至几百kb的大片段。但是我们一般用1%的胶,无法区分不同大小的DNA,所以看起来像是一条带。如果配成0.6%的胶再加lamda hindIII marker,适当延长跑胶时间,就应该会出现几条带了

DNA由什么组成﹖

DNA就是脱氧核糖核酸(英语:Deoxyribonucleicacid,缩写为DNA)由含氮的碱基+脱氧核糖+磷酸组成。DNA分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。脱氧核糖核酸(DNA)是生物细胞内携带有合成RNA和蛋白质所必需的遗传信息的一种核酸,是生物体发育和正常运作必不可少的生物大分子。DNA中的核苷酸中碱基的排列顺序构成了遗传信息。该遗传信息可以通过转录过程形成RNA,然后其中的mRNA通过翻译产生多肽,形成蛋白质。在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。

琼脂糖凝胶电泳中DNA分子迁移率受哪些因素的影响

琼脂糖凝胶电泳中DNA分子迁移率受哪些因素的影响 1、DNA的分子大小及构型 不同构型DNA的移动速度次序为:供价闭环DNA(covalently closed circular,cccDNA)>直线DNA>开环的双链环状DNA。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中蠕行,因而迁移得越慢。当琼脂糖浓度太高时,环状DNA(一般为球形)不能进入胶中,相对迁移率为0(Rm=0),而同等大小的直线双链DNA(刚性棒状)则可以长轴方向前进(Rm>0),由此可见,这三种构型的相对迁移率主要取决于凝胶浓度。 2、琼脂糖浓度 一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率的对数与凝胶浓度成线性关系。凝胶浓度的选择取决于 DNA分子的大小。分离小于0.5kb的DNA段所需胶浓度是1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%, DNA段大小间于两者之间则所需胶浓度为0.8-1.0%。 3、DNA分子的构象 当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而线状双链DNA移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。 4、电源电压 琼脂糖凝胶分离大分子DNA实验条件的研究结果表明,在低浓度、低电压下,分离效果较好。在低电压条件下,线性DNA分子的电泳迁移率与所用的电压呈正比。但是,在电场强度增加时,不同分子量的DNA段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA段的分辨率达到最大电场强度不宜高于5V/cm。 5、嵌入染料的存在 荧光染料溴化乙啶用于检测琼脂糖凝胶中的DNA,染料会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状DNA迁移率降低15%。 6、离子强度影响 电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。对于天然的双链DNA,常用的几种电泳缓冲液有TAE[含EDTA (pH8.0)和Tris-乙酸],TBE(Tris-硼酸和EDTA),TPE(Tris-磷酸和EDTA),一般配制成浓缩母液,储于室温。

DNA是什么组成的?

DNA是由碱基、核糖和磷酸构成的。其中碱基有4种(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即:腺嘌呤脱氧核苷酸(dAMP )、胸腺嘧啶脱氧核苷酸(dTMP )、胞嘧啶脱氧核苷酸(dCMP )、鸟嘌呤脱氧核苷酸(dGMP )。脱氧核糖核酸是一种由核苷酸重复排列组成的长链聚合物,宽度约22到24埃(2.2到2.4纳米),每一个核苷酸单位则大约长3.3埃(0.33纳米)。在整个脱氧核糖核酸聚合物中,可能含有数百万个相连的核苷酸。脱氧核糖核酸骨架是由磷酸与糖类基团交互排列而成。组成脱氧核糖核酸的糖类分子为环状的2-脱氧核糖,属于五碳糖的一种。磷酸基团上的两个氧原子分别接在五碳糖的3号及5号碳原子上,形成磷酸双酯键。扩展资料:主要类别DNA有:一、单链DNA单链DNA大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。二、闭环DNA闭环DNA没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。三、连接DNA连接DNA (Linker DNA):核小体中除147bp核心DNA 外的所有DNA。四、模板DNA模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。五、互补DNA互补DNA构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA。参考资料来源:百度百科—DNA

DNA是遗传物质,那RNA是什么物质

RNA(核糖核酸),是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一、组成的区别:1、RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶。2、DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为A腺嘌呤、G鸟嘌呤、C胞嘧啶及T胸腺嘧啶;戊糖为脱氧核糖。二、分类的区别:1、RNA可分为:mRNA:在蛋白分子合成过程中,作为“信使”分子,将基因组DNA的遗传信息(即碱基排列顺序)传递至核糖体,使核糖体能够以其碱基排列顺序掺入互补配对的tRNA分子,进而合成正确的肽链,实现遗传信息向蛋白质分子的转化。tRNA:把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码,依次准确地将它携带的氨基酸,掺入正在合成的肽链中,实现肽链的延伸。与正在进行翻译的mRNA结合,而后rRNA将各个氨基酸残基通过肽键连接成肽链进而构成蛋白质分子。rRNA:一般与核糖体蛋白质结合在一起,形成核糖体。2、DNA可分为:单链DNA:大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。闭环DNA:没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。模板DNA:可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。互补DNA:构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。三、功能的区别:1、RNA的功能:mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和氨基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。细胞中还有许多种类和功能不一的小型RNA,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。2、DNA的功能:DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。DNA是人身体内细胞的原子物质。每个原子有46个染色体,另外,男性的精子细胞和女性的卵子,各有23个染色体,当精子和卵子结合的时候。这46个原子染色体就制造一个生命,因此,每人从生父处继承一半的分子物质,而另一半则从生母处获得。

dna是什么的缩写?

DNA的英文全称是Deoxyribonucleicacid。即脱氧核糖核酸,是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。DNA分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。1953年美国的沃森(JamesDeweyWatson)、英国的克里克与威尔金斯描述了DNA的结构:由一对多核苷酸链围绕一个共同的中心轴盘绕构成。糖-磷酸链在螺旋形结构的外面,碱基朝向里面。两条多核苷酸链通过碱基间的氢键相连,形成相当稳定的组合。扩展资料:主要类别DNA有:一、单链DNA单链DNA大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。二、闭环DNA闭环DNA没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。参考资料来源:百度百科-脱氧核糖核酸

请详细解释一下DNA与RNA

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。 3.碱的作用:DNA耐碱RNA易被碱水解。 4.显色反应: 鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物 DNA ------→ 蓝紫色化合物苔黑酚 二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。 DNA和RNA的鉴别染色 利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。 5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。 6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。 7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。 8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。 9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。 聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。 PCR技术简史 PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。 PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。 PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。 PCR技术基本原理 PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情 况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5"端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3"端开始延伸,其5"端是固定的,3"端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5"端序列是固定的,这就等于这次延伸的片段3"端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。 PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物 各200umol/L 引物 各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至 100ul PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右。 ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3"端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3"端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。 引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。 模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。 Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。 PCR反应条件的选择 PCR反应条件为温度、时间和循环次数。 温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。 ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。 ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。 ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行。 PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。 循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。 PCR反应特点 特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性。 其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析 PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。 凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。 琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。 聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。 酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。 分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。 Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。 斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。

DNA是什么组成的?

DNA就是脱氧核糖核酸(英语:Deoxyribonucleicacid,缩写为DNA)由含氮的碱基+脱氧核糖+磷酸组成。DNA分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。脱氧核糖核酸(DNA)是生物细胞内携带有合成RNA和蛋白质所必需的遗传信息的一种核酸,是生物体发育和正常运作必不可少的生物大分子。DNA中的核苷酸中碱基的排列顺序构成了遗传信息。该遗传信息可以通过转录过程形成RNA,然后其中的mRNA通过翻译产生多肽,形成蛋白质。在细胞分裂之前,DNA复制过程复制了遗传信息,这避免了在不同细胞世代之间的转变中遗传信息的丢失。在真核生物中,DNA存在于细胞核内称为染色体的结构中。在没有细胞核的其它生物中,DNA要么存在于染色体中要么存在于其它组织(细菌有单环双链DNA分子,而病毒有DNA或RNA基因组)。在染色体中,染色质蛋白如组蛋白、共存蛋白和凝聚蛋白将DNA在一个有序的结构中。这些结构指导遗传密码和负责转录的蛋白质之间的相互作用,有助于控制基因的转录。

反转录时所需的酶是反转录酶,那不需要DNA聚合酶吗?

逆转录酶有三种活性:RNA或DNA作模板的dNTP聚合活性和RNase活性. ①DNA聚合酶活性;以RNA为模板,催化dNTP聚合成DNA的过程. ②RNase H活性;由反转录酶催化合成的cDNA与模板RNA形成的杂交分子,将由RNase H从RNA5′端水解掉RNA分子. ③DNA指导的DNA聚合酶活性;以反转录合成的第一条DNA单链为模板,以dNTP为底物,再合成第二条DNA分子. 逆转录酶本身具有DNA聚合酶活性,应该不需要另加DNA聚合酶了

RNA通过逆转录酶逆转录成DNA的过程是怎样的

转录过程包括启动、延伸和终止。启动RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以-30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。延伸σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。终止转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

怎么确定反转录完的CDNA中还有没有GDNA污染

对于新手来说购买反转录试剂盒是比较理想的,买一个kit看看说明书操作就可以了。推荐两款kit TAKARA和HaiGene,这两款试剂盒都能对RNA样品中的gDNA有效去除,因此对RNA质量的要求不高。TAKARA的RR047A操作方便,反转录温度为37℃,对于大多数试验来讲是满足要求的。HaiGene的D0401操作要多一个步骤,但其反转录温度是55℃(耐高温的反转录酶),提高了反转录温度使得高GC含量、复杂模板、长mRNA的模板都能有效反转录,因此其反转录效率更高,更能够获得样本中基因的真实表达量。如果后续试验是RealTime PCR、ORF克隆、高GC含量、或者你的待研究基因结构复杂程度未知,还是选用耐高温的反转录酶更理想。对于反转录高手来说,直接购买反转录酶、再购买Rnase Inhibitor自己配制反转录体系就可以了。对于样本量大的课题组来讲,相对还是比较经济的。选择反转录酶时仅需要考虑是否需要耐高温的酶,来克服目的基因的复杂结构就可以了。PROMEGA、TAKARA、HaiGene、 TRANSGEN等品牌的反转录酶性价比还都是不错的。Life、NEB的也不错,银子足的也可考虑,不一一解释了。

反转录时所需的酶是反转录酶,那不需要DNA聚合酶吗

逆转录酶有三种活性:RNA或DNA作模板的dNTP聚合活性和RNase活性.①DNA聚合酶活性;以RNA为模板,催化dNTP聚合成DNA的过程.②RNase H活性;由反转录酶催化合成的cDNA与模板RNA形成的杂交分子,将由RNase H从RNA5′端水解掉RNA分子.③DNA指导的DNA聚合酶活性;以反转录合成的第一条DNA单链为模板,以dNTP为底物,再合成第二条DNA分子.逆转录酶本身具有DNA聚合酶活性不需要另加DNA聚合酶了

有一条mRNA 我想要获得它的互补单链DNA 我该用RNA聚合酶还是反转录酶 为什么RNA聚合

肯定要用反转录酶.RNA聚合酶合成的原料是核糖核苷酸不能合成一条DNA单链

常见病毒的核酸种类 常见病毒是DNA病毒 还是 RNA病毒 核酸种类都是什么??

这个大多数病毒都是DNA病毒,常见的要看具体是什么病毒,比如流感以及禽流感病毒就是RNA病毒,核酸就是核糖核酸.细菌病毒也就是噬菌体就是DNA病毒,核酸就是脱氧核糖核酸.艾滋病病毒也是RNA病毒.非典病毒即SARS病毒也是RNA病毒. 也就是说,烟草花叶病毒、HIV、SARS病毒、禽流感病毒、天花病毒等遗传物质是RNA,它们的遗传物质就是RNA,即核糖核酸; 而流感、禽流感病毒、噬菌体、乙肝病毒是DNA病毒,它们的遗传物质是DNA,即脱氧核糖核酸. 只有疯牛病病毒的遗传物质不是核酸,而是蛋白质,即朊蛋白.,7,大多数病毒是DNA的。 RNA病毒在高中主要有以下:艾滋病毒(HIV)、感冒病毒(包括禽流感病毒)、非典病毒、烟草花叶病毒。,2,一般病毒大多数是DNA,但是一些新型病毒,比如艾滋病,禽流感等都是RNA的,这也可以解释为什么新型病毒一变异,2,大部分病毒为DNA型,但是有些像乙肝病毒、禽流感病毒等为RNA病毒...,2,

DNA病毒和RNA病毒是如何分类的.急

以DNA为遗传物质的是DNA病毒,以RNA为遗传物质的是RNA病毒,其中DNA 又分为DNA单连病毒和双联病毒,RNA也分为单链和双链,单链又分为正意链病毒和反意链病毒。

高中生物DNA病毒和RNA病毒有哪些

RNA病毒:烟草花叶病毒、SRAS病毒、AIDS病毒DNA病毒:噬菌体

高中所学哪些病毒是DNA病毒,哪些是RNA病毒? 全面些 有什么记得技巧

DNA病毒很少,大多数的病毒还是RNA病毒,这样病毒更容易变异,高中学习的DNA病毒不多,乙肝病毒是比较常见的一个例子,然后还有噬菌体。RNA病毒就很多,HIV,烟草花叶病毒,SARS病毒,这些都是高中时常用的例子。记忆方面,我觉得DNA病毒的宿主倾向于动物,而RNA病毒更倾向于植物,个别不同的,只要特别记忆一下,应该不是太难。

DNA病毒与RNA病毒相比其遗传物质变异有什么特点

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。 3.碱的作用:DNA耐碱RNA易被碱水解。 4.显色反应: 鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物 DNA ------→ 蓝紫色化合物苔黑酚 二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。 DNA和RNA的鉴别染色 利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。 它们在遗传物质变异中的特点有:结构决定的,首先是DNA螺旋双链结构。碱基由氢键连接。使它的热稳定性增强,抗环境变化能力增强。而且半保留复制严格遵循碱基互补配对,不易产生变异。自然选择也让它成为主要的遗传物质。RNA是单链,容易变异,不利于种群基因频率的继承。而且热不稳定。

你好 是DNA病毒多 还是RNA病毒多 为什么

在纯粹的数量上去讨论是没有意义的,但是在种类上去讨论,我们可以这么认为,dna的遗传稳定性是高于rna的这也是进化的结果,因此大部分的rna病毒被淘汰在进化的历史长河中,因此dna病毒是进化的主分枝,而rna病毒是个小分叉,种类上dna病毒肯定是多于rna病毒的。另外蛋白质病毒(朊病毒)至今只有一种。

常见的细菌病毒、DNA病毒、RNA病毒、蛋白质病毒有哪些?

高中生物还是大学生物啊?如果是高中生物以下是必须掌握的细菌病毒就是噬菌体RNA病毒:烟草花叶病毒车前草病毒流感病毒SARS病毒艾滋病病毒(HIV)顶长侈短侬的畴痊川花蛋白质病毒就是阮病毒疯牛病病毒

RNA病毒不是没有DNA吗

RNA病毒是没有DNA。有些RNA病毒复制时不需要DNA,病毒中的RNA进入寄主细胞后,就直接作为mRNA,翻译出所编码的蛋白质,其中包括衣壳蛋白和病毒的RNA聚合酶。然后在病毒RNA聚合酶的作用下复制病毒RNA,最后病毒RNA和衣壳蛋白自我装配成成熟的病毒颗粒。有些RNA病毒进入寄主细胞后不能直接作为mRNA,而是先以负链RNA为模板由转录酶转录出与负链RNA互补的RNA,再以这个互补RNA作为mRNA翻译出遗传密码所决定的蛋白质。还有一些RNA病毒称为反转录病毒,在病毒复制过程中需要DNA。该类病毒在它们的髓核中携带反转录酶,在进入寄主细胞后先利用反转录酶把RNA反向转录成DNA,再转录为mRNA,然后再翻译为相应的蛋白质。

病毒中DNA或RNA是双链还是单链

不一定不同的病毒并不相同,有一定的双链病毒,通常都比较大,不过很多病毒是单链的,出来之后,首先会先变成双链,然后开始大量复制和表达蛋白质,然后双链的DNA变成单链的装配到新的蛋白质外壳中,从寄主细胞释放到外面去。

病毒中有DNA吗?

对病毒来说遗传物质,要么是DNA要么是RNA,要么是蛋白质(阮病毒),所以有些病毒式含有DNA的病毒(virus)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态的营寄生生活的生命体

dna和rna病毒的区别是什么

只问dna和rna的区别,没有到转录翻译的层面,肽键什么的跟这个没关系。dna和rna都属于核酸,核酸的组成单位是一个磷酸集团,一个含氮碱基,一个五碳糖。dna和rna的区别在于:1.dna的五碳糖是脱氧核糖,rna是核糖。2.dna的含氮碱基包括腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶。而rna有同样的腺嘌呤,鸟嘌呤,胞嘧啶,但是没有胸腺嘧啶,有尿嘧啶。dna没有尿嘧啶。

常见的RNA病毒和DNA病毒都有哪些

常见DNA病毒:噬菌体、天花病毒、乙肝病毒 RNA病毒:烟草花叶病毒、SARS 病毒、HIV(艾滋病)、禽流感病毒、所有流感病毒、车前草病毒

生化:超螺旋DNA的生物学意义是?拜托了各位 谢谢

超螺旋dna的生物学意义:1.超螺旋dna形状更紧密,在dna组装中有重要作用2.超螺旋程度的改变介导了dna结构的变化,有利于功能的发挥3.超螺旋dna能实现松弛态dna所不能实现的结构转化

人与狗的dna有什么不同?

人与动物的DNA区别1、染色体不同:人有46条染色体,而马的染色体数是64条,驴的染色体数是62条,果蝇有8条染色体。2、基因不同:人约有3万个基因,基因序列会随着亲缘关系的远近会有很大的差异,这样,对应编码的蛋白质也不同。所以可以看到人和其他动物长得不一样。3、共同点不同:比如基因都是断裂的,基因都是由核酸编码。要是说人与其他动物基因的差异主要是在以上两点细节上,其他方面共同点还是很多的。主要类别单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。垃圾DNA(Junk DNA)是指生物体内不翻译成蛋白质的DNA,过去多认为它们无用,所以称为垃圾DNA。后来,科学家发现垃圾DNA中包含有重要的调节机制,从而能够控制基础的生物化学反应和发育进程,这将帮助生物进化出更为复杂的机体。生物越复杂,垃圾DNA似乎就越重要。

人类dna能与动物结合吗

人类dna能与动物结合,现代生物学和生物化学中的重组DNA就是将DNA以质粒的形式或通过其他类型的载体整合插入到生物体中,人工构建和组装的DNA片段。由此产生的生物也被称为转基因生物,可用于生产重组蛋白,用于克隆技术、生物医学研究或农业栽培等。DNA的类别单链DNA:是经过热或碱处理,以单链状态存在的DNA。它在分子流体力学性质、吸收光谱赫尔碱基反应性质等方面都于双链DNA不同。闭环DNA:是没有断口的双链环状DNA,具有螺旋机构的双链各自闭合形成三级机构,也被称为超螺旋DNA。垃圾DNA:是指生物体内不翻译成蛋白质的DNA,含有重要的调节机制,能够控制基础的生物化学反应和发育进程。

真核生物与原核生物DNA超螺旋的相同点

真核生物与原核生物DNA超螺旋的相同点:1、真核生物与原核生物DNA超螺旋结构单位相同,均为脱氧核苷酸。2、真核生物与原核生物DNA超螺旋碱基相同,均为ATGC。3、真核生物与原核生物DNA超螺旋螺旋方式相同,都是碱基在内侧,遵循碱基互补配对原则。脱氧核苷在外侧构成基本骨架,反向平行盘旋。真核生物是由真核细胞构成的生物,包括原生生物界、真菌界、植物界和动物界。是所有单细胞或多细胞的、其细胞具有细胞核的生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。原核生物是由原核细胞组成的生物,是没有成形的细胞核或线粒体的一类单细胞生物。包括蓝细菌、细菌、古细菌、放线菌、螺旋体、支原体。超螺旋是双螺旋进一步扭曲形成的更高层次的空间结构,包括DNA扭曲、超螺旋、多重螺旋和连环等。DNA正常的双螺旋结构处于能量最低状态,双螺旋中没有张力而处于松弛状态。如果这种正常双螺旋额外增加或减少螺旋圈数,就会使双螺旋内的原子偏离正常的位置而产生张力,这样正常的双螺旋就发生扭曲而形成超螺旋。

琼脂糖凝胶电泳中dna分子迁移率受哪些因素的影响

影响琼脂糖凝胶电泳中DNA分子迁移率的因素:DNA的分子大小、琼脂糖浓度、DNA分子的构象、电源电压、嵌入染料的存在、离子强度影响,琼脂糖主要在DNA制备电泳中作为一种固体支持基质,其密度取决于琼脂糖的浓度。DNA的分子大小:线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中蠕行,因而迁移得越慢。琼脂糖浓度:一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同,DNA电泳迁移率的对数与凝胶浓度成线性关系,凝胶浓度的选择取决于DNA分子的大小,分离小于0.5kb的DNA所需胶浓度是1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%,DNA大小间于两者之间则所需胶浓度为0.8-1.0%。DNA分子的构象:DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关,相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而开环双链DNA移动最慢。电源电压:在低电压时,线状DNA的迁移速率与所加电压成正比,但是随着电场强度的增加,不同分子量的DNA的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大。嵌入染料的存在:荧光染料溴化乙啶用于检测琼脂糖凝胶中的DNA,染料会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状DNA迁移率降低15%。离子强度影响:电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率,在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。

dna和rna有哪些区别

我归纳成九大点:RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。3.碱的作用:DNA耐碱RNA易被碱水解。4.显色反应:鉴别DNA和RNA+浓HClRNA------→绿色化合物DNA------→蓝紫色化合物苔黑酚二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。DNA和RNA的鉴别染色利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA;超螺旋DNA>解链环状DNA;松弛环状DNA;线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。检举回答人的补充2009-08-3007:59高中生物只要知道:DNA基本组成单位是脱氧核苷酸RNA基本组成单位是核糖核苷酸从组成上.脱氧核苷酸是一分子磷酸、一分子碱基、一分子脱氧核糖核糖核苷酸是一分子磷酸、一分子碱基、一分子核糖每个碱基中只含AGCTU中的一个.这些就差不多了哈

有哪些因素会影响电泳图谱上dna条带位置

  影响的因素很多。主要的有:  1、 DNA的分子大小  线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,迁移得越慢。  2、 琼脂糖浓度  一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。分离小于0.5kb的DNA片段所需胶浓度是 1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%, DNA片段大小间于两者之间则所需胶浓度为0.8-1.0%。  3、 DNA分子的构象  相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而线状双链DNA移动最慢。  4、 电源电压  在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。  5、嵌入染料的存在  荧光染料溴化乙啶用于检测琼脂糖凝胶中的DNA,染料会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状DNA迁移率降低 15%。  6、 离子强度影响  电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。

DNA与蛋白质的分离

等电聚焦电泳是按蛋白质等电点对蛋白质进行分离的一种电泳技术。不同蛋白质等电点不同,当蛋白质混合物在具有pH梯度(从高到低)的凝胶介质中进行电泳时,便以不同速度移动,并停留在等于其等电点的pH凝胶处,使相同等电点的蛋白质形成很窄的条带,从而使等电点不同的蛋白质得以分离。等点聚焦电泳的用途:(1)按等电点的不同分离蛋白质(2)鉴定蛋白质的等电点核酸的密度梯度离心常用介质为氯化铯。核酸样品经过氯化铯密度梯度离心后,各成分按自身密度不同分别处于离心管的不同位置。就不同大分子来讲RNA密度>DNA密度>蛋白质密度,因此,离心后RNA位于离心管的最下方,蛋白质位于最上层,DNA居于中间。就不同构象的DNA而言,其分子密度超螺旋DNA>环状DNA>线形DNA;对于同种DNA分子来讲,单链DNA密度大于双链DNA密度;对于G-C含量不同的DNA,G-C含量越高,核酸分子密度越大。以个人的看法:没什么可比性。如果一定要比较的话,相同点:(1)均是分离生物大分子的技术;(2)都是制成分离梯度(3)分离结构是相同状态的大分子处于同一条带上,外观相似是不同的条带分布在介质中。不同点:(1)原理不同(2)针对不同的生物大分子的分离技术

环状的和线状的螺旋DNA,哪个复性快?为什么?

环状的,因为近水楼台先得月啊,你懂的。线装的大老远的不知跑哪去了,环状的变性了还在一起缠着,

超螺旋结构对染色体包装,dna的复制以及转录有何意义?

1.超螺旋DNA比松弛型DNA更紧密,使DNA分子的体积更小,得以包装在细胞内。2.超螺旋会影响双螺旋分子的解旋能力,从而影响到DNA与其他分子之间的相互作用。3.超螺旋有利于DNA的转录,复制及表达调控。望采纳,谢谢。

DNA的 化学性质和物理性质

物理: DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 化学:【DNA修复】 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。所以研究DNA修复也是探索生命的一个重要方面,而且与军事医学、肿瘤学等密切相关。对不同的DNA损伤,细胞可以有不同的修复反应。【DNA复制】 DNA复制是指DNA双链在细胞分裂以前进行的复制过程,复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样。这个过程是通过名为半保留复制的机制来得以顺利完成的。复制可以分为以下几个阶段: 起始阶段:解旋酶在局部展开双螺旋结构的DNA分子为单链,引物酶辨认起始位点,以解开的一段DNA为模板,按照5"到3"方向合成RNA短链。形成RNA引物。 DNA片段的生成:在引物提供了3"-OH末端的基础上,DNA聚合酶催化DNA的两条链同时进行复制过程,由于复制过程只能由5"->3"方向合成,因此一条链能够连续合成,另一条链分段合成,其中每一段短链成为冈崎片段(Okazaki fragments)。 RNA引物的水解:当DNA合成一定长度后,DNA聚合酶水解RNA引物,补填缺口。 DNA连接酶将DNA片段连接起来,形成完整的DNA分子。 最后DNA新合成的片段在旋转酶的帮助下重新形成螺旋状。【单链DNA】 单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。【闭环DNA】 闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。【连接DNA】 连接DNA (Linker DNA):核小体中除146bp核心DNA 外的所有DNA。【模板DNA】 模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好).就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。【互补DNA】 互补DNA(cDNA, complementary DNA )构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子。

DNA组成元素

组成DNA的化学元素为CHONP。DNA的基本组成单位是脱氧核糖核苷酸,脱氧核糖核苷酸由一分子的磷酸(含CHOP)、一分子的脱氧核糖(含CHO)和一分子的含氮碱基(含N等)构成。 DNA 脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。 DNA主要类别 单链DNA 单链DNA大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。 闭环DNA 闭环DNA没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。 连接DNA 连接DNA:核小体中除147bp核心DNA 外的所有DNA。 模板DNA 模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。 互补DNA 互补DNA构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。 因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列——内含子。

DNA和RNA的区别?

RNA(核糖核酸),是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一、组成的区别:1、RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶。2、DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为A腺嘌呤、G鸟嘌呤、C胞嘧啶及T胸腺嘧啶;戊糖为脱氧核糖。二、分类的区别:1、RNA可分为:mRNA:在蛋白分子合成过程中,作为“信使”分子,将基因组DNA的遗传信息(即碱基排列顺序)传递至核糖体,使核糖体能够以其碱基排列顺序掺入互补配对的tRNA分子,进而合成正确的肽链,实现遗传信息向蛋白质分子的转化。tRNA:把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码,依次准确地将它携带的氨基酸,掺入正在合成的肽链中,实现肽链的延伸。与正在进行翻译的mRNA结合,而后rRNA将各个氨基酸残基通过肽键连接成肽链进而构成蛋白质分子。rRNA:一般与核糖体蛋白质结合在一起,形成核糖体。2、DNA可分为:单链DNA:大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。闭环DNA:没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。模板DNA:可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。互补DNA:构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。三、功能的区别:1、RNA的功能:mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和氨基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。细胞中还有许多种类和功能不一的小型RNA,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。2、DNA的功能:DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。DNA是人身体内细胞的原子物质。每个原子有46个染色体,另外,男性的精子细胞和女性的卵子,各有23个染色体,当精子和卵子结合的时候。这46个原子染色体就制造一个生命,因此,每人从生父处继承一半的分子物质,而另一半则从生母处获得。

DNA的性质

物理性质: DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开。 DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。 化学性质:【DNA修复】 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。所以研究DNA修复也是探索生命的一个重要方面,而且与军事医学、肿瘤学等密切相关。对不同的DNA损伤,细胞可以有不同的修复反应。【DNA复制】 DNA复制是指DNA双链在细胞分裂以前进行的复制过程,复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样。这个过程是通过名为半保留复制的机制来得以顺利完成的。复制可以分为以下几个阶段: 起始阶段:解旋酶在局部展开双螺旋结构的DNA分子为单链,引物酶辨认起始位点,以解开的一段DNA为模板,按照5"到3"方向合成RNA短链。形成RNA引物。 DNA片段的生成:在引物提供了3"-OH末端的基础上,DNA聚合酶催化DNA的两条链同时进行复制过程,由于复制过程只能由5"->3"方向合成,因此一条链能够连续合成,另一条链分段合成,其中每一段短链成为冈崎片段(Okazaki fragments)。 RNA引物的水解:当DNA合成一定长度后,DNA聚合酶水解RNA引物,补填缺口。 DNA连接酶将DNA片段连接起来,形成完整的DNA分子。 最后DNA新合成的片段在旋转酶的帮助下重新形成螺旋状。【单链DNA】 单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。【闭环DNA】 闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。【连接DNA】 连接DNA (Linker DNA):核小体中除146bp核心DNA 外的所有DNA。【模板DNA】 模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好).就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。【互补DNA】 互补DNA(cDNA, complementary DNA )构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子。

ssDNA什么意思?

ssDNA就是单链DNAss=single-stranded还有dsDNA,就是双链DNAds=double-stranded

电泳时为什么dna分子朝一个方向移动

在电场中移动方向不仅和分子量有关,还和本身构象有关。DNA分子处于不同构象时,在电场中移动距离不仅和分子量有关,还和本身构象有关。相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而开环双链DNA移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。扩展资料:电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。对于天然的双链DNA,常用的几种电泳缓冲液有TAE[含EDTA (pH8.0)和Tris-乙酸],TBE(Tris-硼酸和EDTA),TPE(Tris-磷酸和EDTA),一般配制成浓缩母液,储于室温。参考资料来源:百度百科—DNA酶切及凝胶电泳参考资料来源:百度百科—凝胶电泳

是不是所有的原核生物都有DNA和RNA?

所有的原核生物都有DNA和RNA。原核生物基因分为编码区与非编码区。所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,也就是说能够编码蛋白质。非编码区则相反,但是非编码区对遗传信息的表达是必不可少的,因为在非编码区上有调控遗传信息表达的核苷酸序列。非编码区位于编码区的上游及下游。在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。扩展资料:原核生物和真核生物的区别:1、细胞核有无真核生物有双层膜包围的细胞核,原核生物只有DNA分子集中的核区或称拟核,无膜包裹。2、细胞壁成分真核生物有以纤维素和果胶质为主的细胞壁(植物),以葡聚糖和甘露聚糖为主的细胞壁(酵母),以几丁质为主的细胞壁(多细胞真菌)或无细胞壁(动物、黏菌),原核生物有肽聚糖为主的细胞壁(细菌、放线菌)或无细胞壁(支原体)。3、细胞膜成分真核生物细胞膜含固醇,原核生物除支原体外细胞膜中均无固醇。4、DNA形态真核生物基因组DNA为线性,分裂间期为30nm螺线管,分裂期高度盘绕成染色体。原核生物基因组为一高度盘绕的环状超螺旋DNA。参考资料来源:百度百科-原核生物

琼脂糖电泳DNA迁移速度是如何排序的?

质粒DNA琼脂糖凝胶电泳中质粒超螺旋、开环、直链跑胶快慢次序依次是超螺旋、直链、开环。琼脂糖凝胶电泳DNA 迁移速率与分子大小和构象相关,分子构象越大,摩擦阻力越大,第一条带是超螺旋带应该最亮,因为超螺旋结构完整紧密,跑得最快。第二条带为直链线性质粒是双链都断开变成松弛的线性DNA,不如超螺旋紧密,跑得相对慢 。第三条带为开环质粒,DNA双链的其中一根断开,导致超螺旋能量被释放而使质粒变成松弛的环状结构,结构臃肿,跑得最慢。扩展资料:琼脂糖凝胶电泳DNA 迁移速率在于摩擦阻力的问题,琼脂就像有孔海绵分子筛,细菌质粒提取中电泳会出现三条带,最快的是超螺旋带,它是完整的,因为它的构型紧密,跑得快。 第二条带在中间,是直链带,即环状双链DNA 两条链均断开,其分子构象变为线性,不如超螺旋紧密,跑得就慢一点。最慢的是开环带,即环状双链DNA 有一条链断开,拖着一条尾巴,显得很臃肿,所以跑得最慢。参考资料:百度百科——DNA

DNA有哪些类型?

  1、单链DNA  单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。  2、闭环DNA  闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。  3、连接DNA  连接DNA(Linker DNA):核小体中除146bp核心DNA 外的所有DNA。  4、互补DNA  互补DNA构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的中公医考|网编辑整理。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子。  5、模板DNA  模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。

有哪些因素会影响电泳图谱上dna条带位置?

  影响的因素很多。主要的有:  1、 DNA的分子大小  线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,迁移得越慢。  2、 琼脂糖浓度  一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。分离小于0.5kb的DNA片段所需胶浓度是 1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%, DNA片段大小间于两者之间则所需胶浓度为0.8-1.0%。  3、 DNA分子的构象  相同分子量的线状、开环和超螺旋DNA在琼脂糖凝胶中移动速度是不一样的,超螺旋DNA移动最快,而线状双链DNA移动最慢。  4、 电源电压  在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。  5、嵌入染料的存在  荧光染料溴化乙啶用于检测琼脂糖凝胶中的DNA,染料会嵌入到堆积的碱基对之间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状DNA迁移率降低 15%。  6、 离子强度影响  电泳缓冲液的组成及其离子强度影响DNA的电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶),电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化或DNA变性。

RNA和DNA的区别是??

RNA(核糖核酸),是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一、组成的区别:1、RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶。2、DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为A腺嘌呤、G鸟嘌呤、C胞嘧啶及T胸腺嘧啶;戊糖为脱氧核糖。二、分类的区别:1、RNA可分为:mRNA:在蛋白分子合成过程中,作为“信使”分子,将基因组DNA的遗传信息(即碱基排列顺序)传递至核糖体,使核糖体能够以其碱基排列顺序掺入互补配对的tRNA分子,进而合成正确的肽链,实现遗传信息向蛋白质分子的转化。tRNA:把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码,依次准确地将它携带的氨基酸,掺入正在合成的肽链中,实现肽链的延伸。与正在进行翻译的mRNA结合,而后rRNA将各个氨基酸残基通过肽键连接成肽链进而构成蛋白质分子。rRNA:一般与核糖体蛋白质结合在一起,形成核糖体。2、DNA可分为:单链DNA:大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。闭环DNA:没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。模板DNA:可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。互补DNA:构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。三、功能的区别:1、RNA的功能:mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和氨基酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的机械。细胞中还有许多种类和功能不一的小型RNA,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。2、DNA的功能:DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。DNA是人身体内细胞的原子物质。每个原子有46个染色体,另外,男性的精子细胞和女性的卵子,各有23个染色体,当精子和卵子结合的时候。这46个原子染色体就制造一个生命,因此,每人从生父处继承一半的分子物质,而另一半则从生母处获得。

怎样区分RNA和DNA

我归纳成九大点:RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。3.碱的作用:DNA耐碱RNA易被碱水解。4.显色反应:鉴别DNA和RNA+浓HClRNA------→绿色化合物DNA------→蓝紫色化合物苔黑酚二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。DNA和RNA的鉴别染色利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA;超螺旋DNA>解链环状DNA;松弛环状DNA;线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。检举回答人的补充2009-08-3007:59高中生物只要知道:DNA基本组成单位是脱氧核苷酸RNA基本组成单位是核糖核苷酸从组成上.脱氧核苷酸是一分子磷酸、一分子碱基、一分子脱氧核糖核糖核苷酸是一分子磷酸、一分子碱基、一分子核糖每个碱基中只含AGCTU中的一个.这些就差不多了哈

一般来说病毒是dna还是rna

病毒只含有一种核酸,DNA或RNA,因此病毒的遗传物质是DNA或RNA. 故选:D.

病毒有没有DNA,染色体?

DNA是脱氧核糖核酸,而病毒由蛋白质外壳和内部核酸(遗传物质)构成,所以病毒没有DNA染色体由蛋白质和DNA组成。因为病毒没有DNA,所以它也没有染色体。

病毒DNA与DNA病毒是否两个概念?

不是同一概念病毒DNA是指病毒的遗传物质.DNA病毒则是以DNA为遗传物质的病毒因为病毒有两类,以DNA为遗传物质的病毒,大多数都是DNA病毒以RNA为遗传物质的病毒, 少数是,例如,SARS,HIV,禽流感,烟草花叶病毒.....其实就是主语与定语交换而已病毒的DNA(遗传物质是)DNA的病毒

病毒中含有DNA吗

病毒要么含DNA,要么含RNA吗,这两种东西统称为核酸嘛,是病毒的遗传物质,其实也是所有生物的遗传物质.但是有个例外,就是引起疯牛病的朊病毒,这小东西非常奇怪,它体内并没有DNA,也没有RNA,也就是没有任何核酸,可人家就是可以繁殖,至今都是未解之谜(应该是还没解开),仅此一例.
 首页 上一页  14 15 16 17 18 19 20 21 22 23 24  下一页  尾页