不同类型的核酸有哪几种?它们在组成/结构分布/上面有什么区别
核酸有两大类,一类是核糖核酸(RNA),另一类是脱氧核糖核酸(DNA);从组成上说,RNA的单体是核糖核苷酸,DNA的单体是脱氧核糖核苷酸;这两种都是核苷酸,它们的结构是一个碱基,一个磷酸。还有一个五碳糖;不同的是,组成RNA的单体核苷酸中五碳糖是D-核糖,组成DNA的单体核苷酸中五碳糖是2"-D-脱氧核糖。两者的区别是相差一个氧原子。DNA和RNA还有一个组成上的区别,就是碱基不同,组成RNA的碱基包括腺嘌呤A,鸟嘌呤G,胞嘧啶C,尿嘧啶U。组成DNA的碱基除了A,G,C外,没有U,而是胸腺嘧啶T。具体结构上说,DNA在体内主要是以双螺旋形式存在,在体内经过超螺旋,并与蛋白质结合,形成染色质和染色体。RNA在体内主要以单链的形式存在,有3大类,信使RNA(mRNA),转移RNA(tRNA),核糖体RNA(rRNA)。其中后两种经常有链内互补碱基配对,形成一定螺旋,成为发卡和十字结构。在生物体内的分布;真核生物的DNA主要分布在细胞核和线粒体,叶绿体中;原核生物没有成形的细胞核,DNA主要存在于核区,形成拟核结构。RNA的分布比较广真核细胞核,细胞器,细胞质中均有分布。原核细胞中RNA分布较普遍。还有一类特殊生物就是病毒,一般含有DNA或RNA的一种,RNA可以是单链也可以是双链。以上是我知道的内容,还有一些细节没有打,不知道楼主对这个答案满意否。
核酸中核苷酸之间的连接方式是
核酸中核苷酸之间通过磷酸二酯键来连接,因为磷酸和含氮碱基分别位于五碳糖的第3位和第5位上。脱氧核糖与磷酸之间连接的键为磷酸二酯键,其是一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。磷酸二酯键的特点DNA聚合酶,限制性内切酶,DNA连接酶都可作用于磷酸二酯键。和二个糖、醇等的羟基(R—OH, R′—OH)形成酯时的键为磷酸二酯键。代表性的磷酸二酯键是核酸的核苷酸间的键,由于相邻核苷酸的糖的3′-OH和5′-OH中磷酸分子脱氢,五碳糖脱去羟基而形成磷酸二酯键而聚合起来。此键可由酸、碱或酶的作用而水解。以上内容参考:百度百科-磷酸二酯键
请教有关核酸中的磷酸二酯键的几个问题
您好!①DNA中的磷酸二酯键是不是包括磷酸基团、以及磷酸基团与两个脱氧核糖相连的两个化学键:对的,酯键指的就是磷酸中的羟基与核糖上的羟基形成的-O-。②RNA中有没有磷酸二酯键:有的。③限制酶具体切割的是核糖3"位上的C形成的酯键,生产3"的羟基和5‘的磷酸一酯。百度教育团队【海纳百川团】为您解答。感谢您的采纳,O(∩_∩)O如有疑问,欢迎追问。
核酸的基本组成单位是
核酸的基本组成单位叫核苷酸,核苷与磷酸通过酯键构成核苷酸,核苷酸也有核糖核苷酸和脱氧核糖核苷酸两类。核酸的基本组成单位是核酸的基本组成单位叫核苷酸,共8种,都由一分子磷酸、一分子五碳糖(核糖或脱氧核糖)和一分子含氮碱基(五种中的一种:A、C、G、T、U)构成。核苷酸核苷与磷酸通过酯键构成核苷酸,即:碱基-戊糖-磷酸,核苷酸也有核糖核苷酸和脱氧核糖核苷酸两类。含有一个磷酸的核苷酸是核酸的基本组成单位,体内还有含多个磷酸的核苷酸,现列举如下:(1)核苷一磷酸(NMP)和脱氧核苷一磷酸(dNMP):碱基-戊糖-磷酸(2)核苷二磷酸(NDP)和脱氧核苷二磷酸(dNDP):碱基-戊糖-磷酸-磷酸(3)核苷三磷酸(NTP)和脱氧核苷三磷酸(dNTP):碱基-戊糖-磷酸-磷酸-磷酸其中N代表所有碱基(A、G、C、T、U);P代表磷酸;M、D、T分别代表磷酸的个数为一、二、三个。NMP和dNMP分别是RNA和DNA的基本组成单位。
基因工程技术也称为DNA重组技术,其实施必须具备的四个必要条件是( )A.目的基因、限制性核酸内切酶
A、目的基因、限制性核酸内切酶、运载体是基因工程必需具备的条件,但体细胞不一定是受体细胞,A错误;B、重组DNA是由目的基因和质粒重组形成的,RNA聚合酶是转录需要的酶,细胞中具有该种酶,因此不是基因工程必需的条件,B错误;C、mRNA是基因转录的产物,基因工程中不需要提供该物质,质粒是运载体中的一种,除了质粒还有动植物病毒和噬菌体衍生物,因此质粒不是基因工程中必须的,C错误;D、限制酶和DNA连接酶属于工具酶,另外运载体、目的基因和受体细胞是基因工程中的必需具备的条件,D正确.故选:D.
核酸具有哪些共同的理化性质?核酸的变性受哪些因素的影响?
分类: 教育/科学 >> 科学技术 解析: 第二章 核 酸 一、知识要点 核酸分两大类:DNA和RNA。所有生物细胞都含有这两类核酸。但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA。 核酸的基本结构单位是核苷酸。核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成。核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起。核酸中还有少量的稀有碱基。RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶。在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤。核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使。DNA的空间结构模型是在1953年由Watson和Crick两个人提出的。建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性。DNA是由两条反向直线型多核苷酸组成的双螺旋分子。单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键。按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。 DNA能够以几种不同的结构形式存在。从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实。在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径。DNA中的一些特殊顺序能引起DNA弯曲。带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构。由于它存在于基因调控区,因而有重要的生物学意义。 不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构。tRNA的二级结构为三叶草形,三级结构为倒L形。mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体。 核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸。酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定。RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定。细胞内有各种核酸酶可以分解核酸。其中限制性内切酶是基因工程的重要工具酶。 核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性。碱基杂环中的氮具有结合和释放质子的能力。核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子。 核酸的碱基具有共轭双键,因而有紫外吸收的性质。各种碱基、核苷和核苷酸的吸收光谱略有区别。核酸的紫外吸收峰在260nm附近,可用于测定核酸。根据260nm与280nm的吸收光度(A260)可判断核酸纯度。 变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂。引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性。核酸变性时,物理化学性质将发生改变,表现出增色效应。热变性一半时的温度称为熔点或变性温度,以Tm来表示。DNA的G+C含量影响Tm值。由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度。根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值。 变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应。用不同来源的DNA进行退火,可得到杂交分子。也可以由DNA链与互补RNA链得到杂交分子。杂交的程度依赖于序列同源性。分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术。 染色体中的DNA分子是细胞内最大的大分子。许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中。许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的。病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多。 真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成。其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋。细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢。
3个核酸分子.有5种碱基,8种核苷酸,4条核苷酸链.组成多少DNA分子
1个DNA分子,2个RNA分子 核酸是由C,H,O,N,P等化学元素组成的高分子化合物. 它的基本组成单位是核苷酸. 一个核苷酸是由一分子含氮的碱基,一分子五碳糖和一分子磷酸组成的. 每个核酸分子是由几百个乃至上亿个核苷酸互相连接而成的长链 5种碱基:A,T,U,G,C(可推出又有DNA又有RNA) 8种核苷酸:ATGC AUGC(可推出又有DNA又有RNA) 4条多核苷酸链:DNA是双链结构的.所以有2条核苷酸链.而RNA是单链的,所以2*1=2(条)核苷酸链.
有五个核酸分子经分析有五种碱基八种核苷酸八条多核苷酸链
DNA一般为双链结构,含有四种脱氧核苷酸,含氮碱基有A、C、G、T四种;RNA分子一般为单链结构,含有四种核糖核苷酸,含氮碱基有A、C、G、U四种.这5个核酸分子含有5种碱基,8种核苷酸,8条核苷酸长链,可见这5个核酸分子由3个DNA分子和2个RNA分子组成. 故选:C.
蛋白质与核酸结构的特点
核酸(DNA和RNA)、蛋白质、多糖和脂质是组成生物体的4类生物大分子。DNA是生物体中信息的原初戴队DNA通过复制使遗传信息由亲代流向子代,通过转录节特定基因的遗传信息转换成相应的指令--mRNA,后者指导氨基酸按一定的顺序连接成特定的多肽,然后折叠成相应的蛋白质。蛋白质是遗传信息的体现者。核酸和蛋白质合成代表生命活动中遗传信息流动的主线,它驾驭生命活动的进行。核酸和蛋白质的高聚物特性正是实现这种信息流动的基础,核酸分子的骨架是由核苷酸通过3",5"-磷酸二酯键连接成的多核苷酸链,核苷酸是其单体。构成DNA和RNA的分别是4种脱氧核糖核苷酸和核糖核昔酸。不同的核糖核苷酸(和脱氧核糖核苷酸)的区别在于其碱基的差异。蛋白质分子的骨架是由20种氨基酸通过肽键连接成的多肽链。20种氨基酸的区别在于其侧链(R基)的差异。这就极大地简化了遗传信息的转化,使其成为4种核苷酸和20种α-氨基酸连接顺序间的转换,亦即核酸语言转换成了蛋白质语言。在转录中,DNA的碱基顺序决定了新合成的mRNA的碱基顺序,这是遗传指令的发送。在翻译中,mRNA上的碱基顺序规定了新合成的多肤链的氨基酸顺序,而氨基酸侧链的结构和性质则决定了多肽链可折叠成的稳定构象和形成相应的功能。这是指令转换为功能的过程。参考资料:分子生物学--生命的物质基础--生命的分子逻辑
蛋白质核酸多糖是怎么形成的
核酸(DNA和RNA)、蛋白质、多糖和脂质是组成生物体的4类生物大分子。DNA是生物体中信息的原初戴队DNA通过复制使遗传信息由亲代流向子代,通过转录节特定基因的遗传信息转换成相应的指令--mRNA,后者指导氨基酸按一定的顺序连接成特定的多肽,然后折叠成相应的蛋白质。蛋白质是遗传信息的体现者。核酸和蛋白质合成代表生命活动中遗传信息流动的主线,它驾驭生命活动的进行。核酸和蛋白质的高聚物特性正是实现这种信息流动的基础,核酸分子的骨架是由核苷酸通过3",5"-磷酸二酯键连接成的多核苷酸链,核苷酸是其单体。构成DNA和RNA的分别是4种脱氧核糖核苷酸和核糖核昔酸。不同的核糖核苷酸(和脱氧核糖核苷酸)的区别在于其碱基的差异。蛋白质分子的骨架是由20种氨基酸通过肽键连接成的多肽链。20种氨基酸的区别在于其侧链(R基)的差异。这就极大地简化了遗传信息的转化,使其成为4种核苷酸和20种α-氨基酸连接顺序间的转换,亦即核酸语言转换成了蛋白质语言。在转录中,DNA的碱基顺序决定了新合成的mRNA的碱基顺序,这是遗传指令的发送。在翻译中,mRNA上的碱基顺序规定了新合成的多肤链的氨基酸顺序,而氨基酸侧链的结构和性质则决定了多肽链可折叠成的稳定构象和形成相应的功能。这是指令转换为功能的过程。
核酸由什么组成
核酸组成如下:核苷酸是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。核苷酸可以通过多种体外(In vitro)和体内(In vivo)方法来合成。核酸的结构:碱基与戊糖构成核苷,核苷的磷酸酯为核苷酸。DNA和RNA中的戊糖不同,RNA中的戊糖是D-核糖;DNA不含核糖而含D-2-脱氧核糖(核糖中2位碳原子上的羟基为氢所取代)。核酸链的每个核苷酸单元的5′磷酸基与其一侧毗邻核苷酸的3′羟基相连,其3′羟基又与另一侧毗邻核苷酸的5′磷酸基相连。这样,许许多多的核苷酸彼此就用3′、5′磷酸二酯键连在一起,构成没有分支的多核苷酸长链。链中的戊糖和磷酸相间排列且不断重复,构成核酸的主链,碱基可以看成连接在主链上的侧链。代表核酸特性的是核苷酸的序列,实际上就是碱基序列。化学性质1、酸效应:在强酸和高温下核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。2、碱效应:当pH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性。3、化学变性:一些化学物质能够使DNA或RNA在中性pH下变性。由堆积的疏水碱基形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。
比较多糖,蛋白质,核酸的异同
核酸(DNA和RNA)、蛋白质、多糖和脂质是组成生物体的4类生物大分子。DNA是生物体中信息的原初戴队DNA通过复制使遗传信息由亲代流向子代,通过转录节特定基因的遗传信息转换成相应的指令--mRNA,后者指导氨基酸按一定的顺序连接成特定的多肽,然后折叠成相应的蛋白质。蛋白质是遗传信息的体现者。核酸和蛋白质合成代表生命活动中遗传信息流动的主线,它驾驭生命活动的进行。核酸和蛋白质的高聚物特性正是实现这种信息流动的基础,核酸分子的骨架是由核苷酸通过3",5"-磷酸二酯键连接成的多核苷酸链,核苷酸是其单体。构成DNA和RNA的分别是4种脱氧核糖核苷酸和核糖核昔酸。不同的核糖核苷酸(和脱氧核糖核苷酸)的区别在于其碱基的差异。蛋白质分子的骨架是由20种氨基酸通过肽键连接成的多肽链。20种氨基酸的区别在于其侧链(R基)的差异。这就极大地简化了遗传信息的转化,使其成为4种核苷酸和20种α-氨基酸连接顺序间的转换,亦即核酸语言转换成了蛋白质语言。在转录中,DNA的碱基顺序决定了新合成的mRNA的碱基顺序,这是遗传指令的发送。在翻译中,mRNA上的碱基顺序规定了新合成的多肤链的氨基酸顺序,而氨基酸侧链的结构和性质则决定了多肽链可折叠成的稳定构象和形成相应的功能。这是指令转换为功能的过程。
核糖核酸是如何形成的
核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶 >(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。核苷酸是怎么连接的? 3",5"-磷酸二酯键:核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3",5"-磷酸二酯键。这种连接可理解为核苷酸糖基上的3"位羟基与相邻5"核苷酸的磷酸残基之间,以及核苷酸糖基上的5"位羟基与相邻3"核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。DNA链的结构如下示意图。 寡核苷酸(oligonucleotide):这是与核酸有关的文献中经常出现的一个术语,一般是指二至十个核苷酸残基以磷酸二酯键连接而成的线性多核苷酸片段。但在使用这一术语时,对核苷酸残基的数目并无严格规定,在不少文献中,把含有三十甚至更多个核苷酸残基的多核苷酸分子也称作寡核苷酸。寡核苷酸目前已可由仪器自动合成,它可作为DNA合成的引物(primer)、基因探针(probe)等,在现代分子生物学研究中具有广泛的用途。 核酸链的简写式:核酸分子的简写式是为了更简单明了的叙述高度复杂的核酸分子而使用的一些简单表示式。它所要表示的主要内容是核酸链中的核苷酸(或碱基)。下面介绍二种常用的简写式。 字符式:书写一条多核苷酸链时,用英文大写字母缩写符号代表碱基(DNA和RNA中所含主要碱基及缩写符号见表1-1),用小写英文字母P代表磷酸残基。核酸分子中的糖基、糖苷键和酯键等均省略不写,将碱基和磷酸相间排列即可。因省略了糖基,故不再注解“脱氧”与否,凡简写式中出现T就视为DNA链,出现U则视为RNA链。以5"和3"表示链的末端及方向,分别置于简写式的左右二端。下面是分别代表DNA链和RNA链片段的二个简写式:5"pApCpTpTpGpApApCpG3"DNA5"pApCpUpUpGpApApCpG3"RNA此式可进一步简化为:5"pACTTGAACG3"5"pACUUGAACG3" 上述简写式的5"-末端均含有一个磷酸残基(与糖基的C-5"位上的羟基相连),3"-末端含有一个自由羟基(与糖基的C-3"位相连),若5"端不写P,则表示5"-末端为自由羟基。双链DNA分子的简写式多采用省略了磷酸残基的写法,在上述简式的基础上再增加一条互补链(complentarystrand)即可,链间的配对碱基用短纵线相连或省略,错配(mismatch)碱基对错行书写在互补链的上下两边,如下所示:5"GGAATCTCAT3"3"CCTTAGAGTA5"5"GGAATC错配) 线条式:在字符书写基础上,以垂线(位于碱基之下)和斜线(位于垂线与P之间)分别表示糖基和磷酸酯键。如下图所示 上式中,斜线与垂线部的交点为糖基的C-3"位,斜线与垂线下端的交点为糖基的C-5"位。这一书写式也可用于表示短链片段。不难看出,简写式表示的中心含义就是核酸分子的一级结构,即核酸分子中的核苷酸(或碱基)排列顺序
核酸有哪些作用?
核酸是细胞的重要成分,在机体的生长、发育和繁殖过程中,起着重要作用。正因为如此,核酸一旦功能下降,就会对机体造成不良影响,其中之一就是导致机体的衰老。一般说来,到了20岁,人体合成核酸的能力下降,使体内核酸发生变化。另外,自然界中的辐射线加速了核酸的变化。人体每天或多或少地受到微弱辐射线的照射,日积月累的结果,引起人体中核酸的变化,造成身体细胞老化。如不及早防衰,就会出现黑斑、皱纹、皮肤粗糙、视力减退。体力衰弱、健忘等老化现象;中年时期就会开始脱发或早白。
高中生物核酸有什么用啊?
一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.
核酸的组成元素
一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.
限制性内切酶和核酸外切酶有何异同点?
1、内切酶切的是指定的磷酸二酯键,目的是开链;外切酶切的是任意的磷酸二酯键,目的是水解DNA,获得单个的核苷酸。2、核酸外切酶是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。按作用的特性差异可以将其分为单链的核酸外切酶和双链的核酸外切酶。3、它们不同于一般的脱氧核糖核酸酶(DNase),它们的切点大多很严格,要求专一的核苷酸顺序——识别顺序。扩展资料:外切酶即核酸外切酶(exonuclease )。核酸外切酶是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。其水解的最终产物是单个的核苷酸(DNA为dNMP,RNA为NMP)。按作用的特性差异可以将其分为单链的核酸外切酶和双链的核酸外切酶。单链的核酸外切酶包括大肠杆菌核酸外切酶Ⅰ(exoⅠ)和核酸外切酶Ⅶ(exoⅦ)。核酸外切酶Ⅶ(exoⅦ)能够从5′-末端或3′-末端呈单链状态的DNA分子上降解DNA,产生出寡核苷酸短片段,而且是唯一不需要Mg2+离子的活性酶,是一种耐受性很强的核酸酶。核酸外切酶Ⅶ(exoⅦ)可以用来测定基因组DNA中一些特殊的间隔序列和编码序列的位置。它只切割末端有单链突出的DNA分子, 实际操作时需要配合解旋酶操作。核酸内切酶限制性核酸内切酶(以下简称限制性酶)是一类识别双链DNA中特定核苷酸序列的DNA水解酶,以内切方式水解DNA,产生5"-P和3"-OH末端。 1952年Luria等及1953年Bertani等研究噬菌体时发现了宿主控制性现象。Arber及其同事用放射性同位素标记证明,噬菌体在新品系中的损害伴随有其DNA的降解,但宿主自己的DNA并不降解,据此他们提出了限制 - 修饰酶假说。对于一个宿主细胞,限制性酶及 DNA甲基化酶是其细胞中的一对酶,它们对DNA底物有相同的识别顺序。但有相反的生物功能,限制性酶的功能是在DNA分子内部拆卸水解,甲基化酶是修饰,DNA分子经修饰后,就可逃避限制性酶的识别,而甲基化酶只修饰宿主自身的DNA,从而避免了限制性酶对自身DNA的破坏。限制性酶主要分为三种类型:Ⅰ型限制酶为复合功能酶,具有限制-修饰两种功能,但在 DNA链上没有固定的切割位点,一般在离切割位点1kb到几kb的地方随机切割,不产生特异性片段。Ⅲ型酶与Ⅰ型酶基本相似,不同的是Ⅲ型酶有特异性的切割位点。但这两类酶对 DNA酶切分析的意义不大,通常所说的限制性内切酶是指Ⅱ型酶,它能够识别与切割DNA链上的特定的核苷酸顺序,产生特异性的DNA片段。参考资料:百度百科——核酸内切酶参考资料:百度百科——核酸外切酶
核酸是什么?结构是怎么样的?功能?
http://baike.baidu.com/view/28220.htm核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。 单个核苷酸是由含氮有机碱(称碱基)、戊糖和磷酸三部分构成的。 碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶 >(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。 嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。 此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。 戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。 戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。 核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。 核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。 当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。 核苷酸是怎么连接的? 3",5"-磷酸二酯键:核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3",5"-磷酸二酯键。这种连接可理解为核苷酸糖基上的3"位羟基与相邻5"核苷酸的磷酸残基之间,以及核苷酸糖基上的5"位羟基与相邻3"核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。DNA链的结构如下示意图。 寡核苷酸(oligonucleotide):这是与核酸有关的文献中经常出现的一个术语,一般是指二至十个核苷酸残基以磷酸二酯键连接而成的线性多核苷酸片段。但在使用这一术语时,对核苷酸残基的数目并无严格规定,在不少文献中,把含有三十甚至更多个核苷酸残基的多核苷酸分子也称作寡核苷酸。寡核苷酸目前已可由仪器自动合成,它可作为DNA合成的引物(primer)、基因探针(probe)等,在现代分子生物学研究中具有广泛的用途。 核酸链的简写式:核酸分子的简写式是为了更简单明了的叙述高度复杂的核酸分子而使用的一些简单表示式。它所要表示的主要内容是核酸链中的核苷酸(或碱基)。下面介绍二种常用的简写式。 字符式:书写一条多核苷酸链时,用英文大写字母缩写符号代表碱基(DNA和RNA中所含主要碱基及缩写符号见表1-1),用小写英文字母P代表磷酸残基。核酸分子中的糖基、糖苷键和酯键等均省略不写,将碱基和磷酸相间排列即可。因省略了糖基,故不再注解“脱氧”与否,凡简写式中出现T就视为DNA链,出现U则视为RNA链。以5"和3"表示链的末端及方向,分别置于简写式的左右二端。下面是分别代表DNA链和RNA链片段的二个简写式: 5"pApCpTpTpGpApApCpG3"DNA 5"pApCpUpUpGpApApCpG3"RNA 此式可进一步简化为: 5"pACTTGAACG3" 5"pACUUGAACG3" 上述简写式的5"-末端均含有一个磷酸残基(与糖基的C-5"位上的羟基相连),3"-末端含有一个自由羟基(与糖基的C-3"位相连),若5"端不写P,则表示5"-末端为自由羟基。双链DNA分子的简写式多采用省略了磷酸残基的写法,在上述简式的基础上再增加一条互补链(complentarystrand)即可,链间的配对碱基用短纵线相连或省略,错配(mismatch)碱基对错行书写在互补链的上下两边,如下所示: 5"GGAATCTCAT3" 3"CCTTAGAGTA5" 5"GGAATC错配) 线条式:在字符书写基础上,以垂线(位于碱基之下)和斜线(位于垂线与P之间)分别表示糖基和磷酸酯键。如下图所示 上式中,斜线与垂线部的交点为糖基的C-3"位,斜线与垂线下端的交点为糖基的C-5"位。这一书写式也可用于表示短链片段。不难看出,简写式表示的中心含义就是核酸分子的一级结构,即核酸分子中的核苷酸(或碱基)排列顺序。编辑本段核酸的相关分类 核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。 天然存在的核酸可分为: ╭ 脱氧核糖核酸(deoxyribonucleic acid,DNA) ╰ 核糖核酸(ribonucleic acid,RNA) DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。 RNA中参与蛋白质合成的有三类: ╭ 转移RNA(transfer RNA,tRNA) ∣ 核糖体RNA(ribosomal RNA,rRNA) ╰ 信使RNA(messenger RNA,mRNA) 20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面。 核苷酸可分为: ╭ 核糖核苷酸:是RNA的构件分子 ╰ 脱氧核糖核苷酸:是DNA构件分子。 细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。 核苷酸由: ╭ 核苷(nucleoside) ╰ 磷酸 核苷由: ╭ 碱基(base) ╰ 戊糖 碱基(base): 构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。 核酸: ╭ 嘌呤碱 : ╭ 腺嘌呤 ∣ ╰ 鸟嘌呤 ╰ 嘧啶碱 : ╭ 胞嘧啶 ∣ 胸腺嘧啶 ╰ 尿嘧啶 ╭ DNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于DNA中。 ∣ ╰ RNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于RNA中。 在某些tRNA分子中也有胸腺嘧啶,少数几种噬菌体的DNA含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质pH的影响出现酮式、烯醇式互变异构体。 在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基。tRNA中含稀有碱基高达10%。 戊糖: 核酸中有两种戊糖DNA中为D-2-脱氧核糖(D-2-deoxyribose),RNA中则为D-核糖(D-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以C-1",C-2"等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使DNA在化学上比RNA稳定得多。 核苷: 核苷是戊糖与碱基之间以糖苷键(glycosidic bond)相连接而成。戊糖中C-1"与嘧啶碱的N-1或者与嘌吟碱的N9相连接,戊糖与碱基间的连接键是N-C键,一般称为N-糖苷键。 RNA中含有稀有碱基,并且还存在异构化的核苷。如在tRNA和rRNA中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的C-1不是与尿嘧啶的N-1相连接,而是与尿嘧啶C-5相连接。 核苷酸: 核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸。核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类。依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷。核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(ATP)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(cAMP)和环鸟苷酸(cGMP)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(NAD+),尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)和黄素腺嘌呤二核苷酸(FAD)。编辑本段核酸的分子结构 一、 核酸的一级结构 核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。http://baike.baidu.com/view/28220.htm
蛋白质和核酸的结构和功能
蛋白质功能:是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。结构:蛋白质是以氨基酸为基本单位构成的生物大分子。一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。用约20种氨基酸作原料,在细胞质中的核糖体上,将氨基酸分子互相连接成肽链。一个氨基酸分子的氨基,脱去一分子水而连接起来,这种结合方式叫做脱水缩合。通过缩合反应,在羧基和氨基之间形成的连接两个氨基酸分子的那个键叫做肽键。由肽键连接形成的化合物称为肽。核酸功能:具有非常重要的生物功能,主要是贮存遗传信息和传递遗传信息。包括核糖核酸(RNA)和脱氧核糖核酸(DNA)两类。 结构:核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸
三个核酸分子,共有5种碱基,8种核苷酸,4条
原因分析:共有五种碱基或者8种核苷酸都说明既有DNA分子,又有RNA分子;四条多核苷酸链说明有一个DNA分子,两个RNA分子(因为一个DNA2个多核苷酸链,一个RNA1个多核苷酸链)-------------------------------------------------若以上结果不明白,则看这些基础知识:(1)首先,核糖核苷酸和脱氧核糖核苷酸都属于核苷酸,共八种核苷酸:核糖核苷酸:(属于RNA的基本单位)腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)脱氧核糖核苷酸:(属于DNA的基本单位)腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)共八种(2)含氮碱基只有五种:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)、尿嘧啶(U)而DNA分子中不含尿嘧啶(U),RNA分子中不含胸腺嘧啶(T)所以,腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、都可形成核糖核苷酸和脱氧核糖核苷酸(有6种核苷酸了),再加上RNA分子中的尿嘧啶核糖核苷酸(U)和DNA分子中的胸腺嘧啶脱氧核糖核苷酸(T)(共2种核苷酸)一共8种
这样说对吗? 脱氧核糖核酸是一种由核苷酸聚合成多核苷酸的核酸
准确的说脱氧核糖核酸酸是一种由脱氧核苷酸聚合成的核酸。因为脱氧核糖核酸是大分子物质,基本单位是小分子的脱氧核苷酸,很多个脱氧核苷酸聚合成两条脱氧核苷酸酸长链,两条链之间以氢键相连,盘旋成双螺旋结构,即为脱氧核糖核酸。
多核苷酸链与核酸有有区别吗?
基本上没什么区别,但是核酸有一定的空间构象,而多核苷酸链主要是指核酸的一级结构
核酸包括哪些东西?
一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.
为什么核酸可用碱基的排列顺序表示?是碱基和碱基之间连接在一起吗?
因为核酸预列的差异就在碱基,一分子的核酸有一分子的磷酸、一分子的核糖(或脱氧核糖)、一分子的碱基,同种核酸(DNA或RNA)中,磷酸和核糖都相同,仅碱基存在差异。单链核酸内部由磷酸和核糖交互排列,双链之间以碱基相连。用碱基的排列顺序表示,是因为碱基的差异、排序不同,其遗传信息也不同。
核酸DNA、RNA碱基排列顺序是怎样的?
A T 相连,C G 相连,这是DNA中的连接顺序;如果是排列顺序,不好说,每个基因都有它特定的排列顺序。
核酸分子中的碱基排列顺序都代表遗传信息
A、核酸包括DNA和RNA,是携带遗传信息的物质,A正确; B、DNA分子内碱基的排列顺序代表着遗传信息,B正确; C、一个DNA分子通常含有二条脱氧核苷酸链,C正确; D、绝大多数生物都以DNA作为遗传物质,RNA病毒以RNA为遗传物质,D错误. 故选:D.
DNA的两条脱氧核糖核酸链由什么化学键连接?
1、DNA分子的两条脱氧核糖核酸链上,连有不同种类的碱基。2、碱基的种类为:腺嘌呤(符号A)、鸟嘌呤(符号G)、胞嘧啶(符号C)、胸腺嘧啶(符号T)四种.3、DNA双链的互补碱基对之间以氢键相连。由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是腺嘌呤一定与胸腺嘧啶配对;鸟嘌呤一定与胞嘧啶配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。
为什么核酸可用碱基的排列顺序表示?
因为核酸中的碱基排列是特异性的,所以可以用碱基排列顺序表示。核酸不是靠碱基连在一起的,是靠核苷酸分子通过磷酸二酯键连在一起的
为什么生物的核酸碱基会互补配对?
从物理化学的角度来说,核酸碱基会互补配对的根本原因是:碱基是个杂环芳香分子。碱基的芳香性保证了所有碱基杂环上的原子都是共平面的,而且同一条链上相邻的两个碱基之间会通过相互作用产生碱基堆积现象(也就是说所谓的碱基堆积力其实就是两层芳香环之间的电子云重叠),这就保证了核酸双链或多链结构中碱基能分层有序排列。而杂环上的高电负性的氮和氧原子,则保证了碱基能够提供足够的氢键供体和受体原子,使得同层碱基之间能形成两个或以上的氢键,这就使得同层的碱基能够配对。实际上碱基配对是相当多样的,中学里教的只有A-T C-G 顺式watson-crick配对,然而除了这种经典的配对形式以外,还有非常多样的非经典配对形式。具体可参考 @Leng Yeo 的这篇知乎专栏至于磷酸核糖骨架,那不是决定核酸能互补配对的关键。实际上,科学家们试过把磷酸核糖骨架修改得面目全非(如Peptide nucleic acid 、Threose nucleic acid、 假设有一种阿拉伯糖核酸,除了五碳糖是阿拉伯糖之外,一级结构和 RNA 的相同,对其高级结构有什么影响?),照样能碱基配对。RNA中的情况会复杂很多,所以这里先考虑DNA。DNA中的碱基"恰好"以AT/CG互补配对占主导地位而其他形式是自由能不偏好的,这看起来似乎非常“巧”。单纯讨论核酸配对自由能的ontology大概是没有意义的,因为这只能说明"生来就是那个样子"。下面从代谢和进化两方面简单加以考虑。
核酸分子中的碱基配对规律是
腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C 根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此.因此,可推知多条用于碱基计算的规律. 规律一:在一个双链DNA分子中,A=T、G=C.即:A+G=T+C或A+C=T+G.也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%. 规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等.(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2) 规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数.(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2) 规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值.即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%. 规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性.
简述核酸的碱基配对原则
碱基互补配对是指核酸分子中各核苷酸残基的碱基按A与T、A与U和G与C的对应关系互相以氢键相连的现象。碱基配对原则即碱基互补配对,即在脱氧核糖核酸(DNA)分子中,一条链上的碱基必须与另一条链上的碱基以相对应的方式存在,即腺嘌呤对应胸腺嘧啶(A对T或T对A)鸟嘌呤对应胞嘧啶(C对G或G对C)形成碱基对,这种排布方式叫碱基互补原则,亦称碱基配对原则。碱基配对,即一条长链上的A,总是与另一条长链上的T形成氢键;;而G总是与C形成氢键。即A=T、G≡C。
生物的核酸碱基会互补配对,其原理是什么?
碱基的一对一配对,能保证遗传信息在传播过程中的稳定。DNA和RNA是遗传信息的载体,碱基就是密码,目前的原则可以让这个密码稳定地转运、复制和翻译。如果A同时对应T和C,那么一条核苷酸单链ATTG就会对应TAAC和CAAC两种,一个生物体内有多少碱基,就会产生多少的不唯一碱基对,而DNA的复制、转运、翻译是在不断发生的,这样造成的影响就是,DNA的内容在不断地不可控制地变化。不要说遗传到下一代,个体的存续都无法维持。那么,如果A对应A,T对应T,这样是否可以呢?这样也是一对一,但是……碱基配对需要碱基之间在一定条件下才会形成,同种物质之间产生这样配对的物理/化学变化……我觉得不太可能。至少在目前的ATCGU的体系下,我们知道这五个碱基都不会与自己配对。最后,我想说的是,这是一种有效的遗传信息载体,但这不代表这是唯一可行的。
最早提取核酸的科学家是谁
DNA双螺旋研究大事年表1869年 医生米歇尔(Miescher F)发现,在伤口脓液细胞的核中有一种酸性物质,它由蛋白质和另一种化合物构成。米歇尔为后者起名为核酸,这便是今天我们所认识的脱氧核糖核酸—DNA。1919年 雷文讷(Levene P A) 提出,在DNA中有4种核苷酸,它们接续排列。1928年 格里菲斯(Griffith F)发现,在热灭活的肺炎双球菌中有一种物质,可使携带它的活体细菌发生遗传性变化。他称这种现象为“转化”(transformation)。1938年 西格纳(Signer R)等发现,DNA的分子量可高达500000至1000000。因此,雷文讷的4核苷酸结构必定是一条长链。1944年 阿瑞里(Arery O)等从化学上辨明, 格里菲斯的“转化”是基于DNA,并且明确提出:DNA是基因材料。1949年 查伽夫(Chargaff E)报告,在不同的DNA片断中碱基的组成是不同的。全部嘌呤(即A和G)的总合大约等于全部嘧啶(即T和C)的总和。并且,A与T数量相等,G与C的数 量也相等。1949年 凡特列里(Vendrely R〕等发现,在人体性细胞核中DNA的数量只及体细胞的一半。1951年 富兰克林通过X射线衍射区分了两种类型(A型和B型)的DNA。1952年 何舍衣(Hershey A)等发现,在病毒感染细菌的过程中,进入细菌细胞的只是病毒的核酸,而没有病毒蛋白,并且病毒可在细菌内部繁衍后代。1952年 富兰克林获得了极为清晰的B型DNA-X射线的衍射图。该图直接了当地显示出DNA的螺旋结构:螺旋的轴向周期是3.4nm,并且在0.34nm处另有很强的反射。这些定量结果与我们现在对DNA的认识完全一致:盘绕螺旋轴的每一圈有10个核苷酸,螺距是3.36nm。1953年 4月25日《Nature》刊出了沃森和克里克等具有里程碑意义的三篇论文。1954年 物理学家伽莫夫(Gamow G)提出,DNA对蛋白质的合成起编码作用。1955年 本策(Benzer S)分析了一种病毒的DNA精细结构,区分了沿DNA链的单个碱基。1957年 克里克提出“中心法则”:生命体的遗传信息在于DNA中核苷酸的次序,它决了 各种蛋白质中氨基酸的排列顺序。1958年 梅赛尔森(Meselson M)等用放射性同位素跟踪细胞分裂过程,展示了DNA链的半保留复制:双螺旋在复制之前必须先解开,旧链作为模板为两条新链的合成提供信息,同时旧链本身又成为新双螺旋的一部分。1958年 柯恩贝克(Kornberg A)等分离出DNA聚合酶,从生物化学的角度证明:这种酶在DNA复制中 起“复印机”的作用。新链的碱基与模板链碱基互补配对,即A对T,C对G;两条新链合成的运行方向是相反的。1961年 尼伦贝克(Nirenberg M)等阐明,核苷酸的次序可以编码氨基酸,从而为破译基因编码奠定了基础。1962年 诺贝尔医学奖授予沃森、克里克和威尔金斯。然而,曾对DNA双螺旋结构的发现 作出决定性贡献的女科学家富兰克林,却因英年早逝(1958年死于癌症,年仅37岁)未能登上诺贝尔领奖台。
核酸中的含氮碱基A、G、C、U、T分别叫什么嘧啶?
腺嘌呤,鸟嘌呤,胞嘧啶,尿嘧啶,胸腺嘧啶
核酸的组成。什么是碱基,是么是五碳糖,具体解答
核酸大分子可分为两类:脱氧核糖核苷酸(DNA)和核糖核苷酸(RNA),在蛋白质的复制和合成中起着储存和传递遗传信息的作用。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。 在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。 碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。
蛋白质和核酸构成的结构是
核酸分DNA和RNA,两者分别与蛋白质构成DNA分子和RNA分子。其中DNA分子为双链反向螺旋结构,RNA分子为单链螺旋结构。
核酸蛋白质复合物有哪些高中
基础会计学知识点归纳推荐度:人民版历史必修一知识点归纳推荐度:高中生物知识点总结推荐度:三年级上册英语重点知识点归纳推荐度:高中生物教学总结推荐度:相关推荐高中生物核酸知识点归纳 上学的时候,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!下面是小编收集整理的高中生物核酸知识点归纳,仅供参考,希望能够帮助到大家。 高中生物核酸知识点归纳 篇1 1、核酸的简介 由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。 核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物 2、核酸的研究历史 核酸是怎么发现的? 1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为"核质"(nuclein)。核酸(nucleicacids),但这一名词于Miescher的发现20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题。 核酸为什么是遗传物质? 1944年,Avery等为了寻找导致细菌转化的原因,他们发现从S型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。 双螺旋的`发现 核酸研究中划时代的工作是Watson和Crick于1953年创立的DNA双螺旋结构模型。模型的提出建立在对DNA下列三方面认识的基础上: 1.核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于1950-1953年发现的DNA化学组成的新事实;DNA中四种碱基的比例关系为A/T=G/C=1; 2.X线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数; 3.遗传学研究所积累的有关遗传信息的生物学属性的知识。综合这三方面的知识所创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性。其正确性于1958年被Meselson和Stahl的著名实验所证实。DNA双螺旋结构模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑。从此核酸研究受到了前所未有的重视。 对核酸研究有突出贡献的科学家 沃森 Watson,JamesDewey 美国生物学家 克里克 Crick,FrancisHarryCompton 英国生物物理学家 3、核酸的分子结构 一、核酸的一级结构 核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。 二、DNA的空间结构 (一)DNA的二级结构 DNA二级结构即双螺旋结构(doublehelixstructure)。20世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则。 DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑。 DNA双螺旋结构特点如下: ①两条DNA互补链反向平行。 ②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36?的夹角。 ③DNA双螺旋的表面存在一个大沟(majorgroove)和一个小沟(minorgroove),蛋白质分子通过这两个沟与碱基相识别。 ④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。 ⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stackingforce)。 生理条件下,DNA双螺旋大多以B型形式存在。右手双螺旋DNA除B型外还有A型、C型、D型、E型。此外还发现左手双螺旋Z型DNA。Z型DNA是1979年Rich等在研究人工合成的CGCGCG的晶体结构时发现的。Z-DNA的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是12个碱基对。研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关。DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内。三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义。 (二)DNA三级结构——超螺旋结构 DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构。生物体内有些DNA是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA、叶绿体DNA都是环状的。环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口。在DNA双螺旋结构基础上,共价闭合环DNA(covalentlyclosecircularDNA)可以进一步扭曲形成超螺旋形(superhelicalform)。根据螺旋的方向可分为正超螺旋和负超螺旋。正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数。几乎所有天然DNA中都存在负超螺旋结构。 (三)DNA的四级结构——DNA与蛋白质形成复合物 在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA约为4.7×103kb,而人的基因组DNA约为3×106kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近10000倍后,以染色体形式存在于平均直径为5μm的细胞核中。线性双螺旋DNA折叠的第一层次是形成核小体(nucleosome)。犹如一串念珠,核小体由直径为11nm×5.5nm的组蛋白核心和盘绕在核心上的DNA构成。核心由组蛋白H2A、H2B、H3和H4各2分子组成,为八聚体,146bp长的DNA以左手螺旋盘绕在组蛋白的核心1.75圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60bp双螺旋DNA和1个分子组蛋白H1构成。平均每个核小体重复单位约占DNA200bp。DNA组装成核小体其长度约缩短7倍。在此基础上核小体又进一步盘绕折叠,最后形成染色体。 遗传信息的携带者——核酸 一、核酸的分类 细胞生物含两种核酸:DNA和RNA 病毒只含有一种核酸:DNA或RNA 核酸包括两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA)。 二、核酸的结构 1、核酸是由核苷酸连接而成的长链(CHONP)。DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸。核酸初步水解成许多核苷酸。基本组成单位—核苷酸(核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成)。根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸。 2、DNA由两条脱氧核苷酸链构成。RNA由一条核糖核苷酸连构成。 3、核酸中的相关计算: (1)若是在含有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种。 (2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种。 (3)RNA的碱基种类为4种;核糖核苷酸种类为4种。 三、核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。 核酸在细胞中的分布——观察核酸在细胞中的分布: 材料:人的口腔上皮细胞 试剂:甲基绿、吡罗红混合染色剂 原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中。甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。 结论:真核细胞的DNA主要分布在细胞核中。线粒体、叶绿体内含有少量的DNA。RNA主要分布在细胞质中。 一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA) 二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。 三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。 四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T) RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿嘧啶(U) 五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。 高中生物核酸知识点归纳 篇2 天然存在的核酸有两类,即脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)。DNA分子是生物体的遗传信息库,分布在原核细胞的核区,真核细胞的核和细胞器以及病毒中;RNA分子参与遗传信息表达的一些过程,主要存在于细胞质。 一、核酸的基本组成单位 核酸是一种多聚核苷酸,用不同的降解法得到其组成单位——核苷酸。而核苷酸又由碱基、戊糖和磷酸组成。 (一)戊糖 DNA含β—D—2—脱氧核糖,RNA含β—D—核糖。这是核酸分类的依据。核糖中的C记为1'……5'。 (二)碱基(base) 核酸中的碱基有两类:嘌呤碱和嘧啶碱。有5种基本的碱基外,还有一些含量甚少的稀 DNA和RNA中常见的两种嘌呤碱是腺嘌呤(adenine,A)、鸟嘌呤(guanine,G)。有碱基。 而嘧啶碱有所不同:RNA主要含胞嘧啶(cytosine,C)、尿嘧啶(uracil,U),DNA主要含胞嘧啶、胸腺嘧啶(thymine,T)。 tRNA中含有较多的稀有碱基(修饰碱基),多为甲基化的。 (三)核苷 是碱基和戊糖生成的糖苷。通过C1'— N9或C1'— N1糖苷键连接,用单字符表示,脱氧核苷则在单字符前加d。常见的修饰核苷有:次黄苷或肌苷为I、黄嘌呤核苷X、二氢尿嘧啶核苷D、假尿苷Ψ等。注意符号的意义,如m5dC。 (四)核苷酸 是核苷的磷酸酯。生物体内游离存在的多是5'— 核苷酸(如pA、pdG等)。常见的核苷酸为AMP、GMA、CMP、UMP。常见的脱氧核苷酸有dAMP、dGMA、dCMP、dTMP。AMP是一些重要辅酶的结构成分(如NAD+、NADP+、FAD等);环化核苷酸(cAMP/cGMP)是细胞功能的调节分子和信号分子。ATP在能量代谢中起重要作用。 核苷酸是两性电解质,有等电点。核苷酸有互变异构和紫外吸收。(含氧的碱基有酮式和烯醇式两种互变异构体,在生理pH条件下主要以酮式存在) 二、核苷酸的连接方式 RNA和DNA链都有方向性,从5'→ 3'。前一位核苷酸的3'— OH与下一位核苷酸的5'位磷酸基之间形成3',5'—磷酸二酯键,从而形成一个没有分支的线性大分子,两个末端分别称为5'末端和3'末端。大分子的主链由相间排列的戊糖和磷酸构成,而碱基可看作主链上的侧链基团,主链上的磷酸基是酸性的,在细胞pH下带负电荷;而碱基有疏水性。
核酸的相关分类
核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。天然存在的核酸可分为:⑴脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。RNA中参与蛋白质合成的有三类:转移RNA(transfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)和信使RNA(messenger RNA,mRNA)20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面。核苷酸可分为:核糖核苷酸(RNA的构件分子)和 脱氧核糖核苷酸(DNA构件分子)细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。核苷酸由 核苷(nucleoside)磷酸(Phosphonic.acid)组成核苷由:碱基(base)和 戊糖(Pentose)组成 构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。核酸:1.嘌呤碱:腺嘌呤(A)鸟嘌呤(G)2.嘧啶碱: 胞嘧啶(C)胸腺嘧啶(T) 尿嘧啶(U)DNA中含有4种碱基:腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于DNA中。RNA中含也有4种碱基:腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于RNA中。在某些tRNA分子中也有胸腺嘧啶,少数几种噬菌体的DNA含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质pH的影响出现酮式、烯醇式互变异构体。在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基。tRNA中含稀有碱基高达10%。 核苷是戊糖与碱基之间以糖苷键(glycosidic bond)相连接而成。戊糖中C-1"与嘧啶碱的N-1或者与嘌吟碱的N9相连接,戊糖与碱基间的连接键是N-C键,一般称为N-糖苷键。RNA中含有稀有碱基,并且还存在异构化的核苷。如在tRNA和rRNA中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的C-1不是与尿嘧啶的N-1相连接,而是与尿嘧啶C-5相连接。 (一)DNA的二级结构DNA二级结构即双螺旋结构(double helix structure)。20世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则。DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑。DNA双螺旋结构特点如下:①两条DNA互补链反向平行。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36°的夹角。③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。因此G与C之间的连接较为稳定。⑤DNA双螺旋结构比较稳定。维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stacking force)。生理条件下,DNA双螺旋大多以B型形式存在。右手双螺旋DNA除B型外还有A型、C型、D型、E型。此外还发现左手双螺旋Z型DNA。Z型DNA是1979年Rich等在研究人工合成的CGCGCG的晶体结构时发现的。Z-DNA的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是12个碱基对。研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关。DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内。三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义。(二)DNA三级结构——超螺旋结构DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构。生物体内有些DNA是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA、叶绿体DNA都是环状的。环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口。在DNA双螺旋结构基础上,共价闭合环DNA(covalently close circular DNA)可以进一步扭曲形成超螺旋形(super helical form)。根据螺旋的方向可分为正超螺旋和负超螺旋。正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数。几乎所有天然DNA中都存在负超螺旋结构。(三)DNA的四级结构——DNA与蛋白质形成复合物在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA约为4.7×103kb,而人的基因组DNA约为3×106 kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近10 000倍后,以染色体形式存在于平均直径为5μm的细胞核中。线性双螺旋DNA折叠的第一层次是形成核小体(nucleosome)。犹如一串念珠,核小体由直径为11nm×5.5nm的组蛋白核心和盘绕在核心上的DNA构成。核心由组蛋白H2A、H2B、H3和H4各2分子组成,为八聚体,146 bp长的DNA以左手螺旋盘绕在组蛋白的核心1.75圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60 bp双螺旋DNA和1个分子组蛋白H1构成。平均每个核小体重复单位约占DNA 200 bp。DNA组装成核小体其长度约缩短7倍。在此基础上核小体又进一步盘绕折叠,最后形成染色体。(四)DNA结构的多态性Watson和Crick所推导出来的DNA结构在生物学研究中有深远意义。他们是以在生理盐溶液中抽出的DNA纤维在92%相对温度下进行X-射线衍射图谱为依据进行推设的。在这一条件下得出的DNA称B构象。实际上在溶液中的DNA的确呈这一构象,这也是最常见的DNA构象。但是,研究表明DNA的结构是动态的。在以钠、钾或铯作反离子,相对温度为75%时,DNA分子的X-射线衍射图给出的是A构象。这一构象不仅出现于脱水DNA中,还出现在RNA分子中的双螺旋区域的DNA-RNA杂交分子中。如果以锂作反离子,相对温度进一步降为66%,则DNA是C构象。但是这一构象仅在实验室中观察到,还未在生物体中发现。这些DNA分子中G-C碱基对较少,这些分子将取D和E构象。这些研究表明DNA的分子结构不是一成不变的,在不同的条件下可以有所不同。但是,这些不同构象的DNA都有共同的一点,即它们都是右手双螺旋;两条反向平行的核苷酸链通过Watson-Crick碱基配对结合在一起;链的重复单位是单核苷酸;这些螺旋中都有两个螺旋沟,分为大沟与小沟,只是它们的宽窄和深浅程度有所不同。但是,Wang和Rich等人在研究人工合成的CGCGCG单晶的X-射线衍射图谱时分别发现这种六聚体的构象与上面讲到的完全不同。它是左手双螺旋,在主链中各个磷酸根呈锯齿状排列,有如“之”字形一样,因此叫它Z构象(英文字Zigzag的第一个字母)。还有,这一构象中的重复单位是二核苷酸而不是单核苷酸;而且Z-DNA只有一个螺旋沟,它相当于B构象中的小沟,它狭而深,大沟则不复存在。立即就有几个问题被提了出来:这种结构是怎样生成的?这一结构在天然状态下存在吗?它有什么生物学意义?研究表明,Z-DNA的形成是DNA单链上出现嘌呤与嘧啶交替排列所成的。比如CGCGCGCG或者CACACACA。这种碱基排列方式会造成核苷酸的糖苷键的顺式和反式构象的交替存在。当碱基与糖构成反式结构时,它们之间离得远;而当它们成顺式时,就彼此接近。嘧啶糖苷键通常是反式的,而嘌呤糖苷酸键既可成顺式的也可成反式的。而在Z-DNA中,嘌呤碱是顺式的。这样,在Z-DNA中嘧啶的糖苷链离开小沟向外挑出,而嘌呤上的糖苷键则弯向小沟。嘌呤与嘧啶的交替排列就使得糖苷键也是顺式与反式交替排列,从而使Z-DNA主链呈锯齿状或“之”字形。人们相信,并用实验证明细胞DNA分子中确实存在有Z-DNA区。而且,细胞内有一些因素可以促使B-DNA转变为Z-DNA。比如,胞嘧啶第五位碳原子的甲基化,在甲基周围形成局部的疏水区。这一区域扩伸到B-DNA的大沟中,使B-DNA不稳定而转变为Z-DNA。这种C5甲基化现象在真核生物中是常见的。因此在生物B构象的DNA中某些区段具有Z-DNA构象是可能的。DNA真是一个构象可变动态分子。Z-DNA有会么生物学意义呢?应当指出Z-DNA的形成通常在热力学上是不利的。因为Z-DNA中带负电荷的磷酸根距离太近了,这会产物静电排斥。但是,DNA链的局部不稳定区的存在就成为潜在的解链位点。DNA解螺旋却是DNA复制和转录等过程中必要的环节,因此认为这一结构位点与基因调节有关。比如SV40增强子区中就有这种结构,又如鼠类微小病毒DNS复制区起始点附近有GC交替排列序列。此外,DNA螺旋上沟的特征在其信息表达过程中起关键作用。调控蛋白都是通过其分子上特定的氨基酸侧链与DNA双螺旋沟中的碱基对一侧的氢原子供体或受体相互作用,形成氢键从而识别DNA上的遗传信息的。大沟所带的遗传信息比小沟多。沟的宽窄和深浅也直接影响到调控蛋白质对DNA信息的识别。Z-DNA中大沟消失,小沟狭而深,使调探蛋白识别方式也发生变化。这些都暗示Z-DNA的存在不仅仅是由于DNA中出现嘌呤-啶嘧交替排列之结果,也一定是在漫漫的进化长河中对DNA序列与结构不断调整与筛选的结果,有其内在而深刻的含意,只是人们还未充分认识而已。DNA构象的可变性,或者说DNA二级结构的多态性的发现拓宽了人们的视野。原来,生物体中最为稳定的遗传物质也可以采用不同的姿态来实现其丰富多彩的生物的奥妙,也让人们在这一领域中探索和攀越时减少疲劳和厌倦,乐而忘返,从而有更多更新的发现。多年来,DNA结构的研究手段主要是X射线衍线技术,其结果是通过间接观测多个DNA分子有关结构参数的平均值而获得的。同时,这项技术的样品分析条件使被测DNA分子与天然状态相差甚远。因此,在反映DNA结构真实性方面这种方法存在着缺陷。1989年,应用扫描隧道显微镜(STM)研究DNA结构克服了上述技术的缺陷。这种先进的显微技术,不仅可将被测物放大500万倍,且能直接观测接近天然条件下单个DNA分子的结构细节。应该说它所取得的DNA结构资料更具有权威性。表1-6是STM测到的B-DNA结构参数及其与X射线衍线资料的比较结果。STM研究还证实了d(CG)重复序列的寡核苷酸片段为Z-DNA结构的事实。STM技术的应用是DNA结构研究中的重要进展,可望在探索DNA结构的某些未知点上展示巨大潜力。 (一)基因(gene)的现代分子生物学概念是指能编码有功能的蛋白质多肽链或合成RNA所必需的全部核酸序列,是核酸分子的功能单位。一个基因通常包括编码蛋白质多肽链或RNA的编码序列,保证转录和加工所必需的调控序列和5"端、3"端非编码序列。另外在真核生物基因中还有内含子等核酸序列。(二)基因组(genome)是指一个细胞或病毒所有基因及间隔序列,储存了一个物种所有的遗传信息。在病毒中通常是一个核酸分子的碱基序列,单细胞原核生物是它仅有的一条染色体的碱基序列,而多细胞真核生物是一个单倍体细胞内所有的染色体。如人单倍体细胞的23条染色体的碱基序列。多细胞真核生物起源于同一个受精卵,其每个体细胞的基因组都是相同的。 病毒基因组 原核生物基因组 真核生物基因组 在高等真核生物中基因序列占整个基因组不到10%,大部分是非编码的间隔序列。人类基因组研究结果发现在人的基因组中与蛋白质合成有关的基因只占整个基因组2 %。真核生物基因组的最大的特点是出现分隔开的基因,在这类基因中有编码作用的序列称外显子(exon),没有编码作用的序列称内含子(intron),它们彼此间隔排列。 绝大部分RNA分子都是线状单链,但是RNA分子的某些区域可自身回折进行碱基互补配对,形成局部双螺旋。在RNA局部双螺旋中A与U配对、G与C配对,除此以外,还存在非标准配对,如G与U配对。RNA分子中的双螺旋与A型DNA双螺旋相似,而非互补区则膨胀形成凸出(bulge)或者环(loop),这种短的双螺旋区域和环称为发夹结构(hairpin)。发夹结构是RNA中最普通的二级结构形式,二级结构进一步折叠形成三级结构,RNA只有在具有三级结构时才能成为有活性的分子。RNA也能与蛋白质形成核蛋白复合物,RNA的四级结构是RNA与蛋白质的相互作用。(一) tRNA的结构tRNA约占总RNA的15%,tRNA主要的生理功能是在蛋白质生物合成中转运氨基酸和识别密码子,细胞内每种氨基酸都有其相应的一种或几种tRNA,因此tRNA的种类很多,在细菌中约有30~40种tRNA,在动物和植物中约有50~100种tRNA。1. tRNA一级结构:tRNA是单链分子,含73~93核苷酸,分子质量为24 000~31 000,沉降系数4S。含有10%的稀有碱基。如二氢尿嘧啶(DHU)、核糖胸腺嘧啶(rT)和假尿苷(ψ)以及不少碱基被甲基化,其3"端为CCA-OH,5"端多为pG,分子中大约30%的碱基是不变的或半不变的,也就是说它们的碱基类型是保守的。2. tRNA二级结构: tRNA二级结构为三叶草型(如右图)。配对碱基形成局部双螺旋而构成臂,不配对的单链部分则形成环。三叶草型结构由4臂4环组成。氨基酸臂由7对碱基组成,双螺旋区的3"末端为一个4个碱基的单链区-NCCA-OH 3",腺苷酸残基的羟基可与氨基酸α羧基结合而携带氨基酸。二氢尿嘧啶环以含有2个稀有碱基二氢尿嘧啶(DHU)而得名,不同tRNA其大小并不恒定,在8~14个碱基之间变动,二氢尿嘧啶臂一般由3~4对碱基组成。反密码环由7个碱基组成,大小相对恒定,其中3个核苷酸组成反密码子(anticodon),在蛋白质生物合成时,可与mRNA上相应的密码子配对。反密码臂由5对碱基组成。额外环在不同tRNA分子中变化较大可在4~21个碱基之间变动,又称为可变环,其大小往往是tRNA分类的重要指标。TψC环含有7个碱基,大小相对恒定,几乎所有的tRNA在此环中都含TψC序列,TψC臂由5对碱基组成。3. tRNA的三级结构:二十世纪七十年代初科学家用X线射衍技术分析发现tRNA的三级结构为倒L形(如右图)。tRNA三级结构的特点是氨基酸臂与TψC臂构成L的一横,-CCAOH3"末端就在这一横的端点上,是结合氨基酸的部位,而二氢尿嘧啶臂与反密码臂及反密码环共同构成L的一竖,反密码环在一竖的端点上,能与mRNA上对应的密码子识别,二氢尿嘧啶环与TψC环在L的拐角上。形成三级结构的很多氢键与tRNA中不变的核苷酸密切有关,这就使得各种tRNA三级结构都呈倒L形的。在tRNA中碱基堆积力是稳定tRNA构型的主要因素。(二)mRNA原核生物中mRNA转录后一般不需加工,直接进行蛋白质翻译。mRNA转录和翻译不仅发生在同一细胞空间,而且这两个过程几乎是同时进行的。真核细胞成熟mRNA是由其前体核内不均一RNA(heterogeneous nuclear RNA,hnRNA)剪接并经修饰后才能进入细胞质中参与蛋白质合成。所以真核细胞mRNA的合成和表达发生在不同的空间和时间。mRNA的结构在原核生物中和真核生物中差别很大。下面分别作一介绍:1. 原核生物mRNA结构特点原核生物的mRNA结构简单,往往含有几个功能上相关的蛋白质的编码序列,可翻译出几种蛋白质,为多顺反子。在原核生物mRNA中编码序列之间有间隔序列,可能与核糖体的识别和结合有关。在5"端与3"端有与翻译起始和终止有关的非编码序列,原核生物mRNA中没有修饰碱基,5"端没有帽子结构,3"端没有多聚腺苷酸的尾巴(polyadenylate tail,polyA尾巴)。原核生物的mRNA的半衰期比真核生物的要短得多,转录后1min,mRNA降解就开始。2. 真核生物mRNA结构特点真核生物mRNA为单顺反子结构,即一个mRNA分子只包含一条多肽链的信息。在真核生物成熟的mRNA中5"端有m7GpppN的帽子结构,帽子结构可保护mRNA不被核酸外切酶水解,并且能与帽结合蛋白结合识别核糖体并与之结合,与翻译起始有关。3"端有polyA尾巴,其长度为20~250个腺苷酸,其功能可能与mRNA的稳定性有关,少数成熟mRNA没有polyA尾巴,如组蛋白mRNA,它们的半衰期通常较短。(三)rRNA的结构rRNA占细胞总RNA的80%左右,rRNA分子为单链,局部有双螺旋区域具有复杂的空间结构,原核生物主要的rRNA有三种,即5S、16S和23S rRNA,如大肠杆菌的这三种rRNA分别由120、1542和2904个核苷酸组成。真核生物则有4种,即5S、5.8S、18S和28S rRNA,如小鼠,它们相应含121、158、1874和4718个核苷酸。rRNA分子作为骨架与多种核糖体蛋白(ribosomal protein)装配成核糖体。所有生物体的核糖体都由大小不同的两个亚基所组成。原核生物核糖体为70S,由50S和30S两个大小亚基组成。30S小亚基含16S的rRNA和21种蛋白质,50S大亚基含23S和5S两种rRNA及34种蛋白质。真核生物核糖体为80S,是由60S和40S两个大小亚基组成。40S的小亚基含18S rRNA及33种蛋白质,60S大亚基则由28S、5.8S和5S 3种rRNA及49种蛋白质组成。(四)其他RNA分子20世纪80年代以后由于新技术不断产生,人们发现RNA有许多新的功能和新的RNA基因。细胞核内小分子RNA(small nuclear RNA,snRNA)是细胞核内核蛋白颗粒(Small nuclear ribonucleoprotein particles,snRNPs)的组成成分,参与mRNA前体的剪接以及成熟的mRNA由核内向胞浆中转运的过程。核仁小分子RNA(small nucleolar RNA,snoRNA)是类新的核酸调控分子, 参与rRNA前体的加工以及核糖体亚基的装配。胞质小分子RNA(small cytosol RNA, scRNA)的种类很多,其中7S LRNA与蛋白质一起组成信号识别颗粒(signal recognition particle,SRP),SRP参与分泌性蛋白质的合成,反义RNA(antisense RNA)由于它们可以与特异的mRNA序列互补配对,阻断mRNA翻译,能调节基因表达。核酶是具有催化活性的RNA分子或RNA片段。在医学研究中已设计了针对病毒的致病基因mRNA的核酶,抑制其蛋白质的生物合成,为基因治疗开辟新的途径,核酶的发现也推动了生物起源的研究。微RNA(microRNA,miRNA)是一种具有茎环结构的非编码RNA,长度一般为20-24个核苷酸,在mRNA翻译过程中起到开关作用,它可以与靶mRNA结合,产生转录后基因沉默作用(post-transcriptional gene silencing,PTGS),在一定条件下能释放,这样mRNA又能翻译蛋白质,由于miRNA的表达具有阶段特异性和组织特异性,它们在基因表达调控和控制个体发育中起重要作用。 ①酸效应:在强酸和高温,核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。②碱效应1. DNA:当PH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性2.RNA:PH较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖。这是因为RNA存在的2`-OH参与到对磷酸脂键中磷酸分子的分子内攻击,从而导致RNA的断裂。③化学变性:一些化学物质能够使DNA/RNA在中性PH下变性。由堆积的疏水碱基形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。 ①黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。② 浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而DNA最终沉降于其浮力密度相应的位置,形成狭带,这种技术成为平衡密度梯度离心或等密度梯度离心。③稳定性:核酸的结构相当稳定,其主要原因有1、碱基对间的氢键2、碱基的堆积作用3、环境中的阳离子。 ①减色性:dsDNA相对于ssDNA是减色的,而ssDNA相对于dsDNA是增色的。② DNA纯度:A260/A280。 ①热变性:dsDNA与RNA的热力学表现不同,随着温度的升高RNA中双链部分的碱基堆积会逐渐地减少,其吸光性值也逐渐地,不规则地增大。较短的碱基配对区域具有更高的热力学活性,因而与较长的区域相比变性快。而dsDNA热变性是一个协同过程。分子末端以及内部更为活跃的富含A-T的区域的变性将会使其赴京的螺旋变得不稳定,从而导致整个分子结构在解链温度下共同变性。② 复性:DNA的热变性可通过冷却溶液的方法复原。不同核酸链之间的互补部分的复性称为杂交。 一般来说,进化程度高的生物DNA分子应越大,能贮存更多遗传信息。但进化的复杂程度与DNA大小并不完全一致,如哺乳类动物DNA约为3×109 bp,但有些两栖类动物、南美肺鱼DNA大小可达1010bp到1011bp。常用测定DNA分子大小的方法有电泳法、离心法。凝胶电泳是当前研究核酸的最常用方法,凝胶电泳有琼脂糖(agarose)凝胶电泳和聚丙烯酰胺(polyacrylamide)凝胶电泳。 DNA和RNA中的糖苷键与磷酸酯键都能用化学法和酶法水解。在很低pH条件下DNA和RNA都会发生磷酸二酯键水解。并且碱基和核糖之间的糖苷键更易被水解,其中嘌呤碱的糖苷键比嘧啶碱的糖苷键对酸更不稳定。在高pH时,RNA的磷酸酯键易被水解,而DNA的磷酸酯键不易被水解。水解核酸的酶有很多种,若按底物专一性分类,作用于RNA的称为核糖核酸酶(ribonuclease,RNase),作用于DNA的则称为脱氧核糖核酸酶(deoxyribonuclease,DNase)。按对底物作用方式分类,可分核酸内切酶(endonuclease)与核酸外切酶(exonuclease)。核酸内切酶的作用是在多核苷酸内部的3",5"磷酸二酯键,有些内切酶能识别DNA双链上特异序列并水解有关的3",5"磷酸二酯键。核酸内切酶是非常重要的工具酶,在基因工程中有广泛用途。而核酸外切酶只对核酸末端的3",5"磷酸二酯键有作用,将核苷酸一个一个切下,可分为5"→3"外切酶,与3"→5"外切酶。 在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与解链程度有一定比例关系,这种关系称为增色效应(hyperchromic effect)。如果缓慢加热DNA溶液,并在不同温度测定其A260值,可得到“S”形DNA熔化曲线(melting curve)。从DNA熔化曲线可见DNA变性作用是在一个相当窄的温度内完成的。当A260值开始上升前DNA是双螺旋结构,在上升区域分子中的部分碱基对开始断裂,其数值随温度的升高而增加,在上部平坦的初始部分尚有少量碱基对使两条链还结合在一起,这种状态一直维持到临界温度,此时DNA分子最后一个碱基对断开,两条互补链彻底分离。通常把加热变性时DNA溶液A260升高达到最大值一半时的温度称为该DNA的熔解温度(melting temperature Tm),Tm是研究核酸变性很有用的参数。Tm一般在85~95℃之间,Tm值与DNA分子中G C含量成正比。 具有互补序列的不同来源的单链核酸分子,按碱基配对原则结合在一起称为杂交(hybridization)。杂交可发生在DNA-DNA、RNA-RNA和DNA-RNA之间。杂交是分子生物学研究中常用的技术之一,利用它可以分析基因组织的结构,定位和基因表达等,常用的杂交方法有Southern印迹法,Northern印迹法和原位杂交(insitu hybridization)等。
组成核酸和核糖核酸的核酸的种类分别有
核酸有核糖核酸和脱氧核糖核酸,每种各四钟总计8种核糖核酸有4种
核酸中含胸腺嘧啶的核酸是:A rRNA B,mRNA C ,tRNA D,snRNA
答:选C.解析:rRNA的结构是三叶草结构.它有一个TφC环,含有胸腺嘧啶.
腺嘌呤 鸟嘌呤 胸腺嘧啶 胞嘧啶 尿嘧啶不属于脱氧核糖核酸
都不是脱氧核糖核酸。但前四个属于脱氧核糖核酸的组成部分腺嘌呤 鸟嘌呤 胸腺嘧啶 胞嘧啶这四种,是脱氧核糖核苷酸的碱基部分。脱氧核糖核苷酸则是脱氧核糖核酸(DNA)的组成部分。类似于汽车是车队的组成部分,而反光镜则是汽车的组成部分。尿嘧啶只存在于核糖核酸(RNA)中,不存在于脱氧核糖核酸(DNA)中
细胞中组成核酸的腺嘌吟与胸胸腺嘧啶数量相等吗?
不相等。细胞中的核酸有两种:DNA和RNA。DNA是双链,腺嘌呤A与胸腺嘧啶T配对,因此A与T的数量相等;RNA是单链,碱基组成有腺嘌呤A、鸟嘌呤G、胞嘧啶C和尿嘧啶U。因此,细胞中组成核酸的腺嘌呤A比胸腺嘧啶T数量要多。
核糖和核糖核苷酸和核糖核酸有什么关系
核糖(脱氧核糖)+碱基→核苷(脱氧核苷)核苷(脱氧核苷)+磷酸→核苷酸(脱氧核苷酸)核苷酸(脱氧核苷酸)脱水缩合→核糖核酸(RNA)或脱氧核糖核酸(DNA)
核糖核酸的作用与功效
核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶),其中,U(尿嘧啶)取代了DNA中的T。核糖核酸在体内的作用主要是引导蛋白质的合成。[1]中文名核糖核酸外文名Ribonucleic Acid[1] 别名RNA[1] 构成磷酸,核糖和碱基[1] 碱基A、G、C、U[1] 快速导航细胞中的分布组成结构干扰机制功能分类核糖核酸人体一个细胞含RNA约10pg(含DNA约7pg)。与DNA相比,RNA种类繁多,分子量较小,含量变化大。RNA可根据结构和功能的不同分为信使RNA和非编码RNA。非编码RNA分为非编码大RNA和非编码小RNA。非编码大RNA包括核糖体RNA、长链非编码RNA。非编码小RNA包括转移RNA、核酶、小分子RNA等。小分子RNA(20~300nt)包括 miRNA、 SiRNA、 piRNA、scRNA、 snRNA、 snoRNA等,细菌也有小分子RNA(50~500nt)。[2]信使RNA信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。[2]1.含量低,占细胞总RNA的1%~5%。[2]2.种类多,可达105种。不同基因表达不同的mRNA。[2]3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰期约为1.5分钟。脊椎动物mRNA的半衰期差异极大,平均约为3小时。[2]4.长度差异大哺乳动物mRNA长度为5×102~1×105nt原核生物与真核生物的mRNA虽然在结构上有差异,但功能一样,都是指导蛋白质合成的模板。[2]转移RNA转移RNA(tRNA)在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码。tRNA占细胞总RNA的10%~15%,绝大多数位于细胞质中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鉴定。[2]1.tRNA一级结构具有以下特点:[2]①是一类单链小分子RNA,长73~95nt(共有序列76nt),沉降系数4S。[2]②是含稀有碱基最多的RNA,含7-15个稀有碱基(占全部碱基的15%~20%),位于非配对区。[2]③5′末端碱基往往是鸟嘌呤。[2]④3"端是CCA序列,其中的腺苷酸常称为A76,其3"—OH是氨基酸结合位点。[2]2.tRNA二级结构约50%碱基配对,形成四段双螺旋,与五段非配对序列形成三叶草形结构。该结构中存在四臂四环:①氨基酸臂。[2]②二氢尿嘧啶臂(DHU臂、D臂)和二氢尿嘧啶环(DHU环、D环),特征是含二氢尿嘧啶(DHU、D)。[2]③反密码子臂和反密码子环,特征是反密码子环含反密码子。反密码子5′端与尿苷酸连接,3′端与嘌呤核苷酸连接。TΨC臂(T臂)和TΨC环(Ψ环),特征是TΨC环含胸腺嘧啶核糖核苷酸T54假尿苷酸Ψ55胞苷酸C56。[2]④额外环3~21nt。[2]
什么是核糖核酸,什么是核糖核苷酸?
一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸
核糖核酸和核糖核酸的区别有哪些?
一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸
核糖核酸在什么食物中含有??
含核糖核酸较多的食物有瘦肉、动物内脏以及肉汤、肉汁、肉馅、鱼类、酵母等。此外,贝壳类食物、干豆类、菠菜、竹笋、蘑菇等也含有丰富的核酸。含核酸很少的食物包括谷类(大米、玉米面、精白面粉、蛋糕、饼干等)、乳类及其制品、蛋类、蔬果类、油脂类以及各种调味品、茶、咖啡、巧克力、泡菜等。
核糖核酸与核糖核苷酸的区别?
核糖核苷酸是组成核糖核酸的基本单位,二者是包含关系,就像氨基酸之于蛋白质,葡萄糖之于淀粉。核苷酸是核酸最小的活性分子,而核酸是由四种核苷酸通过化学键组成的双螺旋结构。核酸在人体内可分解成八种核苷酸,这八种核苷酸又可分解成八种核苷及磷酸,这八种核苷又可再进一步分解成五种碱基和戊糖,而由RNA降解而来的核苷酸只能分解成四种核苷及磷酸,这四种核苷再进一步分解只有得到四种碱基和戊糖。
核糖,脱氧核糖,核酸,核糖核酸,脱氧核糖核酸 有什么联系
核糖是一种单糖,分子式C4H9O4CHO。D-核糖和D-2-脱氧核糖是核酸中的碳水化合物组分,以呋喃糖型广泛存在于植物和动物细胞中。D-核糖也是多种维生素、辅酶以及某些抗生素,如新霉素A、B和巴龙霉素的成分。由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。
核糖和核糖核酸都含有的元素是什么?
答:核糖和核糖核酸都含有的元素是C、H、O。解析:核糖属单糖,它的化学元素组成是:C、H、O。核糖核酸是遗传物质,它是化学元素组成是:C、H、O、N、P。所以,核糖和核糖核酸都含有的元素是C、H、O
核糖核酸和核糖核酸的区别是什么?
一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸
核糖核酸和核糖核苷酸有什么区别?
1、五碳糖不同核苷酸是由一个磷酸基团和一个五碳糖还有一个含氮碱基组成的,脱氧核苷酸有用的五碳糖是脱氧核糖,核糖核苷酸拥有的五碳糖是核糖,而脱氧核苷酸是脱氧核酸的基本组成单位,核糖核苷酸是核糖核酸的基本组成单位。2、化学组成不同核酸可分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)。一句话,核酸包括核糖核酸。3、修复范围不同RNA仅存在于细胞质内,而DNA存在于细胞核及细胞质中,服用二者按比例配比的核酸合剂不仅可修复细胞质亦可修复细胞核,从整体上达到修复细胞的目的。而服用由RNA降解而来的核昔酸,最多只能修复部分细胞质。4、分解产物不同核酸在人体内可分解成八种核苷酸,这八种核苷酸又可分解成八种核苷及磷酸,这八种核苷又可再进一步分解成五种碱基和戊糖,而由RNA降解而来的核苷酸只能分解成四种核苷及磷酸,这四种核苷再进一步分解只有得到四种碱基和戊糖。5、构造不同核糖核酸是长链,它的构造单元是核糖核苷酸。 核糖+碱基=核苷;核苷+磷酸=核苷酸;核苷酸聚合=核糖核酸。扩展资料DNA和RNA及核酸的关系DNA和RNA两种核酸分子都是多聚体,但是它们的聚合程度有所不同。DNA聚合程度高,易于甲基绿结合;RNA聚合程度低易于吡罗红结合。所以当吡罗红与甲基绿混在一起作为染料时吡罗红与核仁、细胞质中的RNA选择性结合,从而显示红色;甲基绿与染色质中的DNA选择性结合,从而显示绿色。综上所述,RNA对吡罗红的亲和力大,被染成红色;DNA对甲基绿的亲和力大,被染成绿色。参考资料来源:百度百科-核糖核苷酸参考资料来源:百度百科-核糖核酸
核糖和核酸有什么区别
核糖是自然界中最重要的一种戊糖,主要以D型形式存在,是核糖核酸(RNA)的主要组分,并出现在许多核苷和核苷酸以及其衍生物中。核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。简言之,核糖构成核酸。
核糖和核糖核酸都含有的元素是什么?
答:核糖和核糖核酸都含有的元素是C、H、O。解析:核糖属单糖,它的化学元素组成是:C、H、O。核糖核酸是遗传物质,它是化学元素组成是:C、H、O、N、P。所以,核糖和核糖核酸都含有的元素是C、H、O
什么是核糖核酸?有什么特性?
核糖核酸(ribonucleic acid,RNA)是由核糖核苷经磷酸二酯键缩合而成的长链状分子,是一类遗传信息传递的载体。与DNA类似,RNA的组成碱基也为4种,分别为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C) 和尿嘧啶(U)。RNA按功能和结构主要可以分为以下几种:①信使RNA(messenger RNA,mRNA),是遗传信息的中间载体,在蛋白质合成过程中作为信使分子,将DNA的遗传信息转化为氨基酸序列;②转运RNA(transfer RNA,tRNA),在蛋白质合成过程中携带特定的氨基酸加入正在合成的肽链中;③核糖体RNA(ribosomal RNA,rRNA),在细胞RNA中占比75%~85%,是蛋白质加工复合物核糖体的主要成分;④端粒酶RNA,存在于真核细胞中,是端粒酶的组成部分,作为模板辅助端粒的延长;⑤反义RNA,通过与mRNA配对抑制其翻译,调控其转录或表达;⑥核酶,是一类具有催化活性的RNA,可以发挥切割核酸、RNA连接酶以及磷酸酶等活性。此外,还存在许多非编码RNA,如长非编码RNA和小RNA,在细胞中起到调控作用。
核糖核酸有什么区别??
一、结构:dna的分子组成为脱氧核糖核苷酸,rna的分子组成为核糖核苷酸;二、异同点:1、含义不同:DNA的为脱氧核糖,RNA的为核糖。2、范围不同:DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶,RNA的为腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶。3、表示不同:DNA为双链,RNA为单链。核糖体RNA特点(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。(3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物主要有5S、5.8S、18S、28S四种rRNA,另有少量线粒体rRNA、叶绿体rRNA。大肠杆菌16SrRNA的3"端有一段保守序列 ACCUCCU,可与mRNA中的SD序列互补结合。以上内容参考:百度百科-核糖核酸
核糖和核酸有什么区别
核糖是一种单糖,含有五个碳原子,又称为五碳糖,它是核酸分子的组成成分;而核酸是生物的遗传物质,大多数生物的遗传物质为脱氧核糖核酸(简称DNA),少数病毒的遗传物质为核糖核酸(简单RNA),两者的区别除了其中的碱基不同外,所含的核糖也不同,在核糖核酸中含有的五碳糖是核糖,而在脱氧核糖核酸中含有的五碳糖是脱氧核糖。
核糖、核酸、核糖体、核苷酸、染色体、细胞核有什么区别?
……小后你加油……(去SHI)我来试着解释解释,你随意看orz第一,【核糖】是一种【五碳糖】,我们平时学的核糖分两种,一种是【脱氧核糖】,一种是【(含氧)核糖】。第二,【核酸】和【核苷酸】是组成与被组成的关系。【核酸】的基本单位是【核苷酸】。而核苷酸的分类是根据组成核苷酸的核糖种类来分的。有【核糖核苷酸】与【脱氧核糖核苷酸】。从而核酸也就分为【核糖核酸】与【脱氧核糖核酸】。【核糖核酸】就是平时讲的RNA,【脱氧核糖核酸】就是平时讲的DNA。第三,【染色体】是【细胞核】内【染色质】在细胞进行【有丝分裂】时的一种状态,是由细丝状的【染色质】螺旋化形成的棒状结构。【染色体】的组成成分是【DNA(脱氧核糖核酸)】和【蛋白质】,DNA与蛋白质相结合而成染色体。第四,【细胞核】是一个由核膜隔开细胞其余部分而形成的一个空间结构,【细胞核】里含有【染色体】及其他结构。总之就是,(真核)细胞里有【细胞核】,【细胞核】里有【染色体(质)】,【染色体】的组成成分含有【DNA(脱氧核糖核酸)】,【DNA(脱氧核糖核酸)】由【脱氧核糖核苷酸】组成,【脱氧核糖核苷酸】的组成成分里有【脱氧核糖】。而【RNA(核糖核酸)】类比DNA。……因为估计小后你们还没学到有丝分裂什么的就不继续解释了……反正这样……应该也够了吧……
核糖核酸都有些什么种类?
RNA的种类: 在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用。它们是信使RNA(messengerRNA,mRNA)、转运RNA(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)。RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外还有几十种稀有碱基。 RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链。天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区。不配对的碱基区膨出形成环,被排斥在双螺旋之外。RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键。每一段双螺旋区至少需要4~6对碱基对才能保持稳定。在不同的RNA中,双螺旋区所占比例不同。【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA。它们各有特点。在大多数细胞中RNA的含量比DNA多5~8倍。【大肠杆菌RNA的性质】 mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。现已证明,这种中介物质是一种特殊的RNA。这种RNA起着传递遗传信息的作用,因而称为信使RNA(messenger RNA,mRNA)。 mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA)。 tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转运RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上。 tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。 1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性: ① 5"末端具有G(大部分)或C。 ② 3"末端都以ACC的顺序终结。 ③ 有一个富有鸟嘌呤的环。 ④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。 ⑤ 有一个胸腺嘧啶环。 rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%。 rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。 rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。 rRNA在蛋白质合成中的功能尚未完全明了。但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合。 snRNA 除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控。 有的RNA分子还具有生物催化作用。 上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。 2006诺贝尔医学奖成果RNA干扰机制解读 1990年,曾有科学家给矮牵牛花插入一种催生红色素的基因,希望能够让花朵更鲜艳。但意想不到的事发生了:矮牵牛花完全褪色,花瓣变成了白色!科学界对此感到极度困惑。 类似的谜团,直到美国科学家安德鲁·法尔和克雷格·梅洛发现RNA(核糖核酸)干扰机制才得到科学的解释。两位科学家也正是因为1998年做出的这一发现而荣获今年的诺贝尔生理学或医学奖。 根据法尔和梅洛的发现,科学家在矮牵牛花实验中所观察到的奇怪现象,其实是因为生物体内某种特定基因“沉默”了。导致基因“沉默”的机制就是RNA干扰机制。 此前,RNA分子只是被当作从DNA(脱氧核糖核酸)到蛋白质的“中间人”、将遗传信息从“蓝图”传到“工人”手中的“信使”。但法尔和梅洛的研究让人们认识到,RNA作用不可小视,它可以使特定基因开启、关闭、更活跃或更不活跃,从而影响生物的体型和发育等。 诺贝尔奖评审委员会在评价法尔和梅洛的研究成果时说:“他们的发现能解释许多令人困惑、相互矛盾的实验观察结果,并揭示了控制遗传信息流动的自然机制。这开启了一个新的研究领域。” 科学家认为,RNA干扰技术不仅是研究基因功能的一种强大工具,不久的未来,这种技术也许能用来直接从源头上让致病基因“沉默”,以治疗癌症甚至艾滋病,在农业上也将大有可为。从这个角度来说,“沉默”真的是金。美国哈佛医学院研究人员已用动物实验表明,利用RNA干扰技术可治愈实验鼠的肝炎。 目前,尽管尚有一些难题阻碍着RNA干扰技术的发展,但科学界普遍对这一新兴的生物工程技术寄予厚望。这也是诺贝尔奖评审委员会为什么不坚持研究成果要经过数十年实践验证的“惯例”,而破格为法尔和梅洛颁奖的原因之一。 诺贝尔生理学或医学奖评审委员会主席戈兰·汉松说:“我们为一种基本机制的发现颁奖。这种机制已被全世界的科学家证明是正确的,是给它发个诺贝尔奖的时候了。” 补充 核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。 RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。 与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。 在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。 在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。 1982年以来,研究表明,不少RNA,如I、II型内含子,RNase P,HDV,核糖体大亚基RNA等等有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶(ribozyme)。 20世纪90年代以来,又发现了RNAi(RNA interference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。
自然条件除了组蛋白,可以结合核酸的蛋白还有哪些?
染色质是由DNA、组蛋白、非组蛋白和少量RNA组成的复合物。因此,可以结合核酸的蛋白质还有非组蛋白。但是要记住一点:RNA不与任何蛋白质相结合。只有染色质中的DNA才与组蛋白和非组蛋白相结合。希望能帮助您。^__^
自然条件除了组蛋白,可以结合核酸的蛋白还有哪些?
染色质是由DNA、组蛋白、非组蛋白和少量RNA组成的复合物.因此,可以结合核酸的蛋白质还有非组蛋白. 但是要记住一点:RNA不与任何蛋白质相结合.只有染色质中的DNA才与组蛋白和非组蛋白相结合. ^__^
核苷,核苷酸,核酸三者在分子结构上的关系是怎样的
核苷、核苷酸、核酸三词常易被初学者混淆。核苷是碱基与核糖通过糖苷键连接成的糖苷(苷或称甙)化合物。核苷酸是核苷的磷酸酯,是组成核酸(DNA,RNA)的基本单元。正如由氨基酸(基本单元)组成蛋白质(生物大分子)一样道理。所以核酸也叫多聚核苷酸。核苷(nuClEosiDE)、核苷酸(nuClEotiDE)英文名称只有一个字母之差。扩展资料RNA在蛋白质合成过程中起着重要作用——其中转运核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。此外,现在已知许多其他种类的功能RNA,如microRNA等。核酸类似物主要用于医学和分子生物学研究 。参考资料来源:百度百科-核酸
DNA RNA各含的四种碱基和四种核苷酸到底是什么 核酸中得五种碱基 八种核苷酸又分别是那些
DNA 的四种碱基:AGCT四种核苷酸:腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胞嘧啶脱氧核苷酸、胸腺嘧啶脱氧核苷酸RNA 的四种碱基:AGCU四种核苷酸:腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸核酸中得五种碱基:AGCTU八种核苷酸:上边8种核苷酸的和
核苷酸是构成哪一种核酸的原料
1核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。2根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。3核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。
核苷酸与核酸及核苷的区别
核苷+磷酸基团=核苷酸核酸=很多核苷酸脱水缩合。是包含关系核酸 分解成为 核苷酸核苷酸 分解成为 核苷
核酸与核苷酸有什么区别啊
一、作用不同核酸:核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病患者则是DNA分子上缺乏产生促黑色素生成的酪氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。核苷酸:核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:1、核苷酸是合成生物大分子核糖核酸及脱氧核糖核酸的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP,这四种类型的核苷酸从头合成身物是磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,它们是由各自相应的核碳核苷酸在二磷酸水平上还原而成的。2、三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。3、ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。4、腺苷酸还是几种重要辅酶,如辅酶Ⅰ、黄素腺嘌呤二核苷酸及辅酶A的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。5、核苷酸对于许多基本的生物学过程有一定的调节作用。一切生物体的基本成分,对生物的生长、发育、繁殖和遗传都起着主宰作用。如在奶粉作为维持宝宝胃肠道正常功能,减少腹泻和便秘、提高免疫力,少生病的作用。二、组成成分不同核酸:单个核苷酸是由含氮有机碱、戊糖和磷酸三部分构成的。1、碱基:构成核苷酸的碱基分为嘌呤和嘧啶;二类。前者主要指腺嘌和鸟嘌呤,DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶胸腺嘧啶和尿嘧啶,胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖形成糖苷键的位置。此外,核酸分子中还发现数十种修饰碱基,又称稀有碱基。它是指上述五种碱基环上的某一位置被一些化学基团修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。2、核苷:由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。3、核苷酸:核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。核苷酸:一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸、鸟嘌呤核苷酸、胞嘧啶核苷酸、尿嘧啶核苷酸、胸腺嘧啶核苷酸及次黄嘌呤核苷酸等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。扩展资料:化学性质:一、酸效应在强酸和高温,核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。二、碱效应1、DNA:当PH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性2、RNA:PH较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖。这是因为RNA存在的2`-OH参与到对磷酸脂键中磷酸分子的分子内攻击,从而导致RNA的断裂。化学变性:一些化学物质能够使DNA/RNA在中性PH下变性。由堆积的疏水碱基形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。参考资料来源:百度百科-核酸参考资料来源:百度百科-核苷酸
核酸,核苷 核苷酸 区别以什么键形成的
核苷酸是一个或多个磷酸基团通过与一个核苷上的糖基部位缩合成二酯键而形成的一种化合物。核酸是由核苷酸相互连接形成长的多核苷酸链。两个核苷酸之间的连接通常是通过3′,5′-磷酸二酯键将一个核苷酸的磷酸基团与另一个核苷酸的脱氧核糖连接。核苷是由碱基和五碳糖(核糖或脱氧核糖)连接而成,即嘌呤的N-9或嘧啶的N-1与核糖或脱氧核糖的C-1通过β糖苷键连接而成的化合物。
核糖核苷酸核酸之间有什么关系和联系 呢
核酸包括脱氧核糖核酸,核糖核酸组成核酸的基本单位是核苷酸,脱氧核糖核酸就是DNA,核糖核酸就是RNA,他们的基本单位分别是脱氧核苷酸,核糖核苷酸.书上说的:核苷酸组成DNA是笼统的说法应该是:脱氧核苷酸是组成DNA的成分之1另外一分子DNA是由1分子磷酸,1分子脱氧核糖,1分子含氮碱基组成的而RNA是核糖所以应该是脱氧核苷酸是组成DNADNA就是脱氧核糖核酸,RNA即核糖核酸,二者的基本结构单位是核苷酸,由一分子无碳糖,一分子磷酸和一分子碱基构成。其中DNA的四个碱基是鸟嘌呤(G),腺嘌呤(A),胞嘧啶(C)胸腺嘧啶(T),RNA是把T换成U(尿嘧啶)
人的身体里有几种核酸?几种碱基?几种核苷酸?分别是什么? 知道的帮个忙.
有两大类核酸:DNA(脱氧核糖核酸)和RNA(核糖核酸) 碱基有五种,胞嘧啶(C)、胸腺嘧啶(T)、尿嘧啶(U)、腺嘌呤(A)和鸟嘌呤(G).其中属于DNA的有A、C、T、G四种,而属于RNA的A、C、U、G. 和碱基相对应,有八类核苷酸:AMP(腺嘌呤核糖核苷酸)、GMP(鸟嘌呤核糖核苷酸)、CMP(胞嘧啶核糖核苷酸)、UMP(尿嘧啶核糖核苷酸);dAMP(脱氧腺嘌呤核糖核苷酸)、dCMP(脱氧胞嘧啶核糖核苷酸)、dTMP(脱氧胸腺嘧啶核糖核苷酸)、dGMP(脱氧鸟嘌呤核糖核苷酸).
核酸与核苷酸有什么区别啊
一、作用不同核酸:核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病患者则是DNA分子上缺乏产生促黑色素生成的酪氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。核苷酸:核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:1、核苷酸是合成生物大分子核糖核酸及脱氧核糖核酸的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP,这四种类型的核苷酸从头合成身物是磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,它们是由各自相应的核碳核苷酸在二磷酸水平上还原而成的。2、三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。3、ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。4、腺苷酸还是几种重要辅酶,如辅酶Ⅰ、黄素腺嘌呤二核苷酸及辅酶A的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。5、核苷酸对于许多基本的生物学过程有一定的调节作用。一切生物体的基本成分,对生物的生长、发育、繁殖和遗传都起着主宰作用。如在奶粉作为维持宝宝胃肠道正常功能,减少腹泻和便秘、提高免疫力,少生病的作用。二、组成成分不同核酸:单个核苷酸是由含氮有机碱、戊糖和磷酸三部分构成的。1、碱基:构成核苷酸的碱基分为嘌呤和嘧啶;二类。前者主要指腺嘌和鸟嘌呤,DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶胸腺嘧啶和尿嘧啶,胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖形成糖苷键的位置。此外,核酸分子中还发现数十种修饰碱基,又称稀有碱基。它是指上述五种碱基环上的某一位置被一些化学基团修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。戊糖:RNA中的戊糖是D-核糖,DNA中的戊糖是D-2-脱氧核糖。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。2、核苷:由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。3、核苷酸:核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。核苷酸:一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸、鸟嘌呤核苷酸、胞嘧啶核苷酸、尿嘧啶核苷酸、胸腺嘧啶核苷酸及次黄嘌呤核苷酸等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。扩展资料:化学性质:一、酸效应在强酸和高温,核酸完全水解为碱基,核糖或脱氧核糖和磷酸。在浓度略稀的的无机酸中,最易水解的化学键被选择性的断裂,一般为连接嘌呤和核糖的糖苷键,从而产生脱嘌呤核酸。二、碱效应1、DNA:当PH值超出生理范围(pH7~8)时,对DNA结构将产生更为微妙的影响。碱效应使碱基的互变异构态发生变化。这种变化影响到特定碱基间的氢键作用,结果导致DNA双链的解离,称为DNA的变性2、RNA:PH较高时,同样的变性发生在RNA的螺旋区域中,但通常被RNA的碱性水解所掩盖。这是因为RNA存在的2`-OH参与到对磷酸脂键中磷酸分子的分子内攻击,从而导致RNA的断裂。化学变性:一些化学物质能够使DNA/RNA在中性PH下变性。由堆积的疏水碱基形成的核酸二级结构在能量上的稳定性被削弱,则核酸变性。参考资料来源:百度百科-核酸参考资料来源:百度百科-核苷酸
核苷酸通过什么组成核酸
核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3",5"-磷酸二酯键。这种连接可理解为核苷酸糖基上的3"位羟基与相邻5"核苷酸的磷酸残基之间,以及核苷酸糖基上的5"位羟基与相邻3"核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。
碱基,核苷,核苷酸,核酸的关系
碱基+核糖=核苷核苷+磷酸=核苷酸核苷酸+核苷酸+。。。。。。+核苷酸=核酸。核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。
核糖核酸和核糖核苷酸有什么区别?
1、五碳糖不同核苷酸是由一个磷酸基团和一个五碳糖还有一个含氮碱基组成的,脱氧核苷酸有用的五碳糖是脱氧核糖,核糖核苷酸拥有的五碳糖是核糖,而脱氧核苷酸是脱氧核酸的基本组成单位,核糖核苷酸是核糖核酸的基本组成单位。2、化学组成不同核酸可分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)。一句话,核酸包括核糖核酸。3、修复范围不同RNA仅存在于细胞质内,而DNA存在于细胞核及细胞质中,服用二者按比例配比的核酸合剂不仅可修复细胞质亦可修复细胞核,从整体上达到修复细胞的目的。而服用由RNA降解而来的核昔酸,最多只能修复部分细胞质。4、分解产物不同核酸在人体内可分解成八种核苷酸,这八种核苷酸又可分解成八种核苷及磷酸,这八种核苷又可再进一步分解成五种碱基和戊糖,而由RNA降解而来的核苷酸只能分解成四种核苷及磷酸,这四种核苷再进一步分解只有得到四种碱基和戊糖。5、构造不同核糖核酸是长链,它的构造单元是核糖核苷酸。 核糖+碱基=核苷;核苷+磷酸=核苷酸;核苷酸聚合=核糖核酸。扩展资料DNA和RNA及核酸的关系DNA和RNA两种核酸分子都是多聚体,但是它们的聚合程度有所不同。DNA聚合程度高,易于甲基绿结合;RNA聚合程度低易于吡罗红结合。所以当吡罗红与甲基绿混在一起作为染料时吡罗红与核仁、细胞质中的RNA选择性结合,从而显示红色;甲基绿与染色质中的DNA选择性结合,从而显示绿色。综上所述,RNA对吡罗红的亲和力大,被染成红色;DNA对甲基绿的亲和力大,被染成绿色。参考资料来源:百度百科-核糖核苷酸参考资料来源:百度百科-核糖核酸
核酸有哪四种碱基?
腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。它们一起组成脱氧核糖核酸,通常称DNA,DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。DNA 分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。扩展资料:RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。通常从血液、皮肤、唾液、头发和其它组织和体液中分离DNA,以识别罪犯或犯罪行为。常用的遗传指纹识别。该技术比较重复DNA的可变区段的长度,例如短串联重复序列和小卫星,它们在个体之间有不同。参考资料:百度百科--脱氧核糖核酸参考资料:百度百科--核糖核酸
核酸 DNA RNA 含有的碱基种类分别
核糖核苷酸(RNA):腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)脱氧核糖核苷酸(DNA):腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)核酸一共有五种碱基ATGCU
核酸,核苷酸,碱基之间有什么关系和联系???
核酸有两种:脱氧核糖核酸(脱氧核甘酸)‘也就是DNA"、核糖核酸‘也就是RNA"。核甘酸就是核酸的组成单位,就像蛋白质是由氨基酸组成的一样,DNA的组成单位是脱氧(核糖)核甘酸,RNA的组成单位是核糖核甘酸。碱基就是核甘酸上的一个基团,就像是氨基酸上的羟基或者是羧基,和这是一个道理。
组成核酸的碱基共有几种?
核酸是由核苷酸构成核苷酸分成脱氧核糖核苷酸和核糖核苷酸两种其中脱氧核糖核苷酸里含atcg四种碱基核糖核苷酸含aucg四种碱基所以一共有5种碱基
存在于核酸分子中的碱基主要有几种
主要有五种。其中在核糖核酸(RNA)中的是:腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)、胞嘧蝊(C);在脱氧核糖核酸(DNA)中的是:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧蝊(C)。
组成核酸分子的碱基主要有
组成脱氧核糖核酸(DNA)的碱基有:A腺嘌呤,G鸟嘌呤,C胞嘧啶,T胸腺嘧啶。 组成核糖核酸(RNA)的碱基有:A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。组成DNA分子的脱氧核苷酸主要有四种,即dAMP,dGMP、dCMP和dTMP(d代表“脱氧”的意思),此外还含有少量的稀有碱基(主要是甲基化碱基)。50年代初,E.Chargaff等人对来自不同生物的DNA进行完全水解,对碱基进行了定量测定,总结出如下规律,一般称它为Chargaff规则。1.所有DNA分子中,嘌呤碱总摩尔数等于嘧啶碱总摩尔数医学教|育网搜集整理,即A+G=T+C,并且以摩尔为单位,A=T、G=C.2.DNA的碱基组成具有种属的特异性,即不同生物种属的DNA具有各自独特的碱基组成。3.DNA的碱基组成没有组织、器官的特性,即同种生物中不同组织及器官的DNA在碱基组成上是一致的。碱基,在化学中本是“碱性基团”的简称。有机物中大部分的碱性基团都含有氮原子,称为含氮碱基,氨基(-NH2)是最简单的含氮碱基。碱基,在生物化学中又称核碱基、含氮碱基,是形成核苷的含氮化合物,核苷又是核苷酸的组分。碱基、核苷和核苷酸等单体构成了核酸的基本构件。核碱基间可以形成碱基对,且彼此堆叠,所以,它们是长链螺旋结构,例如核糖核酸(RNA)和脱氧核糖核酸(DNA)的重要组成部分。
脱氧核苷酸和脱氧核糖核酸的区别
脱氧核糖核苷酸和脱氧核苷酸的区别: 一、代表含义不同: 1、脱氧核糖核酸简称DNA,是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。DNA分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。 2、脱氧核糖核苷酸简称脱氧核苷酸,是脱氧核糖核酸的基本单位。绝大部分存在于细胞核和染色质中,并与组织蛋白结合在一起。 二、组成单位不同: 1、DNA组成单位为四种脱氧核苷酸,即:腺嘌呤脱氧核苷酸,胸腺嘧啶脱氧核苷酸,胞嘧啶脱氧核苷酸,鸟嘌呤脱氧核苷酸。 2、脱氧核糖核苷酸一般由C、H、O、N、P五种元素组成。