RNA

DNA图谱 / 问答 / 标签

rRNA中有稀有碱基吗

有,主要是甲基化碱基在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基.tRNA中含稀有碱基高达10%.

trna中为何含有较多的稀有碱基,它有何作用?

个人看法:tRNA是用来转运AA(氨基酸)的,它是连接mRNA与AA的桥梁。众所周知,蛋白质的合成是按照mRNA密码子的顺序来进行的,有较多的稀有碱基,可以使tRNA识别并运载更多的AA,从而保证原料的供应,以完成蛋白质的合成。

为什么线粒体和叶绿体有dna和rna

内共生起源学说:认为线粒体和叶绿体分别起源于原始真核cell内共生的细菌和蓝藻.线粒体来源于细菌,即细菌被真核生物吞噬后,在长期共生过程中,通过演变,形成了线粒体.叶绿体来源于蓝藻,被原始真核cell摄入胞内,在共生关系中,形成了叶绿体.主要论据:①线粒体和叶绿体的基因组在大小、形态和结构方面与细菌的相似.②线粒体核叶绿体有自己完整的蛋白质合成系统,能独立合成蛋白质.③线粒体和叶绿体的两层被膜有不同的进化来源,外膜与内膜的结构和成分差异很大.④线粒体和叶绿体能以分裂的方式进行繁殖,这与细菌的繁殖方式类似.⑤线粒体和叶绿体能在异源细胞内长期生存.⑥线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌.⑦发现介于包内共生蓝藻与叶绿体之间的结构---蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证.

都什么细胞器含有RNA?什么细胞器含有DNA?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状。很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体叶绿体的RNA分别在那里

线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的 线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。不同来源的核糖体其形状,大小、化学组成稍有不同,通常根据沉降系数的不同分为70S和80S两种类型,70S核糖体存在于细菌,线粒体和叶绿体中,80S核糖体存在于真核生物的细胞质中

线粒体和叶绿体中的DNA和RNA有什么作用?工作原理是怎样的?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状。很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体DNA呈双链环状,与细菌DNA相似。一个线粒体中可有一个或几个DNA分子。各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍。叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对)。叶绿体DNA的周长一般在40~60 μm。每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子。线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的。用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂。叶绿体DNA复制的时间在G1期。它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

线粒体和叶绿体中是不是都含有DNA和RNA

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状. 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

叶绿体线粒体中的DNA和RNA分别在什么地方,以什么形式存在?

植物细胞中;细胞质中无DNA,只有线粒体和叶绿体中有 动物细胞中;细胞凡是有DNA存在就一定有染色体 原核单细胞生物中:有些DNA有染色体,如拟核,也有些DNA不存在染色体,具有放射性的a DNA 这个涉及高等生物,高中的生物中不可能出现的 也就是说,高中生物细胞质中有DNA就一定由染色体构成噢的,动物细胞中不可能会有单独存在的DNA 但是植物细胞可能,也就是在线粒体和叶绿体存在DNA,而无染色体是因为线粒体和叶绿体中的细胞膜是选择透过性膜,它不允许由脂肪构成的酶透过,也就是核糖聚合酶,它是将DNA和蛋白质聚合到一起形成染色体的酶,线粒体和叶绿体没有这酶也就不能形成染色体,却有DNA

线粒体和叶绿体中的DNA和RNA有什么作用?工作原理是怎样的?

线粒体和叶绿体都含有少量的DNA和RNA,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的RNA和DNA能直接或根本上控制一部分性状. 很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系.这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、rRNA)、核糖体、氨基酸活化酶等.说明这两种细胞器都具有独立进行转录和转译的功能.也就是说,线粒体和叶绿体都具有自身转录RNA和翻译蛋白质的体系.但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种.这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的.也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性.因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器. 线粒体DNA呈双链环状,与细菌DNA相似.一个线粒体中可有一个或几个DNA分子.各种生物的线粒体DNA大小不一样,大多数动物细胞线粒体DNA的周长约为5μm,约含有16 000个碱基对,相对分子质量比核DNA分子小100~1 000倍.叶绿体DNA也呈双链环状,其大小差异较大(有200 000~2 500 000个碱基对).叶绿体DNA的周长一般在40~60 μm.每个线粒体中平均约含有6个线粒体DNA分子,每个叶绿体中平均约含12个叶绿体DNA分子. 线粒体DNA和叶绿体DNA都可以自我复制,复制也是以半保留方式进行的.用3H嘧啶核苷标记证明,线粒体DNA复制的时间主要在细胞周期的S期及G2期,而且DNA先复制,随后线粒体分裂.叶绿体DNA复制的时间在G1期.它们的复制都受核的控制,复制所需的DNA聚合酶都是由核DNA编码,在细胞质核糖体上合成的

为什么叶绿体线粒体中有DNA和RNA

从两种细胞器的起源来看,有内共生假说。以线粒体为例:线粒体体来源于被原始的前真核生物吞噬的好氧性细菌;这种细菌和前真核生物共生,在长期的共生过程中演化成了线粒体。所以线粒体和叶绿体维持了原来原核细胞的结构,存在核酸和核糖体。

线粒体和叶绿体中是不是都含有DNA和RNA

线粒体和叶绿体都含有少量的dna和rna,它们具有半自主性(能合成一部分蛋白质和酶),因此线粒体和叶绿体中的少量的rna和dna能直接或根本上控制一部分性状。很多学者把线粒体和叶绿体的遗传信息系统称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有dna外,还有rna(mrna、trna、rrna)、核糖体、氨基酸活化酶等。说明这两种细胞器都具有独立进行转录和转译的功能。也就是说,线粒体和叶绿体都具有自身转录rna和翻译蛋白质的体系。但迄今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种。这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,它们中的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。也就是说,线粒体和叶绿体的自主程度是有限的,它们对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及自身的基因组两套遗传信息系统控制的,所以它们都被称为半自主性细胞器。线粒体dna呈双链环状,与细菌dna相似。一个线粒体中可有一个或几个dna分子。各种生物的线粒体dna大小不一样,大多数动物细胞线粒体dna的周长约为5μm,约含有16000个碱基对,相对分子质量比核dna分子小100~1000倍。叶绿体dna也呈双链环状,其大小差异较大(有200000~2500000个碱基对)。叶绿体dna的周长一般在40~60μm。每个线粒体中平均约含有6个线粒体dna分子,每个叶绿体中平均约含12个叶绿体dna分子。线粒体dna和叶绿体dna都可以自我复制,复制也是以半保留方式进行的。用3h嘧啶核苷标记证明,线粒体dna复制的时间主要在细胞周期的s期及g2期,而且dna先复制,随后线粒体分裂。叶绿体dna复制的时间在g1期。它们的复制都受核的控制,复制所需的dna聚合酶都是由核dna编码,在细胞质核糖体上合成的

细胞用siRNA干扰处理后,会影响RT-PCR结果吗?

siRNA既能抑制mRNA的翻译,又能直接作用于mRNA将其分解,推荐阅读siRNA的相关机制以了解细节。

转染mirna inhibitor需要用rt-pcr检测吗

给你推荐pharminova公司的一种转染试剂Ifect RNA:下面的步骤以24孔板转染 siRNA到哺乳动物细胞为例贴壁细胞:转染前一天,接种 80,000 个细胞到每孔含 500μL不含抗生素的培养基的细胞培养板中,到转染时细胞融合度大致为 70-95%。准备转染复合物:转染的每孔体积和量1. siRNA准备:在 microfuge tube中添加5%葡萄糖溶液稀释 0.25?g(~19pmol)siRNA至12.5μL。2. ifectRNA试剂准备:在另一个 microfugetube中,加入 1 ?L的 ifectRNA试剂,添加11.5 μL 5%葡萄糖溶液至总体积 12.5μL。3. 配置转染复合物:将稀释的siRNA溶液加入配好的 ifectRNA试剂溶液中(总体积=25μL)。混合均匀,在室温孵育 10分钟。添加转染复合物至每孔:4. 添加 25μL的转染复合物到含有细胞和培养基的培养板每孔中。5. 将添加转染复合物的培养板放入 37℃二氧化碳培养箱中孵化 24-48小时。6. 24-48小时后,检测基因转染效果。问题处理:1. 提高各种不同的细胞系的转染效率,可以通过提高或降低每孔转染复合物加入量。在改变质粒DNA浓度时候,请保持 DNA量和ifectDNA体积比例(e.g. 1 μg DNA : 4 μL ifectDNA)

转染microrna mimics之后靶基因mrna会降低吗

转染microrna mimics之后靶基因mrna会降低microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

检测mirna与dna序列直接作用用什么方法

microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

植物和动物mirna生物合成的异同点

microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

microrna 21是什么求解答

microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

同一microrna在不同细胞中对同一基因会不会起不同调控作用

同一microrna在不同细胞中对同一基因会不会起不同调控作用microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

小干扰rna里的dt是什么意思

Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成.SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默.与小分子siRNAs相比,尽管两者在分子特性、生物起源等方面是相似的,但也存在不少的差异.siRNAs是由dsDNA在Dicer酶切割下产生,而成熟miRNAs的产生要复杂一些,首先pri-miRNA在核内由一种称为Drosha酶处理后成为大约70nt的带有茎环结构的Precursor miRNAs (pre-miRNAs)(Denli et al.,2004; Gregory et al.,2004; Han et al.,2004);这些pre-miRNAs在Exportin-5帮助下转运到细胞核外之后再由胞质Dicer酶进行处理,酶切后成为成熟的miRNAs(Lund et al.,2004; Yi et al.,2003).两者的作用机制上也存在差别,成熟的miRNAs则是通过与miRNP核蛋白体复合物结合,识别靶mRNA,并与之发生部分互补,从而阻遏靶mRNA的翻译.在动物中,成熟的单链miRNAs与蛋白质复合物miRNP结合,引导这种复合物通过部分互补结合到mRNA的3′UTR(非编码区域),从而阻遏翻译.而在siRNA通路中,单链的siRNA结合到RISC复合物中,引导复合物与mRNA完全互补,通过其自身的解旋酶活性,解开siRNAs,通过反义siRNA链识别目的mRNA片段,通过内切酶活性切割目的片段,接着再通过细胞外切酶进一步降解目的片段.除此之外,miRNA也可以切割完全互补的mRNA,而siRNA也可以阻遏3′UTR具有短片断互补的mRNA的翻译.

使用shRNA比siRNA的优势是什么?

两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA都可用于蛋白沉默,但它们的作用机制有所不同。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2 (Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。扩展资料早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。图中总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。

inhibitor和siRNA有什么区别

Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成.SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默.与小分子siRNAs相比,尽管两者在分子特性、生物起源等方面是相似的,但也存在不少的差异.siRNAs是由dsDNA在Dicer酶切割下产生,而成熟miRNAs的产生要复杂一些,首先pri-miRNA在核内由一种称为Drosha酶处理后成为大约70nt的带有茎环结构的Precursor miRNAs (pre-miRNAs)(Denli et al.,2004; Gregory et al.,2004; Han et al.,2004);这些pre-miRNAs在Exportin-5帮助下转运到细胞核外之后再由胞质Dicer酶进行处理,酶切后成为成熟的miRNAs(Lund et al.,2004; Yi et al.,2003).两者的作用机制上也存在差别,成熟的miRNAs则是通过与miRNP核蛋白体复合物结合,识别靶mRNA,并与之发生部分互补,从而阻遏靶mRNA的翻译.在动物中,成熟的单链miRNAs与蛋白质复合物miRNP结合,引导这种复合物通过部分互补结合到mRNA的3′UTR(非编码区域),从而阻遏翻译.而在siRNA通路中,单链的siRNA结合到RISC复合物中,引导复合物与mRNA完全互补,通过其自身的解旋酶活性,解开siRNAs,通过反义siRNA链识别目的mRNA片段,通过内切酶活性切割目的片段,接着再通过细胞外切酶进一步降解目的片段.除此之外,miRNA也可以切割完全互补的mRNA,而siRNA也可以阻遏3′UTR具有短片断互补的mRNA的翻译.

miRNA和siRNA以及反义RNA的区别是什么?关键是求知反义RNA与miRNA和siRNA区别?

反义RNA是指能与靶RNA互补的RNA,包括内源性的miRNA和外源性的siRNA.miRNA:MicroRNA(miRNA,微RNA)为长度为22nt左右的5′端带磷酸基团、3′端带羟基的非蛋白编码的调控小RNA家族。siRNA:小或短干扰 RNA(small/short interfering RNA, siRNA)是一类 20-25 个核苷酸长度 的双链 RNA 分子,其主要在 RNAi 通路中起作用,干扰特异基因的表达。 miRNA与siRNA的不同点:1.根本区别是miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。2.结构上,miRNA是单链RNA,而siRNA是双链RNA。3.Dicer酶对二者的加工过程不同,miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂。4.在作用位置上,miRNA主要作用于靶标基因3′-UTR区,而siRNA可作用于mRNA的任何部位。5.在作用方式上,miRNA可抑制靶标基因的翻译,也可以导致靶标基因降解,即在转录水平后和翻译水平起作用,而siRNA只能导致靶标基因的降解,即为转录水平后调控。6.miRNA主要在发育过程中起作用,调节内源基因表达,而siRNA不参与生物生长,是RNAi的产物,原始作用是抑制转座子活性和病毒感染。

miRNA和siRNA以及反义RNA的区别是什么?关键是求知反义RNA与miRNA和siRNA区别?

反义RNA是指能与靶RNA互补的RNA,包括内源性的miRNA和外源性的siRNA.miRNA:MicroRNA(miRNA,微RNA)为长度为22nt左右的5′端带磷酸基团、3′端带羟基的非蛋白编码的调控小RNA家族。siRNA:小或短干扰RNA(small/shortinterferingRNA,siRNA)是一类20-25个核苷酸长度的双链RNA分子,其主要在RNAi通路中起作用,干扰特异基因的表达。miRNA与siRNA的不同点:1.根本区别是miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。2.结构上,miRNA是单链RNA,而siRNA是双链RNA。3.Dicer酶对二者的加工过程不同,miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂。4.在作用位置上,miRNA主要作用于靶标基因3′-UTR区,而siRNA可作用于mRNA的任何部位。5.在作用方式上,miRNA可抑制靶标基因的翻译,也可以导致靶标基因降解,即在转录水平后和翻译水平起作用,而siRNA只能导致靶标基因的降解,即为转录水平后调控。6.miRNA主要在发育过程中起作用,调节内源基因表达,而siRNA不参与生物生长,是RNAi的产物,原始作用是抑制转座子活性和病毒感染。

miRNA和siRNA有何不同点,请说明

miRNA与siRNA的不同点表现在:本质不同、结构不同、加工过程不同。1、本质不同miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。2、结构不同miRNA是单链RNA,而siRNA是双链RNA。3、加工过程不同miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂。miRNA的特点1、长度大约是22nt,已经知道的miRNA中21-23nt的超过80%;2、具有能形成分子内茎环结构的前体。植物中前体大小的变化范围较大,可以从几十到数百个核苷酸,而在动物中前体大小的变化范围较小,一般在60-80nt。而且miRNA基因在基因组中有多种存在形式,有单拷贝,多拷贝或基因簇等形式。3、几乎所有的miRNA都是从前体一条臂上加工而来,只有极少数的miRNA是从前体的两条臂同时加工产生的。

miRNA和siRNA以及反义RNA的区别是什么?关键是求知反义RNA与miRNA和siRNA区别?

反义RNA是指能与靶RNA互补的RNA,包括内源性的miRNA和外源性的siRNA. miRNA:MicroRNA(miRNA,微RNA)为长度为22nt左右的5′端带磷酸基团、3′端带羟基的非蛋白编码的调控小RNA家族. siRNA:小或短干扰 RNA(small/short interfering RNA, siRNA)是一类 20-25 个核苷酸长度 的双链 RNA 分子,其主要在 RNAi 通路中起作用,干扰特异基因的表达. miRNA与siRNA的不同点: 1.根本区别是miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物. 2.结构上,miRNA是单链RNA,而siRNA是双链RNA. 3.Dicer酶对二者的加工过程不同,miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂. 4.在作用位置上,miRNA主要作用于靶标基因3′-UTR区,而siRNA可作用于mRNA的任何部位. 5.在作用方式上,miRNA可抑制靶标基因的翻译,也可以导致靶标基因降解,即在转录水平后和翻译水平起作用,而siRNA只能导致靶标基因的降解,即为转录水平后调控. 6.miRNA主要在发育过程中起作用,调节内源基因表达,而siRNA不参与生物生长,是RNAi的产物,原始作用是抑制转座子活性和病毒感染.

siRNA和miRNA有什么区别?越详细越好啊~!不胜感激~!

在低等生物中同时存在miRNA和siRNA,在高等生物中只有miRNA,但可以通过外源转入siRNA起作用miRNA的结合位点通常位于3`UTR,而siRNA不确定miRNA和其target是不完全互补,一般只有2-8位的碱基是完全互补的,而siRNA是完全互补配对siRNA的作用结果是使mRNA剪切,而miRNA有的是剪切,有的只是结合上去抑制翻译siRNA是一对一的,一条siRNA只针对一个基因,而miRNA是一对多的,一条可以抑制很多基因大概就这些吧有啥不明白再问吧

siRNA和guideRNA是同一种东西么?

很明显不是siRNA是RNA干扰中的诱导形成RISC复合物,进而进行RNA干扰,抑制翻译的短dsRNA。而guideRNA是RNA编辑中,具有与mRNA互补序列的RNA.gRNA分子是能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,编辑前的mRNA分子中删除A,由gRNA和mRNA形成了一个杂合分子,可以为插入U提供模板,这样被删除的A又重新插入杂合分子中的mRNA部分。完成后,guideRNA解离,mRNA用作翻译模板。

siRNA为什么是一种高效特异的基因缺失性研究工具?

Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。RNA干涉(RNAinterference,RNAi)是指内源性或外源性双链RNA(dsRNA)介导的细胞内mRNA发生特异性降解,从而导致靶基因的表达沉默,产生相应的功能表型缺失的现象.RNA干涉(RNAi)在实验室中是一种强大的实验工具,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉寂,迅速阻断基因活性。siRNA在RNA沉默通路中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。siRNA的形成主要由Dicer和Rde-1调控完成。由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer(Dicer是一种RNaseIII 活性核酸内切酶,具有四个结构域:Argonaute家族的PAZ结构域,III型RNA酶活性区域,dsRNA结合区域以及DEAH/DEXHRNA解旋酶活性区)结合,形成酶-dsRNA复合体。Dicer 切割后形成siRNA,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体RNA-induced silencing complex RNAi干涉的关键步骤是组装RISC和合成介导特异性反应的siRNA蛋白。siRNA并入RISC中,然后与靶标基因编码区或UTR区完全配对,降解靶标基因,因此说siRNA只降解与其序列互补配对的mRNA。其调控的机制是通过互补配对而沉默相应靶位基因的表达,所以是一种典型的负调控机制。siRNA识别靶序列是有高度特异性的,因为降解首先在相对于siRNA来说的中央位置发生,所以这些中央的碱基位点就显得极为重要,一旦发生错配就会严重抑制RNAi的效应。RNAi在基因沉默(silent gene)方面具有高效性和简单性,所以是基因功能研究的重要工具。大多数药物属于标靶基因(或疾病基因)的抑制剂,因此RNAi 模拟了药物的作用,这功能丢失(LOF)的研究方法比传统的功能获得(GOF)方法更具优势。因此, RNAi 在今天的制药产业中是药物靶标确认的一个重要工具。同时,那些在靶标实验中证明有效的siRNA/shRNA本身还可以被进一步开发成为RNAi药物。在药物标靶发现和确认方面,RNAi技术已获得了广泛的应用。生物技术公司或制药公司通常利用建立好的RNAi文库来引入细胞,然后通过观察细胞的表型变化来发现具有功能的基因。如可通过RNAi文库介导的肿瘤细胞生长来发现能抑制肿瘤的基因。一旦所发现的基因属于可用药的靶标(如表达的蛋白在细胞膜上或被分泌出细胞外),就可以针对此靶标进行大规模的药物筛选。此外,被发现的靶标还可用RNAi技术在细胞水平或动物体内进一步确认。在疾病治疗方面,双链小分子RNA或siRNA已被用于临床测试用于几种疾病治疗,如老年视黄斑退化、肌肉萎缩性侧索硬化症、类风湿性关节炎、肥胖症等。在抗病毒治疗方面,帕金森病等神经系统疾病已经开始初步采用RNA干扰疗法。肿瘤治疗方面也已经取得了一些成果。

siRNA是什么

siRNA指的是小干扰RNA。小干扰RNA有时称为短干扰RNA或沉默RN,是一个长20到25个核苷酸的双股RNA,在生物学上有许多不同的用途。已知siRNA主要参与RNA干扰现象,以带有专一性的方式调节基因的表达。此外,也参与一些与RNAi相关的反应途径。扩展资料:siRNA具有明确定义的结构,具有磷酸化5"末端的短双链RNA和具有两个突出核苷酸的羟基化3"末端。该切酶酶催化生产的siRNA由长的dsRNA和小发夹RNA。由于原则上任何基因都可以被具有互补序列的合成siRNA敲低,因此siRNA是在后基因组时代验证基因功能和药物靶向的重要工具。参考资料来源:百度百科—siRNA

现在在做养细胞的实验,请问有人知道合成SiRNA-OCT4大概多少钱吗?

找公司弄,大概1000吧,给3条。还有对照

动物和植物的mirna命名和序列相同吗

microRNAs(miRNA)种约21-23碱基单链RNA由具发夹结构约70-90碱基单链RNA前体经Dicer酶加工同于siRNA(双链)siRNA密切相关据推测些非编码RNA(miRNA)参与调控基表达其机制区别于siRNA接mRNA降解第确认miRNA线虫发现lin-4let-7随研究组包括类、蝇、植物等种物物种鉴别数百miRNA miRNA高等物基组编码,通靶基mRNA碱基配引导沉默复合体(RISC)降解mRNA或阻碍其翻译其物种进化总相保守植物、物真菌发现miRNAs特定组织发育阶段表达miRNA组织特异性序性决定组织细胞功能特异性表明miRNA细胞发育程调节程其种作用 microRNAs作用机制 miRNA类细胞物或植物基组前体mRNA内含miRNA独立转录单位或miRNA基簇编码19-25核苷酸内源性单链RNA转录水平沉默特定基物体基表达起精细调节作用[1]绝数miRNA基RNA聚合酶Ⅱ作用形较茎环结构称初级miRNA(primary miRNA ,pri- miRNA)pri- miRNADrosha-DGCR8复合体作用形度约60-70核苷酸发夹状RNA前体miRNA(precursor miRNA,pre-miRNA)随pre- miRNAExprotin-5复合物[2]作用转运胞核胞浆由Dicer剪切miRNA复合体 miRNA复合物(RNA-induced silencing comlexRISC)[1]与该miRNA3"翻译区(3"UTR)结合位于胞浆P-body(processing bady)[3]:miRNA与靶mRNA匹配完全则该复合体降解mRNA;若两者序列部匹配尤其miRNA5"端2-8称种序列(seed sequence)核苷酸与靶mRNA匹配完则通抑制靶mRNA翻译沉默特定基外某些miRNAmiRNA-16能够特异结合于某些基3"UTA富含AU元件(AU rich element,ARE),指导Ago等组RISC区蛋白与TTP结合改变相应mRNA半衰期加速靶mRNA降解 外miRNA能抑制5"UTR含内部核糖体进入位点(intrnal ribosome entry sites,IRESs)靶标[4] miRNA表达调控机制 ①顺调控元件 数miRNA基核启区域含TA盒并且含影响miRNA表达细胞特异转录调节元件miRNAs作转录重要靶细胞功能调控发挥核作用 ②表观遗传 近些研究提示表观遗传变化影响miRNA 基调节miRNA表达析基于miRNAse(release 8.0)数据库332miRNA基序列发现其155miRNA基序列游或游2000bp处含CG岛miR-127[6],miR-24a[6],let-7a-3[7]miR-370[8]基均含CpG岛并且相应肿瘤组织呈现高度甲基化些miRNA肿瘤甲基化沉默导致靶基-原癌基(BCL6CDK6MAP3K8等)表达促进肿瘤发育转录PRDM5能参与调解miRNAs基表观遗传变化HEK293细胞PRDM5募集蛋白甲基化转移酶G9a类组蛋白乙酰基酶等组蛋白修饰has-mir-135b基启区域行使抑制功能[9],miRNA癌症细胞表达般低于组织细胞表明数miRNAs能作肿瘤抑制发挥作用原癌基低度甲基化肿瘤抑制基高度甲基化认癌症表观遗传主要决定素miRNAs基肿瘤异甲基化使表观遗传调控癌症机理更加复杂 ③单核苷酸态性 存于pri-mRNAspri-mRNA或熟miRNAs基序列单核苷酸态性(single nucleotide polymorphismSNP)能够潜影响miRNA调节细胞功能络miRNA基或靶结合位点及其临近靶位点区域态变化于miRNA物合及靶位点选择抑制效应据重要意义 ④RNA编辑 (RNA editing)基初级转录物增删或取代某些核苷酸改变遗传信息程调节基表达RNA编辑miRNA调控基默程其重要作用仅影响miRNA表达且影响特异miRNA靶向调控外At编辑能存于靶种互补区域

为什么生物体内RNA都是单链的呢?

先对双链RNA的范围限定一下,把由两条链组成的dsRNA和一条链内部形成二级结构的dsRNA分开讨论(虽然一般特指后者)。由两条链组成的dsRNA确实是稳定的,但由于这样的双链RNA对于细胞而言往往是病毒信号,所以这样的dsRNA一般是不被允许的。一旦有不应出现的dsRNA,各种与病毒免疫相关的dsRNA结合蛋白、内切酶等等蜂拥而上,很快就把它们干掉了(by the way,一般提RNA出问题的是RNase A之类,RNase A能解链,所以和双链无关)。但是得排除一些情况,比如我们常见的miRNA、tRNA等等。这些RNA的确能跟互补序列形成稳定的二级结构,但是,这些RNA在行使功能的时候往往有蛋白的参与。这些蛋白最基本的作用是:防止RNA或者RNA与作用靶标被RNase识别并降解。最好的例子就是当你转siRNA的时候是必须要加修饰的,否则它们与Ago等形成复合体之前就没了。然后是一条RNA链内部的二级结构,也就是我们常说的dsRNA。虽然目前为止没有太好的in vivo测量RNA结构的方法,但RNA内部稳定二级结构(尤指mRNA)应该是广泛存在的。这里有几个证据:ADAR。ADAR全称是作用在RNA上的腺嘌呤脱氨酶,作用是将dsRNA上的某些A脱氨变成Inosine(I),在强调碱基匹配的时候Inosine可以表现为G。而且,A-to-I一般发生在A-U或A-C匹配上(与ADAR结构有关),而从数据上看被编辑后的RNA没有必然变得更松散或更紧密。

知不知道有哪些在线设计siRNA的网址

发物种,基因名至design@ribobio.com即可On-line tools for designing RNAi probes Design tool Reference -->Ambion siRNA Target Finder Elbashir SM, Harborth J et al. -->Dharmacon siDesign Reynolds A, Leake D et al. -->Clontech siRNA designer Elbashir SM, Lendeckel W et al. -->DEQOR Henschel A, Buchholz F et al. EMBOSS SIRNA Elbashir SM, Harborth J et al. siRNA design Yiu SM, Wong PW et al. https://www.genscript.com/ssl-bin/app/rnai Wang L, Mu FY. -->IDT siRNA design Parrish S, Fleenor J et al. Elbashir SM, Harborth J et al. -->Interagon Saetrom P. -->siRNA at Whitehead Yuan B, Latek R et al. Invitrogen BLOCK-iT(tm) -->T7 RNAi Oligo Designer Dudek P, Picard D. siDirect Naito Y, Yamada T et al. siSearch Chalk AM, Wahlestedt C et al.

rna是什么

rna是核糖核酸。核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶),其中,U(尿嘧啶)取代了DNA中的T。核糖核酸在体内的作用主要是引导蛋白质的合成。分类:人体一个细胞含RNA约10pg(含DNA约7pg)。与DNA相比,RNA种类繁多,分子量较小,含量变化大。RNA可根据结构和功能的不同分为信使RNA和非编码RNA。非编码RNA分为非编码大RNA和非编码小RNA。非编码大RNA包括核糖体RNA、长链非编码RNA。非编码小RNA包括转移RNA、核酶、小分子RNA等。小分子RNA(20~300nt)包括 miRNA、 SiRNA、 piRNA、scRNA、 snRNA、 snoRNA等,细菌也有小分子RNA(50~500nt)。

RNAi的分子机制是什么?

当导入与目的基因编码区序列相同的双链RNA时,Dicer酶会将此双链RNA切割成21-23bp的短片段(称为siRNA),siRNA与多种蛋白质结合形成RNA诱导沉默复合体(RISC),此时其中的siRNA解旋形成单链RNA。RISC被活化后,活化型RISC受已成单链的siRNA引导,序列特异性地结合在胞内存在的目的mRNA上并将其切断成小片段,引发目的mRNA的特异性分解。这些断裂的小片段能够形成新的siRNA,进而形成RISC,这样就形成了一个级联放大反应,将细胞中的目的mRNA完全裂解。

怎么在NCBI上查到11-β HSD1的mRNA序列,怎么设计siRNA来做RNA干扰沉默该基因呢?

很基础的问题啊,在NCBI上search:gene,下面的对话框输入你要找的基因的名称,会出来相关的基因序列,看你要找什么物种的,一般是人和鼠的,如人的后缀是Homo sapiens,鼠的是Mus musculus。点击你要的序列号,会进入这个基因的基本信息,一直往下拉会看到mRNA and Protein(s) ,NM开头的序列号就是其CDNA的序列了。关于SiRNA,需要去网站搜索,如invitrogen,promega,等大型生物网站都有相关的tools给你设计,很方便!http://jura.wi.mit.edu/bioc/siRNAext/siRNA_search.cgi?tasto=10925811,你去试试吧

microRNA的作用机制是怎样的?

microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。 miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。 microRNAs的作用机制 miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。 此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。 miRNA的表达调控机制 ①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。 ②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。 ③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。 ④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

sirna设计网站-如何快速设计shRNA

知不知道有哪些在线设计siRNA的网址发物种,基因名至design@即可On-linetoolsfordesigningRNAiprobesDesigntoolReference-->AmbionsiRNATargetFinderElbashirSM,HarborthJetal.-->DharmaconsiDesignReynoldsA,LeakeDetal.-->ClontechsiRNAdesignerElbashirSM,LendeckelWetal.-->DEQORHenschelA,BuchholzFetal.EMBOSSSIRNAElbashirSM,HarborthJetal.siRNAdesignYiuSM,WongPWetal.WangL,MuFY.-->IDTsiRNAdesignParrishS,FleenorJetal.ElbashirSM,HarborthJetal.-->InteragonSaetromP.-->siRNAatWhiteheadYuanB,LatekRetal.InvitrogenBLOCK-iT(tm)-->T7RNAiOligoDesignerDudekP,PicardD.siDirectNaitoY,YamadaTetal.siSearchChalkAM,WahlestedtCetal.如何快速设计shRNA在研究基因功能中,RNAi由于可以特异地使基因沉默或表达量降低而成为生物实验的强有力工具。其中shRNA慢病毒载体应用颇广,今天小编告诉大家2种方法可以快速设计构建到慢病毒载体中的shRNA。1.Sigma网站Sigma公司做了一个针对人和小鼠的shRNA库,而且部分基因的shRNA序列经过验证,因此直接使用Sigma公司已验证过的RNAi序列最为方便。首先打开网址:,以Fli1为例,直接输入基因名,点击search,出现以下界面:在Products中找到并点击shRNA选项,然后出现这个界面:点击“MISSIONshRNALentiviralTransductionParticles”这一行的PRICING,这时会弹出界面展示针对目的基因的shRNA:当出现时,恭喜你,这个基因有被sigma验证过,下拉可以找到验证过的shRNA,用来构建慢病毒,简单有效,敲减效率基本上是有保证的。如果没有验证过的shRNA,则根据需要多选择几条shRNA也是一样能筛选到有效的靶点。提示:小编倾向选择CDS区的shRNA,3UTR基本不选,而且选择的每一条shRNA都会在NCBI上做BLAST,确保靶点是特异性的。Blast比对后最终确认选择下面2条FLI1基因的shRNA:需要特别提醒,如果要构建到慢病毒载体上,合成出去的shRNA引物会根据载体有些不一样,sigma用的是pLKO.1载体,小编常用SBI的pGreenPuro(CMV)载体,两端的酶切位点是BamHI/EcoRI,设计出去的引物最终是这样的(不同shRNA替换中间红色部分):Sense:GATCCCCCTTCTGACATCTCCTACATCTCGAGATGTAGGAGATGTCAGAAGGGTTTTTGAnti-sense:AATTCAAAAACCCTTCTGACATCTCCTACATCTCGAGATGTAGGAGATGTCAGAAGGGG2.LifeTechnologies网站LifeTechnologies公司有个非常实用的在线shRNA设计软件,操作非常方便,而且设计出来的shRNA不再需要到NCBI上Blast,直接可以用的。首先打开网站:,在TargetDesignOptions处选中shRNA,以Fli1为例,输入Accessionnumber或Nucleotidesequence,其他条件不变:下拉到底点击RNAiDesign,然后出现推荐的10条靶点序列:根据Rank评星,选择其中需要的(翠花一般选择4条,不同位置各一条),点击DesignshRNAOligos:然后在DefaultLoopSequence选择合适的序列(翠花用的载体是pGreenPuro,不需要这个序列,就默认了,后面合成引物的时候要去掉的),在CustomLoopSequence处输入CTCGAG,点击Design:得到shRNA提醒:合成出去的引物需要做微调,根据载体的要求,和sigma的设计一样,需要在前后加上酶切位点的,最后大功告成。怎么在NCBI上查到11-βHSD1的mRNA序列,怎么设计siRNA来做RNA干扰沉默该基因呢?很基础的问题啊,在NCBI上search:gene,下面的对话框输入你要找的基因的名称,会出来相关的基因序列,看你要找什么物种的,一般是人和鼠的,如人的后缀是Homosapiens,鼠的是Musmusculus。点击你要的序列号,会进入这个基因的基本信息,一直往下拉会看到mRNAandProtein(s),NM开头的序列号就是其CDNA的序列了。关于SiRNA,需要去网站搜索,如invitrogen,promega,等大型生物网站都有相关的tools给你设计,很方便!,你去试试吧

pcDNA3.1(+)-靶基因-SiRNA是什么啊?

pcDNA3.1(+)是哺乳动物细胞表达载体,siRNA是用于RNA干扰的一段长约21-25nt并且和靶基因mRNA的某段序列互补的序列,用于在转录后水平上沉默基因。所以这个“pcDNA3.1(+)-靶基因-siRNA”很可能是一个用于gene knockdown的质粒。

使用shRNA比siRNA的优势是什么?

两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA都可用于蛋白沉默,但它们的作用机制有所不同。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2 (Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。扩展资料早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。图中总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。

sirnanc怎么设计-如何设计有效的siRNA

siRNA有哪些设计?以前人们一般应用较长的dsRNA作为基因沉默的工具,但后来发现长链dsRNA特异性较差。它不仅可激活RnaseL,导致非特异性RNA降解,而且还能激活依赖于dsRNA的蛋白激酶R(protein:kinase:R,PKR),PKR可磷酸化翻译起始因子e:IF2并使其失活,从而抑制翻译起始。后来人们发现小于30bp的dsRNA即可有效引起基因沉默,并且不会产生非特异抑制现象,进一步研究表明抑制作用最强的是长21bp、3′端有两个碱基突出的siRNA。但RNAi技术要求siRNA反义链与靶基因序列之间严格的碱基配对,单个碱基错配就会大大降低沉默效应,而且siRNA还可以造成与其具同源性的其他基因沉默(也叫交叉沉默),所以在siRNA的设计中序列问题是至关重要的。要求所设计的siRNA只能与靶基因具高度同源性而尽可能少的与其他基因同源。设计siRNA序列应注意以下几点:①从靶基因转录本(mRNA)起始密码子AUG开始,向下游寻找AA双核苷酸序列,将此双核苷酸序列和其下游相邻19个核苷酸序列作为siRNA序列设计模板,有研究结果显示GC含量在45%55%左右的siRNA要比那些GC含量偏高的更为有效;②每个基因选择45个siRNA序列,然后运用生物信息学方法进行同源性比较,例如使用BLAST(),剔除与其他基因或EST序列有同源性的序列,选出一个特异性最强的siRNA进行合成;③尽量不要以mRNA的5′端和3′端非翻译区及起始密码子附近序列作为设计siRNA的模板,因为这些区域有许多调节蛋白结合位点(如翻译起始复合物),调节蛋白会与RISC竞争结合靶序列,降低siRNA的基因沉默效应。如何设计有效的siRNA1.化学合成尽管化学合成是最贵的方法,但是却是最方便的——研究人员几乎不需要做什么工作。包括Ambion和Qiagen公司都可以根据用户要求提供高质量的化学合成siRNA。主要的缺点包括价格高,定制周期长,特别是有特殊需求的。由于价格比其他方法高,为一个基因合成3—4对siRNAs的成本就更高了,比较常见的做法是用其他方法筛选出最有效的序列再进行化学合成。最适用于:已经找到最有效的siRNA的情况下,需要大量siRNA进行研究不适用于:筛选siRNA等长时间的研究,主要原因是价格因素2.体外转录通过体外转录的方法可以合成siRNAs,这样的成本相对化学合成法而言比较低,是一种性价比高的筛选siRNAs的好方法。更重要的是采用这种方法能够比化学合成法更快的得到siRNAs。以SilencersiRNAConstructionKit为例,一旦得到DNAOligo模版(这个还是需要DNA合成的,不过DNA合成的成本就比较低了),只要24小时就可以,不需要等很久。这个方法的不足之处是实验的规模受到限制,虽然一次体外转录合成能提供足够做数百次转染的siRNAs,但是反应规模和量始终有一定的限制。而且和化学合成相比,还是需要占用研究人员相当的时间——毕竟,化学合成只需要定购就可以了。值得一提的是体外转录得到的siRNAs只要较低的浓度就可以达到化学合成siRNAs较高浓度得到的效果(0.5-20nMvs.50-100nMpertransfection)最适用于:筛选siRNAs,特别是需要制备多种siRNAs,化学合成的价格成为障碍时。不适用于:实验需要大量的,一个特定的siRNA。长期研究。siRNA实验方法和设计常见问题解答Q:如何选择转染方法和转染试剂?A:我们的siRNA适用于各种转染方法。转染方法和转染试剂的选择,需要根据细胞来选择,对于容易转染的细胞,常用的转染方法是脂质体转染。Q:对于难转染的细胞,应该如何提高其转染效率?转染效率又该如何确定?A:1)对于贴壁细胞,推荐采用转染试剂转染即可;2)对于难转染的细胞的转染,如何提高转染效率的问题也是目前研究的技术难题。一般建议使用电转的方法,但是由于电转的方法对细胞损伤比较大,该方法也未必是最佳的。转染效率的确定,常用的是使用荧光标记的siRNA,通过荧光显微镜,共聚焦显微镜,流式细胞仪检测的方法。具体可以参考我们的产品说明书。Q:细胞的转染效率是否与siRNA序列相关?A:转染效率的高低取决于与细胞自身及转染方法,而于siRNA的序列并没有直接关系。因此,siRNA在不同的细胞转染效率可能不一样。Q:转染siRNA时候的细胞密度多少为宜?A:依不同的转染方法或转染试剂而定。如使用lipofectamine2000作为转染试剂,单独转染siRNA,30%~50%密度较佳;而siRNA与质粒共转染,密度可以到80%-90%。Q:siRNA转染时的培养基要求,可否含血清?A:不同的转染试剂可能有不同的要求,对于lipofectamine2000,在配制siRNA和lipofectamine2000混合物时不能含有血清,但细胞培养基可以含有血清,但不能含有抗生素。Q:siRNA的储存液体浓度和工作浓度有何区别?A:siRNA的贮存浓度就是保存的最佳浓度,锐博推荐的贮存液浓度为20μM;而siRNA的工作浓度就是使siRNA能够达到最佳沉默效果的转染浓度,一般10~100nM范围内,锐博生物推荐的转染浓度是50nM。Q:转染时该如何分组?分组的目的是什么?[图片上传失败...(image-67e513-1654668332888)]Q:为什么说阳性对照在RNA干扰实验中很重要?A:阳性对照作为一个实验系统检查是很重要的。也就是说,当您看到siRNA阳性对照的预期实验结果时,您能确保在您的实验方法中您的转染、RNA提取物和检测方法是可靠的。Q:阳性对照及其阴性对照在RNAi实验中的作用?如何选择?A:阳性对照指的是已经验证的针对看家基因或报告基因有效的siRNA,用于监测实验体系和实验方法的可行性。我们可以提供的阳性对照siRNA有针对GAPDH,ACTB,GFP/EGFP有效的siRNA作为阳性对照,客户可以根据具体的实验需要选择。阴性对照往往是非特异的siRNA,主要用于说明siRNA作用的特异性。阴性对照的选择可以是通用的序列(universal)或是随机打乱的序列(scramble),客户可以根据实验要求选择。Q:用荧光对照siRNA如何检测转染效率?是不是每次实验都必须做?A:我们提供的转染对照siRNA带有Cy3或Cy5荧光标记,可以通过荧光显微镜,共聚焦显微镜,流式细胞仪等荧光检测仪器检测。除此之外,还应该通过阳性对照实验进一步确定。转染效率的高低主要与细胞自身相关,同等实验条件下,每次转染细胞转染效率应该是相近的,因此可以不必每次都做。但如果每次实验都做一个荧光对照组,将会更加便于排除一些实验问题。Q:siRNA荧光染料的最大吸收率和发射率各在哪个波段?A:FAM在495nm处有最大吸收率,在520nm处有最大发射率。Cy3在550nm处有最大吸收率,在565nm处有最大发射率。Cy5在643nm处有最大吸收率,在667nm处有最大发射率。Q:转染后出现细胞死亡是什么原因?如何优化转染条件?[图片上传失败...(image-6ee094-1654668332888)]Q:到了转染时间发现细胞密度太低,该如时转染还是让细胞多长一天再转染?A:细胞生长需要一定的密度,而转染试剂对细胞有一定的毒性,如果转染时细胞密度过低,细胞可能会因此生长异常甚至死亡。转染前要求良好的细胞状态和细胞活性,一般也不建议用生长几天的细胞做转染。Q:siRNA的作用效果应该如何检测?A:通常可以从三个方面来相互验证siRNA的作用效果3)根据目的基因的功能,从细胞表型的水平检测。Q:siRNA在细胞内可以作用多长时间?什么时候才是最好的检测时间?A:siRNA介导的RNAi属于瞬时现象,不能稳定传代,一般其作用时间不可能维持很长时间,通常建议在转染后34天内完成检测。最佳检测时间,因细胞、目的基因而异,多在转染后2448小时之间检测。Q:为什么要强调mRNA水平检测?可以直接检测蛋白和功能吗?A:siRNA直接作用于mRNA,因此mRNA水平检测是最直接在指标。很多客户认为,mRNA的降解直接的结果应该是对应蛋白质含量的下降,因此蛋白水平的检测结果也应该可以作为有效性的检测指标。事实上,很多情况下往往出现,mRNA下降水平与蛋白下降水平不对应的现象。其可能原因有:Q:干扰效率多高才是好的靶点?A:没有明确的界定,干扰效率高低因不同的细胞类型和不同的基因而异。不同细胞类型的转染效率也不尽相同,不同基因的表达水平也相差较大,主要看干扰效果而定。Q:沉默效果不理想,应该如何处理?A:最常见的影响沉默效果的两个原因是:转染效率低和siRNA序列设计的效果不理想。如果您初次使用siRNA或采用了新的细胞系,并发现沉默效果不佳,我们建议您对转染效率进行检测,并选择优化转染条件。如果您已经对实验转染条件进行优化但是问题依然存在,我们建议您换用另一种转染试剂或是采用其他技术,这也许能提高转染效率。如果已经提高了转染效率但是沉默效果仍然未达到要求,可能是因为siRNA序列设计的效果不理想。Q:siRNA反而使得目的基因表达上调了,这是什么原因?该怎么解决?[图片上传失败...(image-99552b-1654668332886)]Q:我从阴性对照实验中得到和特异性RNAi相同的结果,这说明了什么?[图片上传失败...(image-d223f9-1654668332886)]Q:各组阴性对照的检测结果是否应该一样?如果偏差很大该怎么办?A:正常情况下,各组阴性对照的检测结果应该是相近的。如果偏差过大,只需考虑实验结果的准确性。另外,对于一些特定的基因,比如与细胞难受压力相关的基因,又如参与细胞免疫的基因,可能会对外界压力比较敏感,使得各组对照的基因表达发生变化不一致。Q:用100nM的siRNA转染时只得到50%沉默效率,我可以把siRNA的浓度增加到200nM甚至400nM吗?A:当干扰效率不佳时,可以在一定范围内适当优化转染浓度,通常优化的范围是10~150nM,但不宜过大,高浓度的siRNA将可能增加非特异性作用的可能性并对细胞产生毒性。Q:同样的siRNA,为什么在细胞A很有效,在细胞B则没有效果?A:不同细胞的转染效率不一样、基因表达水平也不一样,这些都与siRNA的作用效率有关siRNA实验方法和设计常见问题解答-答疑集锦-非编码RNA研究策略-锐博技术专题专题—丁香园会议频道()

siRNA中正义链和反义链的区别

四种核苷酸或脱氧核苷酸按照一定的排列顺序以3",5"磷酸二酯键(phosphodiester linkage)相连形成的多聚核苷酸链或脱氧核苷酸(polydeoxynucleotides), 称为核苷酸序列(也称为碱基序列)。脱氧核苷酸或核苷酸的连接具有严格的方向性,是前一核苷酸的3"-OH与下一位核苷酸的5"-位磷酸间形成3",5"磷酸二酯键,构成一个没有分支的线性大分子。DNA的书写应从5"到3" 大多数的真核mRNA转录后在5\"-端加一个7-甲基鸟苷,同时第一个核苷酸的C\"2也是甲基化的,这种m7G ppp N m帽子结构具有促进核蛋白体与mRNA的结合、加速翻译起始速度的作用,同时可以增强mRNA的稳定性。 在真核mRNA的3\"末端,有一多聚腺苷酸(poly A)结构,通常称为多聚A尾。一般由数十个至一百几十个腺苷酸连接而成。poly A是RNA生成后加上去的。poly A与mRNA从核内向胞质的转位及mRNA的稳定性有关。 DNA双链是反向的,复制时,两股链均作为模板,但新链的合成只能是5"→3" 引物提供3"-OH,与原料dNTP的5"-P形成磷酸二酯键,然后DNA聚合酶催化这一聚合反应的进行 sirna合成中,以U6启动子为模板,5′端引物与U6启动子5′端互补,3′端引物与U6启动子3′端互补并带siRNA正义链及9nt 的环状结构,二次循环带反义链。 引物5"端可设计修饰,3"端是延伸开始,一般不可修饰,也不能形成二级结构。

RNAi shRNA siRNA 的区别是什么?各位高手请指教,网上搜了,也没弄明白。谢谢啦。

miRNA,siRNA,shRNA的区别在于:miRNA的主要功能是下调基因的表达;siRNA其主要在RNAi通路中起作用,干扰特异基因的表达;shRNA常被用于RNA干扰沉默靶基因的表达。RNAishRNAsiRNA的区别如下:1、来源不同:miRNA是生物体的固有因素,是内源性的,而siRNA是人工体外合成后通过转染进入体内的,是RNAi的中间产物;2、结构不同:miRNA为单链RNA,而siRNA是双链RNA;3、Dicer酶对两者的加工过程不同,miRNA是由不对称加工形成的,仅是剪切前体miRNA的一个侧臂,其它部分降解,而siRNA对称地来源于双链RNA前体的两个侧臂;4、作用部位不同:miRNA主要作用于靶基因mRNA的3"UTR区域,而siRNA可作用于靶基因mRNA的任何部位;5、作用方式不同,miRNA既可抑制靶基因mRNA的翻译,也可以导致靶基因mRNA降解,即在转录后水平和翻译水平起作用,而siRNA只能导致靶基因mRNA的降解,为转录后水平调控;6、miRNA主要参与内源基因的调节和细胞发育过程,而siRNA的原始作用是抑制转座子活性和病毒感染。扩展资料:1、miRNA:在遗传学中,微RNA是长度在21-23个核苷酸之间的单链RNA片段,调节基因的表达。miRNA由基因编码,从DNA转录而来,但不翻译成蛋白。2、shRNA:小发卡或短发卡RNA是一段具有紧密发卡环的RNA序列,常被用于RNA干扰沉默靶基因的表达。利用载体把shRNA导入细胞,载体中的U6启动子确保shRNA总是表达;这种装载了shRNA载体可被传递到子代细胞中去,从而使基因的沉默可被遗传。3、siRNA:小或短干扰RNA是一类20-25个核苷酸长度的双链RNA分子,其主要在RNAi通路中起作用,干扰特异基因的表达。此外siRNA在RNAi相关的通路中也起作用,如抗病毒机制,基因组染色体结构的塑造等。

不同细胞siRNA转染效率的检测问题

1.通常情况下悬浮细胞转染效率较低,贴壁细胞的转染效率因细胞不同,有些很高有些很低。HepG2的DNA转染效率大概有50%,siRNA暂时没做过。如 果你有GFP质粒和针对GFP的siRNA共转染,用只转染GFP质粒的孔做对照,可以看出转染效率。如果没有针对GFP的siRNA就只能转染GFP质 粒,一般情况下转染DNA好的话,转染siRNA也不会差的。个人觉得细胞本身的性质决定了转染效率。2.不是的。针对GFP的siRNA和我们通常用的化学合成的siRNA一样,只不过是针对GFP基因的。参考网址on http://www.bio1000.com/experiment/cell/225073.html

细胞转染实验的siRNA推荐浓度是多少

博凌科解答:我实验合siRNA使用说明:siRNA工作浓度般10-100nM我准备用50nM做转染相同孔板同量siRNA加转 染试剂量相同所我觉存质粒DNA转染与转染试剂比例同影响转染效率问题siRNA能效干扰目蛋白表达加 量越应该沉默效越.合siRNA比较贵加花费合siRNA体外瞬转染干扰效致能维持2-5左右

使用shRNA比siRNA的优势是什么?

两个在RNAi途径的基因沉默中具有实质利害关系的是双链小干扰RNA(siRNA)和基于载体的短发夹RNA(shRNA)。虽然siRNA和shRNA都可用于蛋白沉默,但它们的作用机制有所不同。不管是长的双链RNA还是短的约21bp碱基对的双链都能够直接被转运到组织培养的细胞中。虽然有一些报道提到siRNA在转染细胞时是被转运到细胞核中的,但更普遍的看法是它们在细胞质中聚集。长的双链RNA与Dicer一起形成复合物,双链特异性的核糖核酸酶III能够将它们处理成带有两个游离碱基的长度为21-23nt的siRNA。随后这些siRNA片段与RISC结合,RISC由Argonaute-2 (Ago-2)、Dicer和TAR-RNA-结合蛋白(TRBP)组成。然后RNA的两条链分开,其中一条链从复合物上分离。5"端双链稳定性最低的那条链被选择出来,稳定的并入沉默复合物中。扩展资料早在1984年人们就发现反义RNA能够抑制基因的表达。1993年,Nellen和Lichtenstein提出了一个模型来解释这个观察。然而,直到1998年,Fire等人发表了在线虫RNA干扰的结果,他们发现双链RNA在抑制基因表达方面实际上比单链RNA更有效。最终确定小RNA途径涉及的蛋白质组分有许多与RNA干扰途径一样。图中总结了RNA干扰机制的主要元件。它们包括锁定靶基因的双链RNA(siRNA或shRNA)、Dicer酶,Argonaute蛋白家族的蛋白质(具体来说是Ago-2)、Drosha、RISC、TRBP和PACT。

【文献分享】植物22-nt siRNAs介导了翻译抑制和胁迫适应过程

写在前面 本次分享一篇拟南芥表观遗传领域具有重要意义的paper, "Plant 22-nt siRNAs mediate translational repression and stress adaptation" ,通讯作者是南方科大郭红卫老师,题目即为文章主要结论,非常简洁,也是我比较欣赏的文章类型。之前表观遗传方面的文章接触的少,如有班门弄斧的地方还请指正。 植物会产生长度分别为21,22,24nt的siRNAs,其中21nt的siRNAs负责mRNA的切割,24nt的siRNAs负责DNA甲基化,而22nt的siRNAs目前功能未知。作者鉴定到22nt siRNAs受DCL2(Dicer Like 2)的调控产生,当胞质RNA破坏并且DCL4缺乏时,大量的22nt的siRNAs产生,造成了许多生长缺陷,如极度矮化,分生组织缺陷和色素沉着。两个编码硝酸盐还原酶的基因-NIA1或NIA2-产生了几乎一半的22nt的siRNAs。22nt的siRNAs的产生使得大量基因沉默,诱导了特异性或整体的翻译抑制。此外,22nt的siRNAs在受到环境压力时偏好性积累,特别是那些来自NIA1或NIA2的siRNAs,22nt的siRNAs在翻译抑制、抑制植物生长和增强防卫反应方面发挥作用。 双链siRNAs的前体由RDRP(RNA-dependent RNA polymerases)产生,miRNA前体被Dicer家族切割成20-24nt的sRNA。sRNA的一条链被装进AGO蛋白,形成RISC(RNA-induced silencing complex)来发挥功能。拟南芥包含4类Dicer蛋白,DCL1是主要的DCL蛋白,负责miRNA的合成,miRNA靶向同源RNAs行使切割或翻译抑制的功能;DCL3将双链RNA前体切割为24nt的siRNAs,24nt的siRNAs涉及到DNA甲基化过程;DCL4负责产生21nt的siRNA,介导mRNA切割;DCL2被认为是调控病毒21nt siRNAs的产生。 拟南芥中,EIN5/XRN4(ETHYLENE INSENSITIVE5/EXORIBONUCLE-ASE4)和SKI2(SUPER KILLER2)通过抑制siRNAs的积累来阻止基因的沉默。【所以这两种突变体中,siRNAs极度活跃】我们发现 ein5 dcl4 和 ski2 dcl4 双突中,出现了多种生长缺陷:分生组织,叶片扩展,色素沉着(F1 a,b)。而 ein5 dcl2和ski2 dcl2双突变体中生长正常。有意思的是,dcl2和rdr6(转录后基因沉默突变体)恢复了ein5 dcl4 和 ski2 dcl4 双突体的表型(F1 a,b),这也就说明生长缺陷是由依赖DCL2和RDR6的22-nt siRNA产生所造成的。 通过实施sRNA测序,我们在ein5 dcl4 和ski2 dcl4突变体的TRANS-ACTING SiRNA (TAS) and non-TAS中,鉴定到丰富的 22nt siRNA,而非 21nt siRNA(F1 c)。在ein5 dcl4 和ski2 dcl4突变体中,我们分别鉴定到1182和182个基因产生22nt siRNA,其中111个基因是共有的。在这些基因中,我们注意到两个硝酸盐还原酶,NIA1 and NIA2,分别在ein5 dcl4 和ski2 dcl4突变体中贡献了总22nt siRNA的45%和48%。 转录组测序发现只有极少的产生22nt siRNA的基因在 ein5 dcl4(ed) 和 ski2 dcl4(sd) 突变体中表达量下降(F2 a,b),包括SMXL4和SMXL5。NIA1 and NIA2在突变体中展示出更高或没有改变的表达水平(F2c),NIA1 and NIA2在突变体中的蛋白水平表达量很低,即使添加MG132抑制了26S蛋白酶体降解途径也很难检测到,这就说明这两个蛋白的降解不依赖蛋白酶体途径(F2d)。同时,来自NIA1/2和GTE2/7(也产生22nt的siRNAs,GLOBAL TRANSCRIPTION FACTOR GROUP E2/7)多核糖体的mRNA的量(fractions 8-11)在ein5 dcl4双突变体中呈现出最低的水平{比较对象为 ein5 dcl4,WT,ein5 dcl4 dcl2} ,说明NIA1/2和GTE2/7的mRNA被22nt siRNAs所抑制(F2 ef)。总的核糖体RNA(fractions 6-11)在ed和sd水平也是减少的,并且能被dcl2突变所恢复,揭示了22nt的siRNAs具有全局的翻译抑制作用(F2f)。这也就说明 22nt siRNA,而不是21nt siRNA 抑制了其相应mRNA的翻译,整体水平也是一样。 当ago1-27{该突变体AGO还能行使dicer的作用,但是翻译是抑制的}分别和ein5 dcl4、ski2 dcl4杂交后,生长的表型被恢复,NIA1/2的蛋白水平也被恢复(F3ab)。HUA ENHANCER 1 (HEN1)参与sRNA的甲基化,hen1部分恢复了ein5 dcl4、ski2 dcl4的表型,说明甲基化的22nt siRNA是发挥作用的。 为了探明AGO1对22-nt siRNA的活性是否重要,我们将AGO1免疫沉淀下来,再进行sRNA测序。与AGO1联系的21nt 和22nt siRNA具有5‘尿嘧啶的偏好性,这与之前的报道是一致的。与AGO1相关的22nt siRNAs的丰度与ein5 dcl4中的siRNAs的丰度呈现正相关。并且来自NIA1/2的大量22nt siRNAs也与AGO1有关(F3c),这也就说明带有5"尿嘧啶 22nt siRNAs能够被选择性地装入AGO1。 使用体外地cell-free系统验证22nt siRNAs的抑制作用。当将NIA2的mRNA和RISC孵育的时候,21nt siRNAs展示出比22nt siRNAs 更快的切割(F3 de),可能是因为AGO1装载21nt siRNAs的效率更高。同时22nt和21nt siRNAs导致了NIA2蛋白水平的减少(F3 df)。通过计算NIA2蛋白水平到转录水平的比率,我们发现22nt siRNAs抑制NIA2蛋白水平减少的效率比21nt siRNAs要高(F3g),这也就支持了潜在的翻译抑制机制。 22nt siRNAs 在ein5 dcl4和ski2 dcl4是多的,再突变AGO1以后,22nt siRNAs就变少(F3 h-j)。这些结果就说明AGO1的功能,特别是它抑制翻译的功能,与更有效的22nt siRNAs的合成有关。 ski2 dcl4突变体展示出明显的根生长抑制,这与nia1/2双突的表型很像(F4 ab),再突变dcl2后,表型又恢复(F4a)。GO富集分析发现在突变体中 stress相关的通路被激活,生长响应的通路被抑制,这也就说明22nt siRNAs精细的调控植物地生长和压力响应。 在培养基中缺乏氮地情况下,WT中有更多的22nt siRNAs被诱导产生,这在dcl4中更明显(F4 c),包括来自NIA1/2的siRNAs(F4 d)。一个可能的解释是DCL2的诱导下调了SKI2、EIN5和DCL4的表达(F4f)。缺乏N以后导致几乎没有NIA1/2蛋白积累,并且RNA水平也是减少的(F4 gh)【这里比较迷,因为NIA1/2的表达是受N诱导的,缺氮一方面表达少,另一方面是22nt siRNAs的作用】。因此我们假设,缺氮条件下,NIA1/2的表达也减少,RNA decoy和DCL4的活性降低造成了22nt siRNAs的增加,22nt siRNAs抑制NIA1/2的翻译过程。supplement上说ABA处理和高盐处理也能增加22nt siRNAs的产生,这也就说明,22nt siRNAs的产生,特别是来自NIA1/2的,对于植物适应环境压力是有必要的。 模型解读: 在受到环境胁迫时,如氮饥饿,通过RNA损伤和抑制DCL4的活动,22nt siRNAs得到积累,进一步造成翻译抑制并激活sRNA的扩增。

siRNA和miRNA有什么区别?

如下:1、本质不同miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。2、结构不同miRNA是单链RNA,而siRNA是双链RNA。3、加工过程不同miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂。miRNA的特点1、长度大约是22nt,已经知道的miRNA中21-23nt的超过80%。2、具有能形成分子内茎环结构的前体。植物中前体大小的变化范围较大,可以从几十到数百个核苷酸,而在动物中前体大小的变化范围较小,一般在60-80nt。而且miRNA基因在基因组中有多种存在形式,有单拷贝,多拷贝或基因簇等形式。

siRNA和miRNA有什么区别?越详细越好啊~!不胜感激~!

siRNA是RNAi途径的主要作用物,miRNA和siRNA很容易混淆,他们有许多共同点也有许多不同点。为了能够清楚地让读者弄清两者之间的差异之处,笔者特别将它们之间的差别划分入三个大的阶段:起源阶段、成熟阶段和功能阶段(即调节基因表达的作用阶段)。在描述两者的差异之前,有必要先说一说它们的共同点:1. MiRNA和siRNA都是由22个左右的核苷组成;2. 它们都是Dicer酶的产物;3. 它们在起干扰、调节作用时都会和RISC复合体结合;4. 它们都可以在转录后和翻译水平干扰以抑制靶标基因的翻译;两者之间的主要差异:起源阶段SiRNA:通常是外源的,如病毒感染和人工插入的dsRNA被剪切后产生外源基因进入细胞(注:病毒入侵,或者是自身合成RNA中出现错误,细胞内就会产生双链RNA,来阻止这些异常基因的表达)。MiRNA:是内源性的,是一种非编码的RNA;由miRNA基因表达出最初的pri-miRNA分子。成熟过程SiRNA:直接来源是长链的dsRNA(通常为外源);经过Dicer酶*切割形成双链siRNA,而且每个前体daRNA能够被切割成不定数量的siRNA片段。MiRNA:在细胞核中转录的较大的pri-miRNA经由Drosha(一种RNAse Ⅲ酶)和Pasha(含有双链RNA结合区域)加工成为单链pre-miRNA;接着,发夹状、部分互补的pre-miRNA在细胞质中被Dicer*(一种RNAse Ⅲ酶)酶切割形成miRNA;在生物体中的表达具有时序性、保守性和组织特异性。功能阶段siRNA:它与RISC*(RNA诱导的沉默复合物,使用的AGO蛋白家族的成分为AGO2)结合,以RNAi途径行使功能,即通过与序列互补的靶标mRNA完全结合(与编码区结合),从而降解mRNA以达到抑制蛋白质翻译的目的;它通常用于沉默外源病毒、转座子活性。MiRNA:它和RISC形成复合体(利用的AGO蛋白家族成员为AGO1)后与靶标mRNA通常发生不完全结合,并且结合的位点是mRNA的非编码区的3"端;它不会降解靶标mRNA,而只是阻止mRNA的翻译; miRNA能够调节与生长发育有关的基因。注:RISC, RNA诱导的沉默复合物(RNA-induced silencing complex; RISC)的组装是在RNAi和miRNA通路中最为复杂的过程。新的研究表明,与siRNA和miRNA结合的RISC复合物并不完全相同其中的AGO蛋白质有AGO1和AGO2之分。刚产生的siRNAs和miRNAs都是双链结构,这种双链结构需要解螺旋才能被组装到RISC中发挥作用。组装后的复合物分别称为siRISC和miRISC。从dsRNA引发RNAi的发生大致划分为三个阶段,即启动、剪切和扩增。Dicer酶:新的研究表明siRNA成熟需要Dicer-2和R2D2蛋白,而miRNA则依赖Dicer1和它的伴侣loqs蛋白。在研究人员的不懈努力之下,近期miRNA的基础研究以及应用研究方面取得了许多的重大进展……谢谢!

siRNA实验方法和设计常见问题解答

Q:如何选择转染方法和转染试剂? A:我们的siRNA适用于各种转染方法。转染方法和转染试剂的选择,需要根据细胞来选择,对于容易转染的细胞,常用的转染方法是脂质体转染。 Q:对于难转染的细胞,应该如何提高其转染效率?转染效率又该如何确定? A:1)对于贴壁细胞,推荐采用转染试剂转染即可;2)对于难转染的细胞的转染,如何提高转染效率的问题也是目前研究的技术难题。一般建议使用电转的方法,但是由于电转的方法对细胞损伤比较大,该方法也未必是最佳的。 转染效率的确定,常用的是使用荧光标记的siRNA,通过荧光显微镜,共聚焦显微镜,流式细胞仪检测的方法。具体可以参考我们的产品说明书。 Q:细胞的转染效率是否与siRNA序列相关? A:转染效率的高低取决于与细胞自身及转染方法,而于siRNA的序列并没有直接关系。因此,siRNA在不同的细胞转染效率可能不一样。 Q:转染siRNA时候的细胞密度多少为宜? A:依不同的转染方法或转染试剂而定。如使用lipofectamine 2000作为转染试剂,单独转染siRNA,30%~50%密度较佳;而siRNA与质粒共转染,密度可以到80%-90%。 Q:siRNA转染时的培养基要求,可否含血清? A:不同的转染试剂可能有不同的要求,对于lipofectamine 2000,在配制siRNA和lipofectamine 2000混合物时不能含有血清,但细胞培养基可以含有血清,但不能含有抗生素。 Q:siRNA的储存液体浓度和工作浓度有何区别? A:siRNA的贮存浓度就是保存的最佳浓度,锐博推荐的贮存液浓度为20 μM;而siRNA的工作浓度就是使siRNA能够达到最佳沉默效果的转染浓度,一般10~100 nM范围内,锐博生物推荐的转染浓度是50nM。 Q:转染时该如何分组?分组的目的是什么? [图片上传失败...(image-67e513-1654668332888)] Q:为什么说阳性对照在RNA干扰实验中很重要? A:阳性对照作为一个实验系统检查是很重要的。也就是说,当您看到siRNA阳性对照的预期实验结果时,您能确保在您的实验方法中您的转染、RNA提取物和检测方法是可靠的。 Q:阳性对照及其阴性对照在RNAi实验中的作用?如何选择? A:阳性对照指的是已经验证的针对看家基因或报告基因有效的siRNA,用于监测实验体系和实验方法的可行性。我们可以提供的阳性对照siRNA有针对GAPDH,ACTB,GFP/EGFP有效的siRNA作为阳性对照,客户可以根据具体的实验需要选择。阴性对照往往是非特异的siRNA,主要用于说明siRNA作用的特异性。阴性对照的选择可以是通用的序列(universal)或是随机打乱的序列(scramble),客户可以根据实验要求选择。 Q:用荧光对照siRNA如何检测转染效率?是不是每次实验都必须做? A:我们提供的转染对照siRNA带有Cy3或Cy5荧光标记,可以通过荧光显微镜,共聚焦显微镜,流式细胞仪等荧光检测仪器检测。 除此之外,还应该通过阳性对照实验进一步确定。转染效率的高低主要与细胞自身相关,同等实验条件下,每次转染细胞转染效率应该是相近的,因此可以不必每次都做。但如果每次实验都做一个荧光对照组,将会更加便于排除一些实验问题。 Q:siRNA荧光染料的最大吸收率和发射率各在哪个波段? A:FAM在495nm处有最大吸收率,在520nm处有最大发射率。 Cy3在550nm处有最大吸收率,在565nm处有最大发射率。 Cy5在643nm处有最大吸收率,在667nm处有最大发射率。 Q:转染后出现细胞死亡是什么原因?如何优化转染条件? [图片上传失败...(image-6ee094-1654668332888)] Q:到了转染时间发现细胞密度太低,该如时转染还是让细胞多长一天再转染? A:细胞生长需要一定的密度,而转染试剂对细胞有一定的毒性,如果转染时细胞密度过低,细胞可能会因此生长异常甚至死亡。转染前要求良好的细胞状态和细胞活性,一般也不建议用生长几天的细胞做转染。 Q:siRNA的作用效果应该如何检测? A:通常可以从三个方面来相互验证siRNA的作用效果 3)根据目的基因的功能,从细胞表型的水平检测。 Q:siRNA在细胞内可以作用多长时间?什么时候才是最好的检测时间? A:siRNA介导的RNAi属于瞬时现象,不能稳定传代,一般其作用时间不可能维持很长时间,通常建议在转染后3 4天内完成检测。最佳检测时间,因细胞、目的基因而异,多在转染后24 48小时之间检测。 Q:为什么要强调mRNA水平检测?可以直接检测蛋白和功能吗? A:siRNA直接作用于mRNA,因此mRNA水平检测是最直接在指标。 很多客户认为,mRNA的降解直接的结果应该是对应蛋白质含量的下降,因此蛋白水平的检测结果也应该可以作为有效性的检测指标。事实上,很多情况下往往出现,mRNA下降水平与蛋白下降水平不对应的现象。其可能原因有: Q:干扰效率多高才是好的靶点? A:没有明确的界定,干扰效率高低因不同的细胞类型和不同的基因而异。不同细胞类型的转染效率也不尽相同,不同基因的表达水平也相差较大,主要看干扰效果而定。 Q:沉默效果不理想,应该如何处理? A:最常见的影响沉默效果的两个原因是:转染效率低和siRNA序列设计的效果不理想。如果您初次使用siRNA或采用了新的细胞系,并发现沉默效果不佳,我们建议您对转染效率进行检测,并选择优化转染条件。如果您已经对实验转染条件进行优化但是问题依然存在,我们建议您换用另一种转染试剂或是采用其他技术,这也许能提高转染效率。如果已经提高了转染效率但是沉默效果仍然未达到要求,可能是因为siRNA序列设计的效果不理想。 Q:siRNA反而使得目的基因表达上调了,这是什么原因?该怎么解决? [图片上传失败...(image-99552b-1654668332886)] Q:我从阴性对照实验中得到和特异性RNAi相同的结果,这说明了什么? [图片上传失败...(image-d223f9-1654668332886)] Q:各组阴性对照的检测结果是否应该一样?如果偏差很大该怎么办? A:正常情况下,各组阴性对照的检测结果应该是相近的。如果偏差过大,只需考虑实验结果的准确性。另外,对于一些特定的基因,比如与细胞难受压力相关的基因,又如参与细胞免疫的基因,可能会对外界压力比较敏感,使得各组对照的基因表达发生变化不一致。 Q:用100nM 的siRNA转染时只得到50%沉默效率,我可以把siRNA的浓度增加到200nM甚至400nM吗? A:当干扰效率不佳时,可以在一定范围内适当优化转染浓度,通常优化的范围是10~150nM,但不宜过大,高浓度的siRNA将可能增加非特异性作用的可能性并对细胞产生毒性。 Q:同样的siRNA,为什么在细胞A很有效,在细胞B则没有效果? A:不同细胞的转染效率不一样、基因表达水平也不一样,这些都与siRNA的作用效率有关 siRNA实验方法和设计常见问题解答- 答疑集锦- 非编码RNA研究策略-锐博技术专题专题—丁香园会议频道 (dxy.cn)

siRNA跟miRNA有什么区别吗

二者都是被Dicer降解后,用于抑制靶mRNA转录、翻译或者能够剪切靶mRNA并促进其降解,即转录后水平的基因沉默。区别有以下2点:1、结合位点不同。miRNA的结合位点通常位于3`UTR,而siRNA的结合位点不确定。siRNA(21~25碱基),较少干扰RNA,在利用宿主细胞进行转录时,常产生一些dsRNA,或者转座子转录、基因组中反向重复序列转录等原因产生dsRNA,然后dsRNA被Dicer降解为siRNA。2、来源不同。siRNA(21~25碱基),叫小干扰RNA,病毒基因、人工转入基因、等原因等外源性基因随机整合到宿主细胞基因组内,利用宿主细胞进行转录时,常产生一些dsRNA。或者转座子转录、基因组中反向重复序列转录等原因产生dsRNA,然后dsRNA被Dicer降解为siRNA。扩展资料:miRNA和其target是不完全互补,一般只有2-8位的碱基是完全互补的,而siRNA是完全互补的。miRNA由高等真核生物基因组编码,是自己转录出来的序列,通常用于生物自身生长调控。siRNA的作用结果是使mRNA剪切,而miRNA有的是剪切,有的只是结合上去抑制翻译siRNA是一对一的,一条siRNA只针对一个基因,而miRNA是一对多的,一条可以抑制很多基因。mirna是低等和高等生物都存在的 作用在靶基因的mrna 3"utr区域,通过降解或者抑制翻译来抑制靶基因表达,一条mirna可以有多个靶基因。sirna主要存在于低等生物,可以作用在靶基因的mrna任何地方,通过降解来抑制表达。一般一条sirna只针对一个靶基因,可以通过人为的设计合成sirna来导入高等生物细胞中诱发抑制作用。参考资料:百度百科-siRNA参考资料:百度百科-miRNA

siRNA转染效率不理想的原因(1)

1. RNA与转染试剂比例不佳 由于RNA序列差异、合成条件不同以及是否带有荧光等标记,决定了RNA和转染试剂在不同情况下会有不同的最佳条件,建议先进行预实验优化。 2. 细胞密度不佳 调整细胞密度到转染时汇合度为20-40%。成功转染siRNA的细胞会产生目标基因表达下调,但未成功转染的细胞却不受影响,这时转染效率和总的细胞数量就很重要,一般细胞数量较少时转染效率高。由于siRNA沉默时效性的影响,转染后48小时才能进行进行qRT-PCR检测,转染后48-72小时才能进行蛋白检测。如果转染时铺板密度较高,细胞一方面转染效果不理想,直接影响沉默效果和数据可靠性,另一方面,48小时甚至更长时间后,沉默检测最佳点时,过于密集的细胞将影响细胞状态,从而影响实验结果。 更多关于RNA转染的内容,请咨询英格恩生物。

siRNA转染时细胞铺板密度为什么很重要?

RNA转染试剂Entranster-R4000成功转染siRNA的细胞会产生目标基因表达下调,但未成功转染的细胞却不受影响,这时转染效率和总的细胞数量就很重要,一般细胞数量较少时转染效率高,一些试剂由于本身毒性的影响,太低的细胞数量时毒性明显,所以会要求较高的细胞密度(汇合度),顺便说一句,看一个转染试剂的毒性,看它要求转染时的细胞密度就知道了。siRNA的转染和DNA的转染不一样,DNA的转染是过量表达,死亡一些细胞对过量表达的蛋白本身来说影响不大,但siRNA的转染,死亡的细胞所有的基因表达(包括特定目标基因)都下降,将与siRNA造成的特定目标基因的表达下降现象是一致的,将大大影响实验结果。选用低细胞毒性的转染试剂其实很重要。由于siRNA沉默时效性的影响,转染后48小时才能进行进行qRT-pcr检测,转染后48-72小时才能进行蛋白检测。如果转染时铺板密度较高,细胞一方面转染效果不理想,直接影响沉默效果和数据可靠性,另一方面,48小时甚至更长时间后,沉默检测最佳点时,过于密集的细胞将影响细胞状态,从而影响实验结果。RNA转染试剂Entranster-R4000成功转染siRNA的细胞会产生目标基因表达下调,但未成功转染的细胞却不受影响,这时转染效率和总的细胞数量就很重要,一般细胞数量较少时转染效率高,一些试剂由于本身毒性的影响,太低的细胞数量时毒性明显,所以会要求较高的细胞密度(汇合度),顺便说一句,看一个转染试剂的毒性,看它要求转染时的细胞密度就知道了。siRNA的转染和DNA的转染不一样,DNA的转染是过量表达,死亡一些细胞对过量表达的蛋白本身来说影响不大,但siRNA的转染,死亡的细胞所有的基因表达(包括特定目标基因)都下降,将与siRNA造成的特定目标基因的表达下降现象是一致的,将大大影响实验结果。选用低细胞毒性的转染试剂其实很重要。 由于siRNA沉默时效性的影响,转染后48小时才能进行进行qRT-pcr检测,转染后48-72小时才能进行蛋白检测。如果转染时铺板密度较高,细胞一方面转染效果不理想,直接影响沉默效果和数据可靠性,另一方面,48小时甚至更长时间后,沉默检测最佳点时,过于密集的细胞将影响细胞状态,从而影响实验结果。

做sirna 干扰细胞一周了还有效吗

In readily transfected cells treated with potent and effective siRNAs such as the new AmbionSilencer Select siRNAs, near-maximal silencing can be achieved for 5–7 days.赛默飞他们siRNA干扰持续大概一个星期左右。要看你的具体的干扰的细胞,干扰效果等情况。但是,肯定是很短的。建议;重新干扰。--汉恒生物

siRNA 怎么用于动物实验

Small interfering RNA (siRNA):种RNA(~21-25核苷酸),由Dicer(RNAase Ⅲ家族双链RNA具特异性酶)加工.SiRNAsiRISC主要员,激发与互补目标mRNA沉默.RNA干涉(RNAinterference,RNAi)指内源性或外源性双链RNA(dsRNA)介导细胞内mRNA发特异性降解,导致靶基表达沉默,产相应功能表型缺失现象.RNA干涉(RNAi)实验室种强实验工具,利用具同源性双链RNA(dsRNA)诱导序列特异目标基沉寂,迅速阻断基性.siRNARNA沉默通路起作用,特定信使RNA(mRNA)进行降解指导要素.siRNARNAi途径间产物,RNAi发挥效应所必需.siRNA形主要由DicerRde-1调控完.由于RNA 病毒入侵、转座转录、基组反向重复序列转录等原,细胞现dsRNA,Rde-1(RNAi缺陷基-1)编码蛋白质识别外源dsRNA,dsRNA达定量候,Rde-1引导dsRNA与Rde-1编码Dicer(Dicer种RNaseIII 性核酸内切酶,具四结构域:Argonaute家族PAZ结构域,III型RNA酶性区域,dsRNA结合区域及DEAH/DEXHRNA解旋酶性区)结合,形酶-dsRNA复合体.Dicer 切割形siRNA,,ATP参与,细胞存种RNA诱导沉默复合体RNA-induced silencing complex RNAi干涉关键步骤组装RISC合介导特异性反应siRNA蛋白.siRNA并入RISC,与靶标基编码区或UTR区完全配,降解靶标基,说siRNA降解与其序列互补配mRNA.其调控机制通互补配沉默相应靶位基表达,所种典型负调控机制.siRNA识别靶序列高度特异性,降解首先相于siRNA说央位置发,所些央碱基位点显极重要,旦发错配严重抑制RNAi效应.RNAi基沉默(silent gene)面具高效性简单性,所基功能研究重要工具.数药物属于标靶基(或疾病基)抑制剂,RNAi 模拟药物作用,功能丢失(LOF)研究比传统功能获(GOF)更具优势., RNAi 今制药产业药物靶标确认重要工具.同,些靶标实验证明效siRNA/shRNA本身进步发RNAi药物.药物标靶发现确认面,RNAi技术已获广泛应用.物技术公司或制药公司通利用建立RNAi文库引入细胞,通观察细胞表型变化发现具功能基.通RNAi文库介导肿瘤细胞发现能抑制肿瘤基.旦所发现基属于用药靶标(表达蛋白细胞膜或泌细胞外),针靶标进行规模药物筛选.外,发现靶标用RNAi技术细胞水平或物体内进步确认.疾病治疗面,双链RNA或siRNA已用于临床测试用于几种疾病治疗,视黄斑退化、肌肉萎缩性侧索硬化症、类风湿性关节炎、肥胖症等.抗病毒治疗面,帕金森病等神经系统疾病已经始初步采用RNA干扰疗.肿瘤治疗面已经取些.

siRNA转染后什么时候做蛋白检测最好?

siRNA转染后(entranster)在mRNA水平下降后,接下来才会有蛋白水平的下降,一般来说,转染后48-72小时进行蛋白检测通常会得到较好的结果。 更多关于RNA转染的内容,请咨询英格恩生物。

siRNA有那几大分类?

siRNA没有分类,siRNA就是一个小的分类。小干扰RNA(siRNA),有时称为短干扰RNA或沉默RNA,是一类双链RNA分子,长度为20-25个碱基对,类似于miRNA,并且在RNA干扰(RNAi)途径内操作。它干扰了表达与互补的核苷酸序列的特定基因的转录后降解的mRNA,从而防止翻译。siRNA由双链RNA (double strand RNA, dsRNA) 在细胞内被RNase III (如Dicer) 切割成21~25bp大小的双链RNA。dsRNA可以是外源的, 如病毒RNA复制中间体或人工导入的dsRNA;也可以是内源的, 如细胞中单链RNA在RNA依赖的RNA聚合酶的作用下形成的dsRNA 。转录后基因沉默siRNA诱导的转录后基因沉默始于RNA诱导的沉默复合物(RISC)的组装。该复合物通过切割编码靶基因的mRNA分子来沉默某些基因表达。为了开始该过程,两条siRNA链中的一条(引导链)将被装载到RISC中,而另一条链即过客链被降解。某些Dicer酶可能负责将引导链加载到RISC中。然后,siRNA扫描并指导RISC到mRNA分子上完全互补的序列。认为mRNA分子的切割由RISC的Argonaute蛋白的Piwi结构域催化。然后通过切割与siRNA残基10和11配对的靶核苷酸之间的磷酸二酯键精确切割mRNA分子,从5"端开始计数。这种切割导致mRNA片段被细胞核酸外切酶进一步降解。5"片段通过外来体从其3"末端降解,而3"片段从其5"末端通过5"-3"外切核糖核酸酶1(XRN1)降解。切割后靶mRNA链与RISC的解离允许更多的mRNA被沉默。这种解离过程很可能是由ATP水解驱动的外在因素促进的。有时不会发生靶mRNA分子的切割。在一些情况下,磷酸二酯骨架的核酸内切裂解可以通过切割位点附近的siRNA和靶mRNA的错配来抑制。其他时候,即使靶mRNA和siRNA完全配对,RISC的Argonaute蛋白也缺乏内切核酸酶活性。在这种情况下,基因表达将被miRNA诱导机制沉默。Ping-Pong方法的简化版本,涉及蛋白质Aubergine(Aub)和Argonaute-3(Ago3)切割piRNA的3"和5"末端。Piwi相互作用的RNA负责转座子的沉默,而不是siRNAs。以上内容参考:百度百科-小干扰RNA

siRNA是什么

siRNA指的是小干扰RNA。小干扰RNA有时称为短干扰RNA或沉默RN,是一个长20到25个核苷酸的双股RNA,在生物学上有许多不同的用途。已知siRNA主要参与RNA干扰现象,以带有专一性的方式调节基因的表达。此外,也参与一些与RNAi相关的反应途径。扩展资料:siRNA具有明确定义的结构,具有磷酸化5"末端的短双链RNA和具有两个突出核苷酸的羟基化3"末端。该切酶酶催化生产的siRNA由长的dsRNA和小发夹RNA。由于原则上任何基因都可以被具有互补序列的合成siRNA敲低,因此siRNA是在后基因组时代验证基因功能和药物靶向的重要工具。参考资料来源:百度百科—siRNA

第3周:利用大豆小RNA图谱鉴定来自编码基因区的phasiRNA

理解为产生phasiRNA的PHAS位点与编码蛋白的基因区有重叠可能更准确。 侵删 u2003u2003小RNA是一类普遍存在的,多功能的抑制物,包括(1)microRNA(miRNA),由mRNA形成的茎环结构加工而成; (2)小干扰RNA(siRNA),在植物中通常由需要依赖RNA的 RNA聚合酶的过程衍生。我们构建并分析了大豆小RNA的表达图谱,鉴定了超过500个产生21个核苷酸的phased siRNAs(phasiRNA;来自PHAS位点)的位点,其中483个与注释的蛋白质编码基因有重叠。 通过整合miRNA与RNA end(PARE)数据的分析,检测到127个PHAS位点上的20个miRNA靶标 。 PHAS位点的主要类别(208,占41%)与NB-LRR基因相对应;这些小RNA中的一部分优先在根瘤中积累。在PHAS位点中,还观察到TAS3的新代表和非经典相位模式。由miR4392触发的非编码PHAS位点优先在花药中积累;预测phasiRNA靶向转座因子,在大豆生殖发育中具有峰值丰度。因此,phasiRNA在双子叶植物中显示出巨大的多样性。我们鉴定了新的miRNA并评估了miRBase中记录的大豆miRNA的准确性,显着改善了大豆miRNA注释,促进了miRBase注释的改进并鉴定了高严谨性的新miRNA及其靶标。 文章做了些什么: u2003u2003 小非编码RNA在发育,细胞分化,适应生物和非生物胁迫以及基因组稳定性方面具有重要作用。 小RNA的主要活性是通过靶标降解,翻译抑制或通过指导染色质修饰来对特定mRNA或基因表达模式进行负调控。迄今已鉴定出几种不同类型的小RNA。在植物中,研究最多的小RNA是microRNA(miRNA)和小干扰RNA(siRNA);这些是由不同的前体和不同的途径产生的。 通常长度为21至22个核苷酸的miRNA 衍生自通过RNA聚合酶II从MIRNA基因转录的长非编码RNA前体。miRNA前体形成由DICER-LIKE1(DCL1)或其他DCL酶(极少数)加工的茎环结构,产生3"具有两个核苷酸突出的单个小RNA双链体(miRNA / miRNA *)。小RNA双链体的一条链是成熟miRNA,被称为引导链,它会结合到Argonaute(AGO)蛋白上以形成效应复合物(所谓的用于RNA诱导的沉默复合物——RISC),其指导miRNA靶标降解或翻译抑制。双链体的另一条链,即miRNA *或passenger strand,迅速降解,通常不会积累。 siRNA通常来自完全互补的长双链RNA(dsRNA)前体,这些前体一般由RNA依赖性的RNA聚合酶(RDR)形成,也可能由退火了的正义/反义转录物形成。已经在植物中定义了几类siRNA,主要类别是异染色质siRNA,它在胞嘧啶甲基化和抑制性组蛋白修饰的建立和维持中起关键作用。 siRNA还能够作为移动信号起作用,通过siRNA的运动使沉默效应从细胞扩散到其它细胞或更长距离。 u2003u2003科学家已经鉴定了一类相当有趣的siRNA,它们是长双链RNA前体以21个核苷酸为增量来逐步裂解的产物,产生定相的或完全间隔排列的小RNA。这些siRNA,即所谓的相位排列siRNA(phasiRNA),由特定的引导miRNA切割而产生,遵循单击或双击模式,分别对应一个22nt或两个21nt的miRNA的靶位点。切割的未加帽的mRNA产物用作RDR6的底物,产生dsRNA前体,然后被DCL4切割以产生21-核苷酸的定相siRNA。 一些定相siRNA已经显示在靶基因的反式调节中起作用;因此,这类siRNA最初被称为tasiRNA,但是更多的基因位点产生具有未知反式作用的相同相位模式(PHAS基因座)的siRNA,因此一般用“phasiRNA”进行描述。 tasiRNA通过对互补靶位点进行切割来调节mRNA,这如同许多植物miRNA一样。 最着名的tasiRNA是由TRANS-ACTING SIRNA GENE3(TAS3)产生的反式小干扰RNA-生长素响应因子(tasiARF)的集合。tasiARF在抑制生长素响应因子基因(ARF2,ARF3 / ETTIN和ARF4)中起作用 。已经在许多植物物种中鉴定出许多phasiRNA,包括拟南芥,水稻(Oryza sativa)和葡萄(Vitis vinifera)。已知PHAS基因座的数量在物种之间差异很大,从野生稻(Oryza rufipogon)中的800多个到拟南芥中的不到30个。在豆科植物中,分别在Medicago truncatula和大豆(Glycine max)中鉴定出114和41个PHAS基因座。 u2003u2003大豆在经济上是世界上最重要的豆类,它是蛋白质和食用油的主要来源之一。大豆的基因组序列现在可公开获得。基因组序列与下一代测序技术产生的数据一起,使得能够在全基因组范围内鉴定和定量小RNA。迄今为止,已在大豆中鉴定出数百种miRNA。然而,许多新注释的miRNA及其靶标尚未得到很好的验证,甚至注释的miRNA也经常在更强大的实验数据后进行校正。PHAS基因座比miRNA的注释更差。与Medicago truncatula相比,在大豆中鉴定出的PHAS位点要少得多。凭借广泛的小RNA数据和更高的测序深度,可以发现更多的PHAS。在这项研究中,我们分析了从不同组织中创建的大量小RNA文库,以构建小RNA的表达图谱并全面鉴定大豆中的PHAS基因座。 我们证明大豆中的许多蛋白质编码基因是PHAS基因座。 除了先前被鉴定为豆科植物PHAS基因座的NB-LRR之外,我们发现了数百种其他产生phasiRNA的蛋白质编码基因。 我们整合了RNA末端(PARE)数据的并行分析,以确定这些PHAS基因座的miRNA触发因子。 从这些数据中,我们验证了在miRBase(版本20)中记录的大豆miRNA并且鉴定了新的miRNA,证明了许多先前报道的miRNA具有siRNA的特征。基于表达分析,我们证明了phasiRNA以及已知和新发现的miRNA在不同组织和不同处理下的特异性表达。 总结 重点是流程图和过滤条件 探究了不同组织(或组织组合)中的miRNA富集差异。 图1.新的和组织优先miRNA的表达谱。 (A)在该研究中鉴定的新miRNA包括许多在特定组织或器官中差异富集的miRNA。 (B)对先前描述的大豆miRNA的分析还揭示了花,叶和根瘤中一系列的组织bias。 图2.编码蛋白质的PHAS基因。 比起其他研究过的植物基因组,大豆基因组含有更多的编码蛋白质的产生phasiRNA的基因座。 (A)编码PHAS基因座的类别和数量。 (B)NB-LRR家族中PHAS基因的表达谱和层次聚类。 (C)大豆基因组中phasi-NB-LRR基因的分布和聚类。 图3.大豆TAS3 TasiRNA的触发物和加工机制。 (A)来自大豆基因组中存在的六个TAS3基因座中的tasiRNA的总和在花,叶,根瘤和种子组织中的富集模式。 TAS3a和TAS3b是相同的,因此不能单独测量。 (B)源自TAS3a / b / c / d / e / f的TasiARF。所有TAS3 598D(+)和597D(+)siRNA的验证目标均在生长素响应因子(ARF)家族中,与其相对良好的保守序列一致(数据未显示)。 (C)在大豆TAS3基因座处存在两个或三个miR390靶位点,并且相对于这些靶位点的定相方向表明在TAS3e和TAS3f处由21个核苷酸的miRNA触发的siRNA的非典型加工方向。 图4.由TasiARF触发的ARF3 PHAS-Locus。 (A)大豆TAS3衍生的tasiARF在两个相同的位点靶向ARF3,通过PARE验证切割的59位点(下图)和未观察到切割的39位点。这种双击的tasiARF活性产生了定相siRNA(中图)。 y轴是phasing “score”,其是定相显著性的估计P值( 参见方法 )。 较低的两个图像是我们的Web浏览器,显示小RNA(中间)或PARE数据(下部),橙色虚线表示tasiARF切割位点。有色斑点是在y轴上显示丰度的小RNA ;浅蓝色斑点表示21个核苷酸的sRNA,绿色表示22个核苷酸的sRNA,橙色表示24个核苷酸的sRNA,其他颜色对应其他sRNA大小。红色框是带注释的外显子(粉红色是非翻译区域)。紫色线表示重复区的k-mer频数。 (B)来自图A的数据表明two-hit的phasiRNA生物发生的级联反应,其中21个核苷酸(nt)miR390触发21个核苷酸的tasiARF生物发生,并且通过two-hit机制,tasiARF触发来自ARF3和ARF4的额外二级siRNA的生成(参见补充图7在线)。 ARF siRNA可以顺式或反式起作用。 图5.源自Arogenate脱氢酶基因座的花药中高度富集的PhasiRNA。 (A)涉及雄激素脱氢酶的生化途径。 (B)来自雄激素脱氢酶相关基因座的phasiRNA产生的示意过程。在左侧,将形成发夹的基因片段加工成phasiRNA。 (C)来自不同组织中的两种arogenate dehydrogenase PHAS基因的miRNA触发物和phasiRNA的reads丰度水平(红色条)和基因表达水平(绿色条),其被标准化为RP5M和RP25M。 如何确定有没有匹配到tRNA,rRNA,snRNA和snoRNA? 降解组测序: http://www.ebiotrade.com/custom/LC_BIO/100427/index.htm

micro RNA二级结构

RNA干扰及其应用进展孙德惠1,2,才学鹏1*,常惠芸1 ,独军政1 (1.中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室农业部畜禽病毒学重点开放实验室,甘肃兰州 730046;2.甘肃农业大学动物医学院,甘肃兰州 730070)摘 要:RNA 干扰(RNA interference,RNAi)是一种由双链RNA介导的基因沉默现象.RNAi主要发生在核外,RNAi具有操作简便快速等特点.RNAi现象自发现至今已逾10年,在此期间,已将研究重点由机理研究转向应用研究.文章以RNAi的应用为重点,从RNAi的起源,可能的作用机制,作用特点,研究方法,应用前景及展望等方面进行了综述.关键词:RNA干扰;双链RNA;基因沉默RNAi是Napoli C D等[1]在试图向紫色矮牵牛花转导色素合成基因,用以增加其花色时发现的.结果出乎预料,转基因的植株不仅没有新基因的表达,反而自身的色素合成也减弱了,一些转基因的花出现了全白色或部分白色.他们把这种导入的基因未表达和植物本身合成色素基因的失活现象命名为共抑制(cosuppression).之后,Ramano等在向粗糙孢菌(Neurospora crassa)中导入合成胡萝卜素的基因时造成失活,他们称为基因静止(quelling).Guo S等[2]发现正义RNA与反义RNA有相同水平的抑制效应,但未能就此现象给出合理的解释.Fire A等[3]在研究反义核苷酸时发现在线虫体内,双链RNA( double stranded RNA,dsRNA)能有效地抑制有互补序列的内源性基因,且抑制效果优于单链反义RNA.至此,正式提出了双链RNA诱导的RNAi的概念,开启了RNAi研究的序幕.1 RNAi可能的作用机制及特点1.1 RNAi的作用机制虽然RNAi作用的确切机制尚不清楚,但目前普遍认可是Bass假说.具体概括为三个阶段.(1)起始阶段.在细胞内,双链RNA(dsRNA)由核酸酶Ⅲ(RNaseⅢ) Dicer 在ATP的参与下被处理为21个~23个碱基的小RNA,即小干扰RNA(small interfering RNA,siRNA).siRNA是由19个~21个碱基配对形成的双链,并在其3′末端有两个游离未配对的核苷酸.研究发现, siRNA 是RNAi 作用发生的重要中间分子,序列与所作用的靶mRNA 的序列具有高度同源性;双链的两端各有2个~3个突出的非配对的3′碱基;两条单链末端为5′端磷酸和3′端羟基.这些是细胞赖以区分真正的siRNA和其他双链RNA的结构基础. 研究表明,平末端的siRNA 或失去了5′磷酸基团的siRNA 不具有RNAi 的功能[4] (2)引发阶段.siRNA与Argonaute蛋白家族及其他未知因素结合,形成siRNA-核蛋白复合物(siRNA-ribonucleoprotein complex,siRNP).siRNP在ATP及其他未知因素参与下,使双链siRNA解旋形成RNA诱导的沉默复合物(RNA inducing silencing Complex ,RISC).RISC可能以完全单链或两条链解旋但不完全分离的形式存在,继而RISC在dsRNA的介导作用下与互补mRNA结合,并将其降解.mRNA被降解在转录后水平,抑制基因表达,因而又称之为转录后基因沉默( posttranscriptional gene silencing,PTGS)(3)循环放大阶段.在siRNA诱导的RNAi过程中,可能还存在siRNA 的循环放大过程,以维持它的RNA诱导功能.此过程推测是以siRNA为引物,互补mRNA 为模板,在RNA依赖性RNA合成酶(RNA-dependent RNA Polymerase,RdRP) 的作用下,合成新的双链RNA,再由Dicer作用,产生新的siRNA,完成siRNA 的放大过程,开始新的RNAi循环[5].关于对RNAi机制中重要酶的作用研究,Zamore P D等[6]发现,21 nt RNA指导mRNA的降解; Scharf W D等[7]发现ATP依赖的RNA解旋酶为Mut6;Grishok A等[8]发现Let-7和lin-4为内源性的RNAi基因(stRNA);Dalmay T等[9]提出RNA依赖的RNA多聚酶就是SDE-1; Bernstein E等[10]证实RNaseш样的核酸酶为Dicer; Elbashir S M等[11]应用外源性21 nt-siRNA能够抑制同源mRNA的表达;Novina C D等[12]证实无论是针对病毒感染细胞所需的CD4受体,还是针对病毒基因组的gag区域,siRNA都可以有效地使病毒与细胞的基因沉默,抑制HIV的感染与复制.1.2 RNAi的作用特点(1)"共抑制"性.RNAi是双链RNA介导的转录后基因沉默机制,它的启动子相当活跃,外源基因可以转录,但不能正常积累mRNA;RNAi作用不仅使外源基因在转录后水平上失活,同时诱导与其同源的内源基因沉默.(2)高效性.试验证明双链RNA干扰mRNA 翻译的效率比单纯反义或正义RNA 的抑制效率提高了几个数量级;RNAi可在低于反义核酸几个数量级的浓度下,使靶基因表达降到很低水平甚至完全"剔除",而产生缺失突变体表型.它比基因敲除技术更为便捷,科学家称RNAi技术为靶基因或靶蛋白的"剔降"(knockdown).(3)高特异性.由dsRNA降解成的小干扰RNA,除其正义链3′端的两个碱基在序列识别中不起主要作用外,其余碱基在序列识别中都是必需的,单个碱基的改变即可使RNAi失效,RNAi能特异性降解mRNA,针对同源基因共有序列的RNAi则可使同源基因全部失活.(4)高穿透性.RNAi具有很强的穿透能力,能在不同的细胞间长距离传递和维持,如在含有双链RNA的溶液中,喂食表达双链RNA的细菌等,能向秀丽隐杆线虫导入双链RNA.(5)"遗传性".已在线虫中观察到RNAi效应通过生殖系传递到后代,说明RNAi具有一定的可遗传性.(6)高稳定性.细胞中可能存在天然的稳定siRNA的机制.此机制可能是siRNA与某种保护性蛋白结合,从而使其具有相对的稳定性,这些双链RNA 不像反义核酸那样需要多种化学修饰来提高其半衰期.(7)双干扰系统.哺乳动物中存在有非特异性干扰和特异性干扰两条独立的途径. 非特异性干扰反应是由大于30个碱基对的双链RNA介导,导致整个细胞中非特异性蛋白合成抑制,RNA降解;特异性反应由21 bp~25 bp的小干扰RNA介导,可逃避非特异性干扰系统的"监控",只降解与其序列相应的单个基因的mRNA[11].2 研究方法在研究过程中,科研人员逐渐摸索总结出了成套的研究方法.目前,展开RNAi操作主要有两种方法.一种为直接将靶向特定基因的大约21个碱基长短siRNA,或45个~50个碱基的发夹结构RNA(small hairpin RNA,shRNA)转染到细胞,shRNA在细胞中会自动被加工成siRNA,从而引发基因沉默或表达抑制.另一种为构建特定的siRNA表达载体,通过质粒在体内表达siRNA而引发基因沉默.此法的优点是排除了RNA酶干扰,延长siRNA半衰期.更重要的是,该法可以进行稳定表达细胞株的筛选,且随着质粒复制扩散到整个机体,基因抑制效果可传代.试验表明,可被化学合成或体外合成的siRNA抑制的基因同样可被表达相同序列的载体表达出的siRNA所抑制.3 RNAi的应用3.1 基因功能研究在神经生物学研究中,科学家们通过siRNA表达质粒对中脑腹侧神经细胞中的多巴胺能相关基因进行了有效抑制,还通过病毒介导的RNAi建立了此类成年小鼠模型,不仅为建立神经系统的功能缺失模型找到了一些有价值的表型标记,对神经系统的基因治疗也有一定借鉴意义;在癌症研究中,通过shRNA表达载体成功抑制成年大鼠脑癌基因,同时对RNAi的远程(穿过血脑屏障)基因沉默方法进行了非常有益的探索;利用细胞凋亡途径,通过RNAi抑制凋亡基因Caspase-8能提高患急性肝功能衰竭小鼠的成活率,并发现Caspase 8 siRNA处理对特异性Fas激活剂(Jo2和AdFasL)和野生型腺病毒介导的急性肝功能衰竭都有效,表明这个动物模型能反应人类急性病毒肝炎多分子参与的机制,增强了siRNA用于急性肝炎病人治疗的希望.除了对某些关键基因的RNAi研究外,还在哺乳动物细胞中探索了siRNA在基因组水平上的筛选方法.他们建立了一个包含8 000多个基因的siRNA表达框文库阵列,通过它来高通量筛选NF-kB信号途径中已知的及Unique基因.由此可见,RNA干扰也正作为筛选成百甚至上千基因的工具,发挥着越来越大的作用[13].RNAi为系统地抑制RNA分子合成蛋白提供了快速而相对简便的途径.通过在一段时间内对一个基因RNA信号的抑制,研究者可以深入研究基因功能,进而描绘支配从细胞形态到信号系统的遗传网络.3.2 基因治疗及药物筛选探索由于RNAi是针对转录后阶段的基因沉默,相对于传统基因治疗对基因水平上的敲除,整个流程设计更简便,且作用迅速,效果明显,为基因治疗开辟了新的途径.其总体思路是通过加强关键基因的RNAi机制,控制疾病中出现异常的蛋白合成进程或外源致病核酸的复制及表达.尤其针对引起一些对人类健康严重危害的病毒,如2003年在全球多个国家和地区流行的SARS,病原体是单链核酸的新型冠状病毒,寻找药物靶点,设计核酸药物就更为方便.目前已经有很多公司在积极开发这方面的药物,如在SARS药物研究中一鸣惊人的美国俄勒冈州的AVI BioPharma生物制药公司等.国内也有很多研究机构及生物技术公司投入了这方面的工作.如上海生科院成立了SARS防治科研攻关小组,其中生化细胞所和药物所的一些课题组在从RNAi的角度努力.此外,北京大学,中南大学,北京动物所等大专院校和研究机构,以及北京金赛狮反义核酸技术开发有限公司等,也开展了RNAi药物的研究与开发.基因治疗方面最引人注目的进展之一是对肝炎病毒的RNAi研究.Mccaffrey A P等通过表达shRNA的载体在细胞水平和转染HBV质粒后免疫活性缺失的小鼠肝脏中成功抑制了HBV复制.与对照相比,小鼠血清中测得的HBsAg下降了84.5%,免疫组化对HBcAg的分析结果下降率更超过99%.哈佛大学Lieberman研究小组通过注射针对Fas的siRNA,过度激活炎症反应,诱导小鼠肝细胞自身混乱.然后给测试小鼠注入 Fas hyperdrive的抗体,发现未进行siRNA处理的对照组小鼠在几天中死于急性肝功能衰竭,而82%的siRNA处理小鼠都存活下来,其中80%~90%的肝细胞结合了siRNA.并且,RNAi发挥功能达10 d,3周后才完全衰退.由于Fas很少在肝细胞外的其他细胞高水平表达,它对其他器官几乎没有副作用.此外,这个小组还和其他研究者积极开展针对HIV的RNAi测试,目前报道他们使用的针对CCR5蛋白的siRNA能阻止HIV进入免疫细胞约3周,在已经感染的细胞中也能阻止感染病毒的复制.然而,尽管取得了不少研究成果,但要真正用于医疗还需时日.目前大多数还停留在小鼠测试阶段,siRNA的导入多采用静脉或腹腔注射,尾部注射,细胞移植等,如何对人进行有效的给药,既能确保药效在靶器官靶组织有效释放,还要具有高度安全性等问题都需进一步研究.人们期待着RNAi引领的新医学革命的到来.在药物筛选领域,除了线虫这种低等动物的RNAi高通量药筛模式外,Lavery K S等对RNAi在药筛领域的应用前景进行了高度评价,RNAi技术将逐渐成为药物靶点筛选和鉴定的强大工具.他对如何在药筛的各个阶段应用RNAi做了具体描述及展望,并指出将这项技术与高通量筛选,体外生物检测和体内疾病模式相结合,将提供大量基因功能方面的有用信息,在药物开发过程的多个阶段促进靶点的有效筛选.3.3 抗肿瘤治疗多种癌基因可以作为靶点设计相对应siRNA[14].Brummelkamp T R等[15]用逆转录病毒载体将siRNA 导入肿瘤细胞中,特异性抑制了癌基因K2RAS (V12)的表达.对急性髓性白血病的研究已经取得了较好的结果.Scherr M等[16]以引起慢性髓性白血病和bcr2abl阳性急性成淋巴细胞白血病的bcr2abl癌基因为靶基因,设计了对应的siRNA,并获得了87% 的有效抑制率.Wilda M等[17]用siRNA抑制白血病BCR/ABL融合基因表达也取得了成功. 因此,基于RNAi 技术的抗肿瘤治疗药物开发潜力巨大.有报道称,一种全新生物工程药品"RNA干扰剂"(非干扰素)业已浮出水面,并有望在3年内上市.经过多年的探索,科学家终于发现,在癌细胞和病毒RNA的22对碱基中有1对碱基专门负责复制工作,只要能使这对碱基"休眠",癌细胞或病毒就会自动停止复制.这一重要发现为一种全新药物——RNA干扰剂奠定了基础.科学家们相信,艾滋病,乙型肝炎,恶性胶质瘤(恶性脑瘤)和胰腺癌等疾病有望成为RNA干扰剂的第一批受益者(2004年经FDA批准已开始RNA干扰剂的临床试验),艾滋病,中枢神经系统退行性病变疾病如多发性硬化症,阿尔茨海默病,帕金森病等将成为第二批受益者.3.4 抗病毒治疗由于RNAi 是机体中古老而天然的抗病毒机制,目前国外科技人员利用此特点,已设计出针对HIV gag,tat,rev,nef等基因的siRNA,针对丙型肝炎病毒非结构蛋白5B基因的siRNA,针对脊髓灰质炎病毒衣壳蛋白和多聚酶基因的siRNA,针对口蹄疫病毒3D片段siRNA等[18],均在试验中取得理想结果.陆续有关通过RNAi抑制其他病毒在细胞内复制的报道如呼吸道合胞病毒,人乳头瘤病毒,乙型肝炎病毒,丙型肝炎病毒[19]等,国内也已设计出针对口蹄疫病毒VP1基因的siRNA,针对丙型肝炎病毒5′保守区的siRNA,针对口蹄疫病毒IRES和L串联序列两侧的保守区的siRNA[20],针对SARS冠状病毒的6个siRNA,即RL001,R L002,RL003,RL004,RL005和RL006,均已取得理想结果.针对病原的siRNA已经进行到动物实验阶段[21],向病毒病的有效防治迈出了坚实的一步.由此可见,利用RNAi技术将使病毒病的有效治疗成为可能.3.5 转基因研究在动植物的转基因试验中, 经常发生基因沉默.因此, 对转基因沉默机制的探索可以为在转基因研究中避免基因沉默提供对策.在转基因植物研究中避免基因沉默可提高试验成功率,且节省时间,而在大型动物转基因研究中避免基因沉默可节约成本,提高产率.3.6 干细胞研究在干细胞研究方面,在dsRNA阻断大鼠骨髓源性神经干细胞 Hes5表达的试验中[22],观察外源性短dsRNA在转录后水平mRNA水平降低基因表达的效率,并对其影响因素进行了初步探讨.同时基于干细胞可能拥有自己的一套基因组,不同类型的干细胞又拥有各自所特有的基因,这些基因可能是决定干细胞特性的最关键的实质性因素.因此,RNAi技术在此领域应用空间广阔.3.7 研究信号传导的新途径Biotech认为,联合利用传统的缺失突变技术和RNAi技术可以很容易地确定复杂的信号传导途径中不同基因的上下游关系,Clemensy等应用RNAi研究了果蝇细胞系中胰岛素信息传导途径,取得了与已知胰岛素信息传导通路完全一致的结果.RNAi技术较传统的转染试验简单,快速,重复性好,克服了转染试验中重组蛋白特异性聚集和转染率不高的缺点,因此认为RNAi技术可能成为研究细胞信号传导通路的新途径.3.8 常见病的治疗Nature杂志报道了miRNA(Micro RNA)的应用上一个重要发现,成功采用miRNA调节了胰岛素的分泌,这为糖尿病的治疗带来新的希望,也将为糖尿病的新药研究带来新的曙光和思路.据Sicence杂志报道,显示应用RNAi技术可有效降低血管内胆固醇含量,对治疗心血管疾病有明显的作用.4 展望综上所述,RNAi技术在基因功能研究,抗肿瘤治疗,抗病毒治疗,基因应用研究,常见病的治疗等许多方面都是强有力的工具和手段.同时做为新兴的生物技术,还有广阔的研究和应用空间期待着科研人员的探索.例如,siRNA在病毒持续性感染过程中扮演怎样的角色 siRNA在冬眠动物体内的作用如何 RNAi在雀斑形成中起到怎样的作用 如上述问题得到解决,将进一步依据其机理及特点,有望应用于病毒持续性感染的鉴别诊断及治疗,利用siRNA在冬眠动物体内的作用进行星际航行,以解决能量供应及时间跃迁问题,RNAi应用于祛除雀斑等.尽管在RNAi方面的研究已取得许多突破性进展,尤其是哺乳动物细胞中的研究的报道逐渐增多,但由于RNAi机制尚未完全阐明,仍有许多问题尚未得到彻底解答.例如,siRNA 在哺乳动物细胞中抑制mRNA表达是有效的, 但达不到果蝇细胞那样的高抑制率, 可能是因为生物进化水平越高,调控基因表达系统的复杂程度相应的越高,多种抑制机制间相互作用的频率也越高,抑制作用受到的影响因素也就越多.另外, 在哺乳动物中,RNAi能否成功地抑制基因表达以及抑制的程度还取决于细胞类型.对线虫来说,可以采用注射,浸泡或喂食的方法转入dsRNA,而对哺乳动物来说,寻找高效的方式来转入siRNA以及快速的方式来筛选siRNA仍在进一步探索中.RNAi在抗病毒感染中的应用令人鼓舞, 但要取得最终的成功还有很漫长的路要走.其中一个关键的原因是siRNA并不能对所有病毒RNA发生作用,有些病毒靶序列可能隐藏在二级结构下, 或者位于高度折叠的区域中, 而有些病毒序列可能与蛋白质形成紧密的复合物, 阻碍了与siRNA 的识别.因此,不仅要选合适的靶序列,而且需要反复试验.另一个重要的原因是病毒子代的突变率较高, 这使病毒可逃避siRNA 的识别.为了克服这个障碍,所选病毒RNA的靶序列必须是高度保守的, 或者设计数对siRNA同时作用[23].总之,RNAi作为一种新发展起来的分子生物学技术,不可避免地会存在潜在的问题,这就要求研究者在利用该技术时要考虑到生物安全性等诸多问题,以使RNAi技术更好地为人类服务.参考文献(略)

如何在rnai细胞中过表达另一个基因

RNA干扰的分子抑制机制的三种方式及原理转录抑制 与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制 Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

rna干扰为什么不能完全抑制基因的表达

RNA干扰的分子抑制机制的三种方式及原理转录抑制与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptionalgenesilencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Posttranscriptionalgenesilencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(smalltemporalRNA)。ssRNA的形成是因为当RNA的大小为70~80nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

抗体封闭和sirna沉默的区别

RNA干扰及其应用进展孙德惠1,2,才学鹏1*,常惠芸1 ,独军政1 (1.中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室农业部畜禽病毒学重点开放实验室,甘肃兰州 730046;2.甘肃农业大学动物医学院,甘肃兰州 730070)摘 要:RNA 干扰(RNA interference,RNAi)是一种由双链RNA介导的基因沉默现象.RNAi主要发生在核外,RNAi具有操作简便快速等特点.RNAi现象自发现至今已逾10年,在此期间,已将研究重点由机理研究转向应用研究.文章以RNAi的应用为重点,从RNAi的起源,可能的作用机制,作用特点,研究方法,应用前景及展望等方面进行了综述.关键词:RNA干扰;双链RNA;基因沉默RNAi是Napoli C D等[1]在试图向紫色矮牵牛花转导色素合成基因,用以增加其花色时发现的.结果出乎预料,转基因的植株不仅没有新基因的表达,反而自身的色素合成也减弱了,一些转基因的花出现了全白色或部分白色.他们把这种导入的基因未表达和植物本身合成色素基因的失活现象命名为共抑制(cosuppression).之后,Ramano等在向粗糙孢菌ue006(Neurospora crassa)ue006中导入合成胡萝卜素的基因时造成失活,他们称为基因静止(quelling).Guo S等[2]发现正义RNA与反义RNA有相同水平的抑制效应,但未能就此现象给出合理的解释.Fire A等[3]在研究反义核苷酸时发现在线虫体内,双链RNA( double stranded RNA,dsRNA)能有效地抑制有互补序列的内源性基因,且抑制效果优于单链反义RNA.至此,正式提出了双链RNA诱导的RNAi的概念,开启了RNAi研究的序幕.1 RNAi可能的作用机制及特点1.1 RNAi的作用机制虽然RNAi作用的确切机制尚不清楚,但目前普遍认可是Bass假说.具体概括为三个阶段.(1)起始阶段.在细胞内,双链RNA(dsRNA)由核酸酶Ⅲ(RNaseⅢ) Dicer 在ATP的参与下被处理为21个~23个碱基的小RNA,即小干扰RNA(small interfering RNA,siRNA).siRNA是由19个~21个碱基配对形成的双链,并在其3′末端有两个游离未配对的核苷酸.研究发现, siRNA 是RNAi 作用发生的重要中间分子,序列与所作用的靶mRNA 的序列具有高度同源性;双链的两端各有2个~3个突出的非配对的3′碱基;两条单链末端为5′端磷酸和3′端羟基.这些是细胞赖以区分真正的siRNA和其他双链RNA的结构基础. 研究表明,平末端的siRNA 或失去了5′磷酸基团的siRNA 不具有RNAi 的功能[4] (2)引发阶段.siRNA与Argonaute蛋白家族及其他未知因素结合,形成siRNA-核蛋白复合物(siRNA-ribonucleoprotein complex,siRNP).siRNP在ATP及其他未知因素参与下,使双链siRNA解旋形成RNA诱导的沉默复合物(RNA inducing silencing Complex ,RISC).RISC可能以完全单链或两条链解旋但不完全分离的形式存在,继而RISC在dsRNA的介导作用下与互补mRNA结合,并将其降解.mRNA被降解在转录后水平,抑制基因表达,因而又称之为转录后基因沉默( posttranscriptional gene silencing,PTGS)(3)循环放大阶段.在siRNA诱导的RNAi过程中,可能还存在siRNA 的循环放大过程,以维持它的RNA诱导功能.此过程推测是以siRNA为引物,互补mRNA 为模板,在RNA依赖性RNA合成酶(RNA-dependent RNA Polymerase,RdRP) 的作用下,合成新的双链RNA,再由Dicer作用,产生新的siRNA,完成siRNA 的放大过程,开始新的RNAi循环[5].关于对RNAi机制中重要酶的作用研究,Zamore P D等[6]发现,21 nt RNA指导mRNA的降解; Scharf W D等[7]发现ATP依赖的RNA解旋酶为Mut6;Grishok A等[8]发现Let-7和lin-4为内源性的RNAi基因(stRNA);Dalmay T等[9]提出RNA依赖的RNA多聚酶就是SDE-1; Bernstein E等[10]证实RNaseш样的核酸酶为Dicer; Elbashir S M等[11]应用外源性21 nt-siRNA能够抑制同源mRNA的表达;Novina C D等[12]证实无论是针对病毒感染细胞所需的CD4受体,还是针对病毒基因组的gag区域,siRNA都可以有效地使病毒与细胞的基因沉默,抑制HIV的感染与复制.1.2 RNAi的作用特点(1)"共抑制"性.RNAi是双链RNA介导的转录后基因沉默机制,它的启动子相当活跃,外源基因可以转录,但不能正常积累mRNA;RNAi作用不仅使外源基因在转录后水平上失活,同时诱导与其同源的内源基因沉默.(2)高效性.试验证明双链RNA干扰mRNA 翻译的效率比单纯反义或正义RNA 的抑制效率提高了几个数量级;RNAi可在低于反义核酸几个数量级的浓度下,使靶基因表达降到很低水平甚至完全"剔除",而产生缺失突变体表型.它比基因敲除技术更为便捷,科学家称RNAi技术为靶基因或靶蛋白的"剔降"(knockdown).(3)高特异性.由dsRNA降解成的小干扰RNA,除其正义链3′端的两个碱基在序列识别中不起主要作用外,其余碱基在序列识别中都是必需的,单个碱基的改变即可使RNAi失效,RNAi能特异性降解mRNA,针对同源基因共有序列的RNAi则可使同源基因全部失活.(4)高穿透性.RNAi具有很强的穿透能力,能在不同的细胞间长距离传递和维持,如在含有双链RNA的溶液中,喂食表达双链RNA的细菌等,能向秀丽隐杆线虫导入双链RNA.(5)"遗传性".已在线虫中观察到RNAi效应通过生殖系传递到后代,说明RNAi具有一定的可遗传性.(6)高稳定性.细胞中可能存在天然的稳定siRNA的机制.此机制可能是siRNA与某种保护性蛋白结合,从而使其具有相对的稳定性,这些双链RNA 不像反义核酸那样需要多种化学修饰来提高其半衰期.(7)双干扰系统.哺乳动物中存在有非特异性干扰和特异性干扰两条独立的途径. 非特异性干扰反应是由大于30个碱基对的双链RNA介导,导致整个细胞中非特异性蛋白合成抑制,RNA降解;特异性反应由21 bp~25 bp的小干扰RNA介导,可逃避非特异性干扰系统的"监控",只降解与其序列相应的单个基因的mRNA[11].2 研究方法在研究过程中,科研人员逐渐摸索总结出了成套的研究方法.目前,展开RNAi操作主要有两种方法.一种为直接将靶向特定基因的大约21个碱基长短siRNA,或45个~50个碱基的发夹结构RNA(small hairpin RNA,shRNA)转染到细胞,shRNA在细胞中会自动被加工成siRNA,从而引发基因沉默或表达抑制.另一种为构建特定的siRNA表达载体,通过质粒在体内表达siRNA而引发基因沉默.此法的优点是排除了RNA酶干扰,延长siRNA半衰期.更重要的是,该法可以进行稳定表达细胞株的筛选,且随着质粒复制扩散到整个机体,基因抑制效果可传代.试验表明,可被化学合成或体外合成的siRNA抑制的基因同样可被表达相同序列的载体表达出的siRNA所抑制.3 RNAi的应用3.1 基因功能研究在神经生物学研究中,科学家们通过siRNA表达质粒对中脑腹侧神经细胞中的多巴胺能相关基因进行了有效抑制,还通过病毒介导的RNAi建立了此类成年小鼠模型,不仅为建立神经系统的功能缺失模型找到了一些有价值的表型标记,对神经系统的基因治疗也有一定借鉴意义;在癌症研究中,通过shRNA表达载体成功抑制成年大鼠脑癌基因,同时对RNAi的远程(穿过血脑屏障)基因沉默方法进行了非常有益的探索;利用细胞凋亡途径,通过RNAi抑制凋亡基因Caspase-8能提高患急性肝功能衰竭小鼠的成活率,并发现Caspase 8 siRNA处理对特异性Fas激活剂(Jo2和AdFasL)和野生型腺病毒介导的急性肝功能衰竭都有效,表明这个动物模型能反应人类急性病毒肝炎多分子参与的机制,增强了siRNA用于急性肝炎病人治疗的希望.除了对某些关键基因的RNAi研究外,还在哺乳动物细胞中探索了siRNA在基因组水平上的筛选方法.他们建立了一个包含8 000多个基因的siRNA表达框文库阵列,通过它来高通量筛选NF-kB信号途径中已知的及Unique基因.由此可见,RNA干扰也正作为筛选成百甚至上千基因的工具,发挥着越来越大的作用[13].RNAi为系统地抑制RNA分子合成蛋白提供了快速而相对简便的途径.通过在一段时间内对一个基因RNA信号的抑制,研究者可以深入研究基因功能,进而描绘支配从细胞形态到信号系统的遗传网络.3.2 基因治疗及药物筛选探索由于RNAi是针对转录后阶段的基因沉默,相对于传统基因治疗对基因水平上的敲除,整个流程设计更简便,且作用迅速,效果明显,为基因治疗开辟了新的途径.其总体思路是通过加强关键基因的RNAi机制,控制疾病中出现异常的蛋白合成进程或外源致病核酸的复制及表达.尤其针对引起一些对人类健康严重危害的病毒,如2003年在全球多个国家和地区流行的SARS,病原体是单链核酸的新型冠状病毒,寻找药物靶点,设计核酸药物就更为方便.目前已经有很多公司在积极开发这方面的药物,如在SARS药物研究中一鸣惊人的美国俄勒冈州的AVI BioPharma生物制药公司等.国内也有很多研究机构及生物技术公司投入了这方面的工作.如上海生科院成立了SARS防治科研攻关小组,其中生化细胞所和药物所的一些课题组在从RNAi的角度努力.此外,北京大学,中南大学,北京动物所等大专院校和研究机构,以及北京金赛狮反义核酸技术开发有限公司等,也开展了RNAi药物的研究与开发.基因治疗方面最引人注目的进展之一是对肝炎病毒的RNAi研究.Mccaffrey A P等通过表达shRNA的载体在细胞水平和转染HBV质粒后免疫活性缺失的小鼠肝脏中成功抑制了HBV复制.与对照相比,小鼠血清中测得的HBsAg下降了84.5%,免疫组化对HBcAg的分析结果下降率更超过99%.哈佛大学Lieberman研究小组通过注射针对Fas的siRNA,过度激活炎症反应,诱导小鼠肝细胞自身混乱.然后给测试小鼠注入 Fas hyperdrive的抗体,发现未进行siRNA处理的对照组小鼠在几天中死于急性肝功能衰竭,而82%的siRNA处理小鼠都存活下来,其中80%~90%的肝细胞结合了siRNA.并且,RNAi发挥功能达10 d,3周后才完全衰退.由于Fas很少在肝细胞外的其他细胞高水平表达,它对其他器官几乎没有副作用.此外,这个小组还和其他研究者积极开展针对HIV的RNAi测试,目前报道他们使用的针对CCR5蛋白的siRNA能阻止HIV进入免疫细胞约3周,在已经感染的细胞中也能阻止感染病毒的复制.然而,尽管取得了不少研究成果,但要真正用于医疗还需时日.目前大多数还停留在小鼠测试阶段,siRNA的导入多采用静脉或腹腔注射,尾部注射,细胞移植等,如何对人进行有效的给药,既能确保药效在靶器官靶组织有效释放,还要具有高度安全性等问题都需进一步研究.人们期待着RNAi引领的新医学革命的到来.在药物筛选领域,除了线虫这种低等动物的RNAi高通量药筛模式外,Lavery K S等对RNAi在药筛领域的应用前景进行了高度评价,RNAi技术将逐渐成为药物靶点筛选和鉴定的强大工具.他对如何在药筛的各个阶段应用RNAi做了具体描述及展望,并指出将这项技术与高通量筛选,体外生物检测和体内疾病模式相结合,将提供大量基因功能方面的有用信息,在药物开发过程的多个阶段促进靶点的有效筛选.3.3 抗肿瘤治疗多种癌基因可以作为靶点设计相对应siRNA[14].Brummelkamp T R等[15]用逆转录病毒载体将siRNA 导入肿瘤细胞中,特异性抑制了癌基因K2RAS (V12)的表达.对急性髓性白血病的研究已经取得了较好的结果.Scherr M等[16]以引起慢性髓性白血病和bcr2abl阳性急性成淋巴细胞白血病的bcr2abl癌基因为靶基因,设计了对应的siRNA,并获得了87% 的有效抑制率.Wilda M等[17]用siRNA抑制白血病BCR/ABL融合基因表达也取得了成功. 因此,基于RNAi 技术的抗肿瘤治疗药物开发潜力巨大.有报道称,一种全新生物工程药品"RNA干扰剂"(非干扰素)业已浮出水面,并有望在3年内上市.经过多年的探索,科学家终于发现,在癌细胞和病毒RNA的22对碱基中有1对碱基专门负责复制工作,只要能使这对碱基"休眠",癌细胞或病毒就会自动停止复制.这一重要发现为一种全新药物——RNA干扰剂奠定了基础.科学家们相信,艾滋病,乙型肝炎,恶性胶质瘤(恶性脑瘤)和胰腺癌等疾病有望成为RNA干扰剂的第一批受益者(2004年经FDA批准已开始RNA干扰剂的临床试验),艾滋病,中枢神经系统退行性病变疾病如多发性硬化症,阿尔茨海默病,帕金森病等将成为第二批受益者.3.4 抗病毒治疗由于RNAi 是机体中古老而天然的抗病毒机制,目前国外科技人员利用此特点,已设计出针对HIV gag,tat,rev,nef等基因的siRNA,针对丙型肝炎病毒非结构蛋白5B基因的siRNA,针对脊髓灰质炎病毒衣壳蛋白和多聚酶基因的siRNA,针对口蹄疫病毒3D片段siRNA等[18],均在试验中取得理想结果.陆续有关通过RNAi抑制其他病毒在细胞内复制的报道如呼吸道合胞病毒,人乳头瘤病毒,乙型肝炎病毒,丙型肝炎病毒[19]等,国内也已设计出针对口蹄疫病毒VP1基因的siRNA,针对丙型肝炎病毒5′保守区的siRNA,针对口蹄疫病毒IRES和L串联序列两侧的保守区的siRNA[20],针对SARS冠状病毒的6个siRNA,即RL001,R L002,RL003,RL004,RL005和RL006,均已取得理想结果.针对病原的siRNA已经进行到动物实验阶段[21],向病毒病的有效防治迈出了坚实的一步.由此可见,利用RNAi技术将使病毒病的有效治疗成为可能.3.5 转基因研究在动植物的转基因试验中, 经常发生基因沉默.因此, 对转基因沉默机制的探索可以为在转基因研究中避免基因沉默提供对策.在转基因植物研究中避免基因沉默可提高试验成功率,且节省时间,而在大型动物转基因研究中避免基因沉默可节约成本,提高产率.3.6 干细胞研究在干细胞研究方面,在dsRNA阻断大鼠骨髓源性神经干细胞 Hes5表达的试验中[22],观察外源性短dsRNA在转录后水平mRNA水平降低基因表达的效率,并对其影响因素进行了初步探讨.同时基于干细胞可能拥有自己的一套基因组,不同类型的干细胞又拥有各自所特有的基因,这些基因可能是决定干细胞特性的最关键的实质性因素.因此,RNAi技术在此领域应用空间广阔.3.7 研究信号传导的新途径Biotech认为,联合利用传统的缺失突变技术和RNAi技术可以很容易地确定复杂的信号传导途径中不同基因的上下游关系,Clemensy等应用RNAi研究了果蝇细胞系中胰岛素信息传导途径,取得了与已知胰岛素信息传导通路完全一致的结果.RNAi技术较传统的转染试验简单,快速,重复性好,克服了转染试验中重组蛋白特异性聚集和转染率不高的缺点,因此认为RNAi技术可能成为研究细胞信号传导通路的新途径.3.8 常见病的治疗Nature杂志报道了miRNA(Micro RNA)的应用上一个重要发现,成功采用miRNA调节了胰岛素的分泌,这为糖尿病的治疗带来新的希望,也将为糖尿病的新药研究带来新的曙光和思路.据Sicence杂志报道,显示应用RNAi技术可有效降低血管内胆固醇含量,对治疗心血管疾病有明显的作用.4 展望综上所述,RNAi技术在基因功能研究,抗肿瘤治疗,抗病毒治疗,基因应用研究,常见病的治疗等许多方面都是强有力的工具和手段.同时做为新兴的生物技术,还有广阔的研究和应用空间期待着科研人员的探索.例如,siRNA在病毒持续性感染过程中扮演怎样的角色 siRNA在冬眠动物体内的作用如何 RNAi在雀斑形成中起到怎样的作用 如上述问题得到解决,将进一步依据其机理及特点,有望应用于病毒持续性感染的鉴别诊断及治疗,利用siRNA在冬眠动物体内的作用进行星际航行,以解决能量供应及时间跃迁问题,RNAi应用于祛除雀斑等.aware可自测不用抽血祝您健康天 猫!尽管在RNAi方面的研究已取得许多突破性进展,尤其是哺乳动物细胞中的研究的报道逐渐增多,但由于RNAi机制尚未完全阐明,仍有许多问题尚未得到彻底解答.例如,siRNA 在哺乳动物细胞中抑制mRNA表达是有效的, 但达不到果蝇细胞那样的高抑制率, 可能是因为生物进化水平越高,调控基因表达系统的复杂程度相应的越高,多种抑制机制间相互作用的频率也越高,抑制作用受到的影响因素也就越多.另外, 在哺乳动物中,RNAi能否成功地抑制基因表达以及抑制的程度还取决于细胞类型.对线虫来说,可以采用注射,浸泡或喂食的方法转入dsRNA,而对哺乳动物来说,寻找高效的方式来转入siRNA以及快速的方式来筛选siRNA仍在进一步探索中.RNAi在抗病毒感染中的应用令人鼓舞, 但要取得最终的成功还有很漫长的路要走.其中一个关键的原因是siRNA并不能对所有病毒RNA发生作用,有些病毒靶序列可能隐藏在二级结构下, 或者位于高度折叠的区域中, 而有些病毒序列可能与蛋白质形成紧密的复合物, 阻碍了与siRNA 的识别.因此,不仅要选合适的靶序列,而且需要反复试验.另一个重要的原因是病毒子代的突变率较高, 这使病毒可逃避siRNA 的识别.为了克服这个障碍,所选病毒RNA的靶序列必须是高度保守的, 或者设计数对siRNA同时作用[23].总之,RNAi作为一种新发展起来的分子生物学技术,不可避免地会存在潜在的问题,这就要求研究者在利用该技术时要考虑到生物安全性等诸多问题,以使RNAi技术更好地为人类服务.

RNAi和基因沉默——历史和展望:

写作素材翻译整理收集 May 20, 2002 转录后基因沉默(PTGS)最初被认为是一种仅限于矮牵牛和其他几种植物的奇异现象,现在已成为分子生物学中最热门的话题之一。 近几年已经清楚的是,PTGS在植物和动物中都存在,并且在病毒防御和转座子沉默机制中起作用。 然而,也许最令人兴奋的是PTGS的新兴应用,尤其是RNA干扰(RNAi)——通过引入双链RNA(dsRNA)引发的PTGS-作为敲除多种特定基因表达的工具生物。 RNAi是如何发现的?它是如何工作的?也许更重要的是,如何将其用于功能基因组学实验?本文将简要回答这些问题,并为您提供有关PTGS和RNAi研究的深入信息。 发现一个奇怪的现象:植物共抑制和PTGS 十多年前,在矮牵牛中进行了令人惊讶的观察。在尝试加深这些花的紫色时,Rich Jorgensen及其同事在强大的启动子控制下引入了色素生成基因。与其预期的深紫色不同,许多花朵似乎杂色甚至是白色。乔根森称观察到的现象为“共抑制/cosuppression”,因为导入基因和同源内源基因的表达均被抑制。 最初被认为是矮牵牛的怪癖,后来发现共抑制在许多植物物种中都发生。还已经在真菌中观察到了它,并且在克雷索氏菌中被特别好地表征,在那儿它被称为“抑制/quelling”。 但是什么原因导致这种基因沉默呢?尽管在某些植物中转基因诱导的沉默似乎涉及基因特异性甲基化(转录基因沉默或TGS),但在另一些植物中,沉默发生在转录后水平(转录后基因沉默或PTGS)。在后一种情况下的核运行实验表明,产生了同源转录本,但是它在细胞质中迅速降解并且没有积累。 转基因的引入可以触发PTGS,但是也可以通过引入某些病毒来诱导沉默。触发后,PTGS由可扩散的反式作用分子介导。这首先在Neurospora中得到证实,当时Cogoni及其同事证明了基因沉默可以在异核生物株的核之间转移。后来在Palauqui及其同事通过将沉默的,含转基因的来源植物嫁接到未沉默的宿主中而在宿主植物中诱导PTGS时在植物中得到证实。从线虫和苍蝇的工作中,我们现在知道负责植物中PTGS的反式作用因子是dsRNA。 dsRNA基因沉默:RNA干扰 RNAi在线虫中被发现 dsRNA可能导致基因沉默的第一个证据来自线虫秀丽隐杆线虫的工作。七年前,研究人员Guo和Kemphues试图使用反义RNA来关闭par-1基因的表达,以评估其功能。正如预期的那样,反义RNA的注入破坏了par-1的表达,但令人困惑的是,正义链控制的注入也确实如此。 直到三年后,这个结果还是一个谜。然后,Fire和Mello首先将dsRNA(正义链和反义链的混合物)注入到秀丽隐杆线虫中。与仅注射有义或反义链相比,这种注射导致沉默效率更高。实际上,每个细胞仅注射几个分子的dsRNA就足以完全沉默同源基因的表达。此外,将dsRNA注入蠕虫的肠道不仅导致整个蠕虫的基因沉默,而且还导致其第一代后代的基因沉默。 RNAi的效力激发了Fire和Timmons尝试喂养线虫细菌,这种细菌经过改造后可以表达与秀丽隐杆线虫unc-22基因同源的dsRNA。令人惊讶的是,这些蠕虫形成了unc-22 null-like表型。进一步的研究表明,将蠕虫浸入dsRNA中也能够诱导沉默。这些策略使大量线虫暴露于dsRNA,从而使大规模筛选能够选择RNAi缺陷的秀丽隐杆线虫突变体,并导致对该生物体内的大量基因敲除研究。 果蝇中的RNAi 在果蝇中也观察到了RNAi。尽管将酵母工程化以产生dsRNA然后喂给果蝇的策略无法奏效,但用dsRNA显微注射果蝇胚胎确实会产生沉默(2)。也可以通过用“基因枪”将dsRNA“射击”到果蝇胚胎中,或通过工程蝇携带带有待沉默基因的反向重复序列的DNA来诱导沉默。在过去的几年中,这些RNAi策略已被用作果蝇生物,胚胎裂解液和细胞中的逆向遗传学工具,以表征各种功能丧失的表型。 RNAi的生化机制 那么注射dsRNA如何导致基因沉默呢?在过去的几年中,许多研究小组都在努力地回答这一重要问题。鲍尔科姆和汉密尔顿的一项重要发现提供了第一个线索。他们鉴定出在非沉默植物中共抑制的植物中约25个核苷酸的RNA。这些RNA与被沉默基因的有义和反义链都是互补的。 在果蝇中的进一步工作-使用胚胎裂解液和源自S2细胞的体外系统-为受试者提供了更多的信息。在一系列值得注意的实验中,Zamore及其同事发现,添加到果蝇胚胎裂解物中的dsRNA被加工成21-23个核苷酸。他们还发现,同源内源性mRNA仅在与导入的dsRNA相对应的区域被切割,并且切割以21-23个核苷酸的间隔发生。迅速地,RNAi的机制变得清晰起来。 RNAi机制的当前模型 生化和遗传方法(请参阅下面的“ PTGS和RNAi涉及的基因和酶”中有关用于理解RNAi的遗传方法的讨论)都形成了RNAi机制的当前模型。在这些模型中,RNAi包括启动步骤和效应器步骤(另请参见参考文献3的Flash动画“ RNAi如何工作?”)。 在起始步骤中,将输入的dsRNA消化成21-23个核苷酸的小干扰RNA(siRNA),也称为“引导RNA”。有证据表明,dscer酶是dsRNA特异性核糖核酸酶RNase III家族的一员,Dicer酶以ATP依赖性,加工方式连续切割dsRNA(直接或通过转基因或病毒引入)。连续的切割事件将RNA降解为19-21 bp的双链体(siRNA),每个双链体都带有2个核苷酸的3"突出端。 在效应子步骤中,siRNA双链体与核酸酶复合物结合形成所谓的RNA诱导的沉默复合物或RISC。激活RISC时,需要依赖ATP的siRNA双链体展开。然后,活性RISC通过碱基配对相互作用靶向同源转录本,并从siRNA的3"末端切割u301c12个核苷酸的mRNA。尽管目前尚不清楚切割的机理,但研究表明,每个RISC都包含单个siRNA和一个与Dicer不同的RNase。 由于RNAi在某些生物体中的显着效力,因此还提出了RNAi途径内的扩增步骤。扩增可通过复制输入的dsRNA(可产生更多的siRNA)或通过siRNA自身的复制来进行(请参见下面的“ RNA依赖性RNA聚合酶的可能作用”)。替代地或另外,可以通过RISC的多个周转事件来实现扩增。 PTGS和RNAi涉及的基因和酶 RNA依赖的RNA聚合酶的可能作用 Neurospora,秀丽隐杆线虫和拟南芥的遗传筛选已鉴定出一些基因,这些基因似乎对PTGS和RNAi至关重要。其中一些,包括Neurospora qde-1,拟南芥SDE-1 / SGS-2和秀丽隐杆线虫ego-1,似乎编码RNA依赖性RNA聚合酶(RdRPs)。乍一看,可以假设这证明RNAi需要RdRP活性。如果RdRP在切割前直接扩增dsRNA或直接扩增siRNA,RdRP的存在当然可以解释dsRNA诱导的沉默的显着效率。但是这些基因的突变体具有不同的表型,这使得RdRP在RNAi中的作用难以辨别。 在秀丽隐杆线虫ego-1突变体(“ ego”代表“ glp-1增强剂”)中,RNAi在体细胞中正常运行,但在主要表达ego-1的种系细胞中有缺陷。在拟南芥SDE-1 / SGS-2突变体中(“ SGS”代表基因沉默的抑制物),当通过内源复制的RNA病毒引入dsRNA时,会产生siRNA,而通过转基因引入时则不会产生siRNA。已经提出在这些突变体中病毒RdRP可能替代了拟南芥酶。尽管在果蝇或人类中均未发现RdRP的同源物,但最近在果蝇胚胎裂解液中报道了RdRP的活性。一种称为“随机降解PCR”模型的扩增模型表明,RdRP使用siRNA的导链作为目标mRNA的引物,从而为Dicer生成了dsRNA底物,从而产生了更多的siRNA。在蠕虫中发现了支持该模型的证据,而从果蝇胚胎裂解物中获得了反驳该模型的实验结果。 RNAi引发剂 两种秀丽隐杆线虫基因rde-1和rde-4(“ rde”代表“ RNAi缺陷”)被认为与RNAi的起始步骤有关。这些基因的突变体产生的动物通过注射dsRNA可以抵抗沉默,但是沉默可以通过从没有沉默缺陷的杂合子亲本中传递siRNA来实现。秀丽隐杆线虫的rde-1基因是一个大家族基因的成员,与Neurospora qde-2(“ qde”代表“抑制缺乏”)和拟南芥AGO1基因(“ AGO”代表“ argonaute”)同源。 ”;以前已确定AGO1与拟南芥的发育有关。尽管这些基因在PTGS中的功能尚不清楚,但已将RDE-1家族的哺乳动物成员鉴定为翻译起始因子。有趣的是,对共抑制有缺陷的AGO1拟南芥突变体在叶片发育中也表现出缺陷。因此,PTGS中涉及的某些过程或酶也可能参与发育。 RNAi效应子 PTGS的效应子步骤的重要基因包括秀丽隐杆线虫rde-2和mut-7基因。这些基因最初是从不能将RNAi传递给其纯合后代的杂合突变蠕虫中鉴定出来的。带有突变的rde-2或mut-7基因的蠕虫表现出有缺陷的RNAi,但是有趣的是,它们还证明了转座子活性水平的提高。因此,转座子的沉默似乎是通过与RNAi和PTGS相关的机制发生的。尽管尚未鉴定出rde-2基因产物,但mut-7基因编码的蛋白与RNase D的核酸酶结构域具有同源性,并且与人的Werner综合征(一种快速衰老疾病)有关(。也许这种蛋白质是目标RNA降解所需的核酸酶活性的候选者。 PTGS具有悠久的历史 遗传和生物化学方法的发现都表明PTGS具有深厚的进化根源。有人提出,PTGS可能是抵御转座子或RNA病毒的防御机制,也许是在动植物分化之前发展的。 有趣的是,许多研究人员指出,RNAi所需基因的破坏通常会导致严重的发育缺陷。该观察结果提示RNAi与至少一个发育途径之间存在联系。 一组称为小时序RNA(stRNA)的小RNA分子通过翻译靶标转录物来调控秀丽隐杆线虫的发育时间。研究表明,将秀丽隐杆线虫lin-4和let-7 stRNA从这些较长的转录本折叠成茎环结构后,由70个核苷酸的转录本生成。折叠的RNA分子被切酶切割(产生秀丽隐杆线虫中的DCR-1),以产生22 nt stRNA。因此,Dicer既生成siRNA,也生成stRNA,并代表RNAi和stRNA途径的交点。 最近,在果蝇,秀丽隐杆线虫和HeLa细胞中发现了近100个另外的u301c22 nt RNA分子,称为microRNA(miRNA)。这些miRNA与lin-4和let-7非常相似,它们是由折叠成茎环二级结构的前体RNA分子形成的。据信,新发现的约22 nt的miRNA在调节基因表达中起作用,并且已知其中至少有两个需要Dicer来生产。似乎在整个进化过程中,将小RNA用于基因调控和RNAi是一个共同的主题。 在哺乳动物细胞中诱导RNAi-从机理到应用 长dsRNA导致的非特异性基因沉默 尽管已经在多种生物(植物,原生动物,昆虫和线虫)中观察到了RNAi的天然存在,但哺乳动物细胞中存在RNAi的证据需要花费更长的时间才能建立。将长dsRNA分子(> 30 nt)转染到大多数哺乳动物细胞中会导致基因表达的非特异性抑制,这与其他生物体中看到的基因特异性抑制相反。这种抑制作用归因于抗病毒反应,它通过两种途径之一发生。 在一种途径中,长dsRNA激活蛋白激酶PKR。活化的PKR进而磷酸化并使翻译起始因子eIF2a失活,从而导致翻译受阻。在另一种途径中,长dsRNA激活RNase L,导致非特异性RNA降解。 许多研究小组表明,小鼠胚胎干(ES)细胞和至少一种胚胎来源的细胞系不存在dsRNA诱导的抗病毒反应。因此,可以使用长dsRNA沉默这些特定哺乳动物细胞中的特定基因。但是,抗病毒反应无法在大多数其他哺乳动物细胞类型中使用长dsRNA诱导RNAi。 siRNA绕过抗病毒反应 有趣的是,长度小于30 nt的dsRNA不会激活PKR激酶途径。这一观察结果以及对长dsRNA会在蠕虫和果蝇中裂解形成siRNA以及siRNA能够在果蝇胚胎裂解液中诱导RNAi的认识促使研究人员测试引入siRNA是否会在哺乳动物细胞中诱导基因特异性沉默。实际上,发现通过瞬时转染引入的siRNA以序列特异性方式有效地诱导了哺乳动物培养细胞中的RNAi。 siRNA的有效性各不相同-最有效的siRNA可使靶RNA和蛋白质水平降低> 90%。事实证明,最有效的siRNA是21 nt dsRNA,带有2 nt 3"突出端。 siRNA的序列特异性非常严格,因为siRNA及其靶mRNA之间的单碱基对错配会显着降低沉默。不幸的是,并非所有具有这些特征的siRNA都是有效的。其原因尚不清楚,但可能是位置效应的结果。有关设计siRNA的最新建议,请参见“ siRNA设计”。 RNAi作为功能基因组学的工具 尽管RNAi和PTGS的历史和机理令人着迷,但许多研究人员对RNAi作为功能基因组学工具的潜在用途感到最为兴奋。 RNAi已经被用于确定果蝇,秀丽隐杆线虫和几种植物中许多基因的功能。知道可以通过转染siRNA在哺乳动物细胞中诱导RNAi,因此许多研究人员开始将RNAi用作人类,小鼠和其他哺乳动物细胞培养系统的工具。 在哺乳动物细胞的早期实验中,siRNA是化学合成的(Ambion是提供定制siRNA合成的多家公司之一)。最近,Ambion推出了一种通过体外转录生产siRNA的试剂盒(Silenceru2122siRNA构建试剂盒),这是化学合成的廉价替代品,特别是在需要合成多种不同siRNA的情况下。制备完成后,可通过瞬时转染将siRNA引入细胞。由于功效的差异,大多数研究人员会将3–4个siRNA合成为靶基因,并进行先导实验以确定最有效的一种。用这种方法已经观察到超过90%的瞬态沉默。 到目前为止,将dsRNA注射并转染到细胞和生物中已经成为传递siRNA的主要方法。尽管沉默效果持续了几天,而且似乎确实转移到了子细胞上,但最终确实减弱了。但是,最近,许多研究小组已经开发出表达载体,以在瞬时和稳定转染的哺乳动物细胞中连续表达siRNA。这些载体中的某些已被工程化以表达小发夹RNA(shRNA),该小发夹RNA在体内被加工成能够进行基因特异性沉默的siRNA样分子。载体包含在聚合酶III(pol III)启动子和4-5胸腺嘧啶核苷转录终止位点之间的shRNA序列。转录物终止于终止位点的第2位(pol III转录物自然缺少poly(A)尾巴),然后折叠成具有3"UU突出端的茎环结构。 shRNA的末端在体内进行加工,将shRNA转化为约21 nt siRNA样分子,从而启动RNAi。后一个发现与秀丽隐杆线虫,果蝇,植物和锥虫中的最新实验有关,其中折叠成茎环结构的RNA分子诱导了RNAi(在3中进行了综述)。 由另一个研究小组开发的另一种siRNA表达载体在独立的pol III启动子的控制下编码有义和反义siRNA链。该载体的siRNA链与其他载体的shRNA一样,具有5个胸苷终止信号。两种类型的表达载体的沉默功效均与瞬时转染siRNA所诱导的沉默功效相当。 最近有关RNAi的研究席卷了整个研究领域。快速,轻松地创建功能丧失表型的能力使研究人员急于尽可能多地了解RNAi和有效siRNA的特征。将来,RNAi甚至有望有望开发出基因特异性疗法。人们已经学到了很多有关这种强大技术的知识,但是几乎每天都可以获得其他信息(请参阅RNA干扰资源以了解最新的RNAi研究和工具)。可以肯定地说,RNAi正在改变功能基因组学领域。 专业术语 共抑制-由于引入转基因或被病毒感染而导致的内源基因沉默。这个术语可以指转录后(PTGS)或转录(TGS)级别的沉默,已被植物研究人员广泛采用。 转录后基因沉默(PTGS)-通过引入同源dsRNA,转基因或病毒引起的内源基因沉默。在PTGS中,沉默基因的转录物是合成的,但不会积累,因为它会迅速降解。这是一个比RNAi更通用的术语,因为它可以通过几种不同的方式触发。 抑制-引入转基因诱导的神经孢菌中的PTGS。 RISC-RNA诱导的沉默复合物。核酸酶复合物,由蛋白质和siRNA组成(见下文),靶向并破坏与复合物中siRNA互补的内源性mRNA。 RNA干扰(RNAi)-直接引入dsRNA诱导的转录后基因沉默(PTGS)。研究人员首先对秀丽隐杆线虫使用“ RNA干扰”一词。 siRNA-小干扰RNA。 PTGS的当前模型表明,这些21-23个核苷酸的dsRNA介导PTGS。 siRNA的引入可以在哺乳动物细胞中诱导PTGS。 siRNA显然是通过直接或通过转基因或病毒导入的dsRNA裂解体内产生的。 RNA依赖性RNA聚合酶(RdRP)的扩增可能发生在某些生物中。将siRNA掺入RNA诱导的沉默复合物(RISC)中,将复合物引导至同源内源性mRNA,其中复合物切割转录物。

RNAi 的原理是什么?

RNAi (RNA interference) 即RNA干涉,是近年来发现的在生物体内普遍存在的一种古老的生物学现象,是由双链RNA(dsRNA)介导的、由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。RNAi 广泛存在于从真菌到高等植物、从无脊椎动物到哺乳动物各种生物中。同时作为一项新兴生物技术,RNAi有着广泛的应用前景。本文主要论述了RNAi的发现、RNAi 的机理、RNAi的作用特点以及RNAi 的应用前景。1.RNAi的定义目前对RNAi (RNA interference)的定义有很多种,不同的资料对其定义的侧重点也不尽相同,如果将RNAi看作一种生物学现象,可以有以下定义:① RNAi是由dsRNA介导的由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。② RNAi是有dsRNA参与指导的,以外源和内源mRNA为降解目标的转基因沉默现象。具有核苷酸序列特异性的自我防御机制,是一种当外源基因导入或病毒入侵后,细胞中与转基因或入侵病毒RNA同源的基因发生共同基因沉默的现象。如果将其作为一门生物技术,则定义为:① RNAi 是指通过反义RNA与正链RNA 形成双链RNA 特异性地抑制靶基因的现象,它通过人为地引入与内源靶基因具有相同序列的双链RNA(有义RNA 和反义RNA) ,从而诱导内源靶基因的mRNA 降解,达到阻止基因表达的目的。② RNAi是指体外人工合成的或体内的双链RNA(dsRNA)在细胞内特异性的将与之同源的 mRNA降解成21nt~23nt 的小片段,使相应的基因沉默。③ RNAi是将与靶基因的mRNA 同源互补的双链RNA(dsRNA ) 导入细胞,能特异性地降解该mRNA ,从而产生相应的功能表型缺失, 属于转录后水平的基因沉默(post - transcriptional gene silence , PTGS)。各种不同定义虽然说法不同,但所描述事实是大体相同的,简单地可以说,RNAi就是指由RNA介导的基因沉默现象。

rna编辑改变dna的编码序列吗

非编码RNA指的是不被翻译成蛋白质的RNA,如tRNA,rRNA等,这些RNA不被翻译成蛋白质,但是其中有一些会参与蛋白质翻译过程. 此外还有snRNA,snoRNA等参与RNA剪接和RNA修饰, miRNA也是非编码RNA,是小的RNA分子,与转录基因互补,介导基因沉默(RNAi),  gRNA又称引导RNA,真核生物中参与RNA编辑的具有与mRNA互补序列的RNA; eRNA,从内含子或DNA非编码区转录的RNA分子,精细调控基因的转录和翻译效率; SNP RNA,信号识别颗粒RNA,细胞质中与含信号肽mRNA识别,决定分泌的RNA功能分子;  pRNA,噬菌体RNA,fi29噬菌体中用6个同样的小RNA分子利用ATP参与DNA的包装;   tmRNA,具有tRNA样和mRNA样复合的RNA,广泛存在细菌中,识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解; 最后就是mRNA中的非翻译区,含有核糖体识别元件如5"-UTR,3"-UTR等.

非编码RNA是编码区的DNA转录后形成的并不完全成熟的RNA吗?

楼上很全,对的。

基因中的编码区和非编码区都能够转录成RNA吗

非编码rna指的是不被翻译成蛋白质的rna,如trna,rrna等,这些rna不被翻译成蛋白质,但是其中有一些会参与蛋白质翻译过程。此外还有snrna,snorna等参与rna剪接和rna修饰,mirna也是非编码rna,是小的rna分子,与转录基因互补,介导基因沉默(rnai),  grna又称引导rna,真核生物中参与rna编辑的具有与mrna互补序列的rna;  erna,从内含子或dna非编码区转录的rna分子,精细调控基因的转录和翻译效率;  snprna,信号识别颗粒rna,细胞质中与含信号肽mrna识别,决定分泌的rna功能分子; prna,噬菌体rna,fi29噬菌体中用6个同样的小rna分子利用atp参与dna的包装;  tmrna,具有trna样和mrna样复合的rna,广泛存在细菌中,识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解;  最后就是mrna中的非翻译区,含有核糖体识别元件如5"-utr,3"-utr等。

一个氨基酸可以对应多个tRNA,但一个tRNA只能对应一个氨基酸?

是的。不同的氨基酸有的有多个遗传密码,这样的氨基酸就由多个tRNA转运。但每个tRNA都有特定的反密码子,只能转运一种氨基酸。

怎么看mirna在同一个cluster或者有共调节作用

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。外源性RNA,即tmRNA 是存在于细菌的一类稳定的小RNA,tmRNA的功能有,(1):将“滞留”在tmRNA上的核糖体解脱下来.(2):将一段信号肽加在有缺陷的蛋白质C末端,使其有效的水解。tRNA样区域的结构类似典型tRNA 的四叶草结构,其折叠方式类似于tRNA。其结构的维持与D和T环之间的相互作用有关。虽然t RNA样区域没有密码子—反密码子复合体以供核糖体A位识别,有证据表明tmRNA自身或与其结合的蛋白质具有类似核糖体A位识别功能。t RNA样区域周围有高度保守的碱基序列。据认为对tmRNA的空间构像和功能有重要作用,同时tRNA样区域同其mRNA区域也存在着相互作用,两者之间的功能应该有相互联系。内源性RNA,即MicroRNA (miRNA) 是一类由内源基因编码的长度约为22 个核苷酸的非编码单链RNA 分子,它们在动植物中参与转录后基因表达调控。大多数miRNA 基因以单拷贝、多拷贝或基因簇(cluster) 的形式存在于基因组中。MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,几个miRNAs也可以调节同一个基因,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。

什么是非编码RNA

非编码RNA,指的是不被翻译成蛋白质的RNA,如tRNA, rRNA等,这些RNA不被翻译成蛋白质,但是参与蛋白质翻译过程。此外还有snRNA,snoRNA等参与RNA剪接和RNA修饰,miRNA也是非编码RNA,是小的RNA分子与转录基因互补,介导基因沉默。gRNA又称引导RNA,真核生物中参与RNA编辑的具有与mRNA互补序列的RNA;eRNA,从内元(introns)或非编码DNA转录的RNA分子,精细调控基因的转录和翻译效率;信号识别颗粒RNA,细胞质中与含信号肽mRNA识别,决定分泌的RNA功能分子;pRNA,噬菌体RNA,fi29噬菌体中用6个同样的小RNA分子利用ATP参与DNA的包装;tmRNA,具有tRNA样和mRNA样复合的RNA,广泛存在细菌中,识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解;最后就是mRNA中的非翻译区,含有核糖体识别元件如5"-UTR,3"-UTR等。内元(introns)也可看作非编码RNA。

谁说所谓的非编码性RNA就一定没有编码性

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。外源性RNA,即tmRNA 是存在于细菌的一类稳定的小RNA,tmRNA的功能有,(1):将“滞留”在tmRNA上的核糖体解脱下来.(2):将一段信号肽加在有缺陷的蛋白质C末端,使其有效的水解。tRNA样区域的结构类似典型tRNA 的四叶草结构,其折叠方式类似于tRNA。其结构的维持与D和T环之间的相互作用有关。虽然t RNA样区域没有密码子—反密码子复合体以供核糖体A位识别,有证据表明tmRNA自身或与其结合的蛋白质具有类似核糖体A位识别功能。t RNA样区域周围有高度保守的碱基序列。据认为对tmRNA的空间构像和功能有重要作用,同时tRNA样区域同其mRNA区域也存在着相互作用,两者之间的功能应该有相互联系。内源性RNA,即MicroRNA (miRNA) 是一类由内源基因编码的长度约为22 个核苷酸的非编码单链RNA 分子,它们在动植物中参与转录后基因表达调控。大多数miRNA 基因以单拷贝、多拷贝或基因簇(cluster) 的形式存在于基因组中。MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,几个miRNAs也可以调节同一个基因,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。

什么叫做外源性RNA和内源性RNA

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。外源性RNA,即tmRNA 是存在于细菌的一类稳定的小RNA,tmRNA的功能有,(1):将“滞留”在tmRNA上的核糖体解脱下来.(2):将一段信号肽加在有缺陷的蛋白质C末端,使其有效的水解。tRNA样区域的结构类似典型tRNA 的四叶草结构,其折叠方式类似于tRNA。其结构的维持与D和T环之间的相互作用有关。虽然t RNA样区域没有密码子—反密码子复合体以供核糖体A位识别,有证据表明tmRNA自身或与其结合的蛋白质具有类似核糖体A位识别功能。t RNA样区域周围有高度保守的碱基序列。据认为对tmRNA的空间构像和功能有重要作用,同时tRNA样区域同其mRNA区域也存在着相互作用,两者之间的功能应该有相互联系。内源性RNA,即MicroRNA (miRNA) 是一类由内源基因编码的长度约为22 个核苷酸的非编码单链RNA 分子,它们在动植物中参与转录后基因表达调控。大多数miRNA 基因以单拷贝、多拷贝或基因簇(cluster) 的形式存在于基因组中。MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,几个miRNAs也可以调节同一个基因,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。

什么叫做外源性RNA和内源性RNA

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。外源性RNA,即tmRNA是存在于细菌的一类稳定的小RNA,tmRNA的功能有,(1):将“滞留”在tmRNA上的核糖体解脱下来.(2):将一段信号肽加在有缺陷的蛋白质C末端,使其有效的水解。tRNA样区域的结构类似典型tRNA的四叶草结构,其折叠方式类似于tRNA。其结构的维持与D和T环之间的相互作用有关。虽然tRNA样区域没有密码子—反密码子复合体以供核糖体A位识别,有证据表明tmRNA自身或与其结合的蛋白质具有类似核糖体A位识别功能。tRNA样区域周围有高度保守的碱基序列。据认为对tmRNA的空间构像和功能有重要作用,同时tRNA样区域同其mRNA区域也存在着相互作用,两者之间的功能应该有相互联系。内源性RNA,即MicroRNA(miRNA)是一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,它们在动植物中参与转录后基因表达调控。大多数miRNA基因以单拷贝、多拷贝或基因簇(cluster)的形式存在于基因组中。MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,几个miRNAs也可以调节同一个基因,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。

RNA在细胞内均以mrna trna rrna形式存在 参与细胞代谢过程

mRNA:携带遗传信息,在蛋白质合成时充当模板的RNA。   从脱氧核糖核酸(DNA)转录合成的带有遗传信息的一类单链核糖核酸(RNA)。它在核糖体上作为蛋白质合成的模板,决定肽链的氨基酸排列顺序。mRNA存在于原核生物和真核生物的细胞质及真核细胞的某些细胞器(如线粒体和叶绿体)中。tRNA(又叫转运RNA)约含70~100个核苷酸残基,是分子量最小的RNA,占RNA总量的16%,现已发现有100多种。tRNA的主要生物学功能是转运活化了的氨基酸,参与蛋白质的生物合成。核糖体RNA:即rRNA,是最多的一类RNA,也是3类RNA(tRNA,mRNA,rRNA)中相对分子质量最大的一类RNA,它与蛋白质结合而形成核糖体,其功能是作为mRNA的支架,使mRNA分子在其上展开,实现蛋白质的合成。rRNA占整个RNA的82%左右。

原核细胞和真核细胞的细胞质中,为什么都有RNA?

RNA包括三种类型,tRNA转运RNA,负责转运氨基酸 rRNA核糖体RNA,是核糖体的功能结构组成单位,mRNA信使RNA,负责携带细胞核中的遗传物质然后通过核糖体翻译为蛋白质。因此如果没有这三种RNA核中的遗传信息是无法表达的,也就不可能有是生物了。另外DNA的复制与RNA无关,其结构单位就是不相同的,DNA是脱氧核糖核苷酸有磷酸二酯键连接成链的RNA则是核糖核苷酸。

miRNA family cluster?

同一个miRNA有可能有几个不同的pre 不过经过dicer剪切都是同一个miRNA一个cluster是指它们在基因组上离的很近一个family是指它们的seed区一样所以差几个碱基就不是一个miRNA了 完全是不同的事了

请问什么是非编码基因,什么是非编码序列,什么是非编码RNA?他们各有什么作用?

这个先要知道原核生物和真和生物的基因结构的不同点原核生物:由编码区和非编码区组成,在非编码区的上游有RNA聚合酶结合位点。编码区是连续的,不间隔的。这个区域的DNA序列都能编码蛋白质,叫编码序列。非编码区的是不能编码蛋白质的DNA序列组成的,叫非编码序列。真核生物:由编码区和非编码区组成,在非编码区的上游有RNA聚合酶结合位点。编码区是不连续的,间隔的,有外显子和内含子组成。外显子的DNA序列都能编码蛋白质,叫编码序列,而内含子的DNA序列不能编码蛋白质,叫非编码序列。非编码区的是不能编码蛋白质的DNA序列组成的,叫非编码序列。所以说真核生物的非编码序列包含有内含子和非编码区的序列。注意:真核生物的编码区在编码蛋白质的时候,整个编码区都要进行转录形成mRNA,但是由内含子转录出来的mRAN由于不能翻译成蛋白质,所以要切除。综上所述,非编码序列指的是不能编码蛋白质的DNA序列,比如有非编码区的序列和内含子。非编码RNA指的是不能翻译成蛋白质的RNA序列,比如由内含子转录出来的mRNA。好像没有什么非编码基因,要说的话,也就是非编码DNA序列。

人造rna长度最大

根据RNA链的长度,RNA包括小RNA和长RNA。通常,小RNA的长度小于200 nt,长RNA的长度大于200 nt。长RNA,也称为大RNA,主要包括长非编码RNA(lncRNA)和mRNA。小RNA主要包括5.8S 核糖体RNA(rRNA),5S rRNA,转移RNA(tRNA),microRNA(miRNA),小干扰RNA(siRNA),小核仁RNA(snoRNA),Piwi相互作用RNA(piRNA),tRNA衍生的小RNA(tsRNA)和rRNA衍生的小RNA(srRNA)。翻译中Messenger RNA(mRNA)将有关蛋白质序列的信息传递给核糖体,即细胞中的蛋白质合成工厂。它被编码为每三个核苷酸(一个密码子)对应一个氨基酸。在真核细胞中,一旦从DNA转录了前体mRNA(pre-mRNA),它就会被加工成成熟的mRNA。这样就去除了其内含子(pre-mRNA的非编码部分)。然后将mRNA从细胞核输出到细胞质,然后与核糖体结合,并在tRNA的帮助下翻译成相应的蛋白质形式。在没有核和细胞质区室的原核细胞中,mRNA在从DNA转录时可以与核糖体结合。在一定时间后,该信息在核糖核酸酶的帮助下降解为其组成核苷酸。转移RNA(tRNA)是一条约80 个核苷酸的小RNA链,可在翻译过程中将特定氨基酸转移到蛋白质合成的核糖体位点上正在生长的多肽链上。它具有氨基酸附着位点和用于密码子识别的反密码子区域,该区域通过氢键与信使RNA链上的特定序列结合。核糖体RNA(rRNA)是核糖体的催化成分。真核生物核糖体包含四个不同的rRNA分子:18S,5.8S,28S和5S rRNA。rRNA分子中的三个在核仁中合成,一个在其他地方合成。在细胞质中,核糖体RNA和蛋白质结合形成一种称为核糖体的核蛋白。核糖体结合mRNA并进行蛋白质合成。几个核糖体可随时连接到单个mRNA。在典型的真核细胞中几乎所有的RNA都是rRNA。在许多细菌和质体中都发现了传递信使RNA(tmRNA)。它标记由缺少终止密码子的mRNA编码的蛋白质,从而防止其降解并阻止核糖体失速。

什么是RNA和mRNA?

RNA是英文核糖核酸的缩写,核糖核酸主要由磷酸、核糖、碱基构成。它以碱基互补配对的原则参与转录,翻译及表达调控的过程。RNA是以DNA的一条链为模板,以碱基互补配对为原则转录而形成的一条单链,它在遗传信息表达传递过程中起桥梁作用。RNA是由核糖核苷酸经磷脂键缩合而成的长链状分子,一个核糖核酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有腺嘌呤,鸟嘌呤,胞嘧啶,尿嘧啶等四种物质组成。RNA主要包括mRNA,tRNA和rRNA3种,其中mRNA又称信息RNA,tRNA又称转运RNA,rRNA又称为核糖体RNA,这三种RNA是主要的RNA。
 首页 上一页  1 2 3 4 5 6 7 8 9 10  下一页  尾页